Integrating Enterprise Applications:
Backgrounder

by S. Radhakrishnan

April 25th, 2005

The information contained in this document is provided for informational purposes only and represents the current view of
Intel Corporation Intel on the date of publication. Intel makes no commitment to update the information contained in this
document, and Intel reserves the right to make changes at any time, without notice.

DISCLAIMER. THIS DOCUMENT AND ALL INFORMATION CONTAINED HEREIN IS PROVIDED AS IS. INTEL MAKES NO
REPRESENTATIONS OF ANY KIND WITH RESPECT TO PRODUCTS REFERENCED HEREIN, WHETHER SUCH
PRODUCTS ARE THOSE OF INTEL OR THIRD PARTIES. INTEL EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES,
IMPLIED OR EXPRESS, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT, AND ANY WARRANTY ARISING OUT OF THE INFORMATION
CONTAINED HEREIN, INCLUDING WITHOUT LIMITATION, ANY PRODUCTS, SPECIFICATIONS, OR OTHER MATERIALS
REFERENCED HEREIN. INTEL DOES NOT WARRANT THAT THIS DOCUMENT OR THE INFORMATION CONTAINED
HEREIN IS FREE FROM ERRORS, OR THAT ANY PRODUCTS OR OTHER TECHNOLOGY DEVELOPED IN
CONFORMANCE WITH THIS DOCUMENT WILL PERFORM IN THE INTENDED MANNER, OR WILL BE FREE FROM
INFRINGEMENT OF THIRD PARTY PROPRIETARY RIGHTS, AND INTEL DISCLAIMS ALL LIABILITY THEREFOR.

INTEL DOES NOT WARRANT THAT ANY PRODUCT REFERENCED HEREIN OR ANY PRODUCT OR TECHNOLOGY
DEVELOPED IN RELIANCE UPON THIS DOCUMENT, IN WHOLE OR IN PART, WILL BE SUFFICIENT, ACCURATE,
RELIABLE, COMPLETE, FREE FROM DEFECTS OR SAFE FOR ITS INTENDED PURPOSE, AND HEREBY DISCLAIMS ALL
LIABILITIES THEREFOR. ANY PERSON MAKING, USING OR SELLING SUCH PRODUCT OR TECHNOLOGY DOES SO AT
HIS OR HER OWN RISK.

Licenses may be required. Intel and others may have patents or pending patent applications, trademarks, copyrights or other
intellectual proprietary rights covering subject matter contained or described in this document. No license, express, implied,
by estoppels or otherwise, to any intellectual property rights of Intel or any other party is granted herein. It is your
responsibility to seek licenses for such intellectual property rights from Intel and others where appropriate.

Limited License Grant. Intel hereby grants you a limited copyright license to copy this document for your use and internal
distribution only. You may not distribute this document externally, in whole or in part, to any other person or entity.

LIMITED LIABILITY. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO YOU OR TO ANY OTHER THIRD PARTY, FOR
ANY LOST PROFITS, LOST DATA, LOSS OF USE OR COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES, OR FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF YOUR USE OF
THIS DOCUMENT OR RELIANCE UPON THE INFORMATION CONTAINED HEREIN, UNDER ANY CAUSE OF ACTION OR
THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGES. THESE LIMITATIONS SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF
ANY LIMITED REMEDY.

Intel, the Intel logo, Pentium, Intel Xeon, and VTune are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2005 Intel Corporation

Introduction

Enterprise Application Integration (EAI) is a serious consideration for many Enterprises. The
reach of EAIl is quite vast — from partner purchase order exchange to Enterprise Resource
Planning (ERP) and supply chain integration, the complexity and criticality of the solutions
vary. Specialized EAIl products have been around for more than a decade and they have
shown tremendous growth and adaptability to changing needs. Nevertheless, integration, so
far, has been only a tactical solution — a solution to integrate various applications and
channels of communication which, in most of the cases, had been built in silos. This type of
integration is needed for quick wins and a faster time to market, for an ever changing
business ecosystem. Unfortunately, while integration efforts are on in an enterprise, newer
systems are built with the assumption (and hope) that they can be integrated using the “my
enterprise standard EAI product”.

This cycle of moving-and-catching, if based on a clear vision of integration strategy at the
enterprise level, creates a well orchestrated IT ecosystem; if not, it creates more integration
points for the future: an antithesis of EAIl. But to have a well orchestration of systems,
integration has to take a wider meaning: Integration of a system across business processes,
channels of contact and communications, and data. In a truly complex enterprise this type of
integration is non-trivial, and cannot be solved just by adopting a product or technology but
can be only addressed by an enterprise-wide strategy and architecture standard.

This paper presents the integration landscape over the last decade and captures the major
changes that have occurred so far and also discusses how the changes in technology and
service orientation transforms this landscape.

A Brief History of EAI

The necessity of the application integration, of course, is fuelled by the Internet economy,
where real time data and application synchronization are of paramount importance. The EAI
as it is known today has crossed various stages of evolution. The following diagram captures
the various generations of EAI, to be used as a reference point for further discussion.

Figure 1. Integration history

Generation next: Service

composition and orchestration,
BAM, SOA, WSRP

Generation Now: Java based
integration, Web services, Unified
product suites, Architecture First

2"! Generation: Message
broker, Hub and spoke,
application adapters, B2B

1* Generation: Point-to-
Point, Custom, Messaging,
CORBA

Value to the Customer

Early 90's Late 90’'s Early 00’s Early 10's

Technology Complexity

EAl has evolved from simple custom interfaces and point-to-point integration to many-to-
many message publication and subscription. Products’ focus and differentiators, which were
once in specific areas likes Business-to-Business (B2B) integration or simple within-the-
enterprise integration (referred to as ‘Internal EAI’ in this article), offer a wide variety of
capabilities and even include application server and data management solutions as part of
the product portfolio. This proliferation is both beneficial and detrimental to the enterprise.
While they offer a wide variety of choices, without an enterprise level standard the
proliferation will create confusion and spaghetti integration — the problem which the EAl is
supposed to solve.

The following sections capture the hallmarks of these stages or generations of integration,
and elaborate on the maturity of integration technology in addressing specific problems.

Generation 1: Age of Point-to-Point

In this period of early Integration, where the term EAl was barely known, integration
products and techniques aimed to provide APIs and interfaces between systems, either by
means of custom Remote Procedure Calls (RPC) or by means of distributed computing
standards like CORBA*, or by means of messaging products. RPC and CORBA achieve the
same goal differently. CORBA being much richer and object oriented when compared to a
simple RPC, viz. integrating systems by means of request and response. They do not allow
for automatic processing of messages at a later time than when they were issued, though
these features can be built. Messaging technologies on the other hand allowed for storing

and forwarding the messages that can be processed at a later time. Further, while using
messaging it is possible to decouple the source and target systems - for example, the
source system can be a custom C++ system and the target a mainframe, both having
separate run times. In reality, to achieve integration at the enterprise level both the
techniques (messaging and RPC) are used. For inter enterprise integration, Electronic Data
Interchange (EDI) was the only means.

The key characteristics of the first generation integration are that most of the integration is
custom built using various technologies (the “integration brokers” only started emerging.)
Integration is predominantly aimed for point-to-point — this implies that the interfaces are to
be developed for each of the participating system pairs (source-target). Integration data
flows are to be developed for each of the integration points and there was minimal re-use of
code. In this scenario the semantics (format) of the data flow between various systems can
proliferate — many variations of the same message structure are quite common. This means
that coding, maintaining, and versioning them is a nightmare, particularly for large
enterprises. In addition, each of the message types has associated transformation rules with
them, which are also to be coded and maintained. The transformation programs (or “sub-
routines”) are also proliferated.

For large enterprises CORBA became the standard middleware for the integration projects’
and for a while CORBA seemed to be the mainstream of integration, specifically mainframe
and other legacy systems integrations. However, CORBA’s impact in integration diminished
particularly with the advent of proprietary integration brokers and Java*. Nevertheless, many
of these integration products and application servers internally used CORBA for
communication, across various software components.

The following diagram shows the different levels of integration in the first generation.

Figure 2. First generation integration

Scenario Lis rare in
System1 Ul System 2 Ul Generation 1, since the Ul will
be of a different technology

Scenario 2 is common, where
the systems talk to one
System 2 another in a limited way using
(Target) RPC or CORBA or
Messaging. If one more
system has to be included for
integration, again another set
of interfaces has to be

System 1
(Source)

PI,

A
Interface,
Message Q

=
o C
;O
[N

g
£ 9
Qo
c =

developed.
System 1 System 2 Scenario 3 is achieved using
Data > Data custom database scripts.

Products to integrate
databases were emerging.

In summary, the major achievements of the first generation integration are as follows:
1. Integrating legacy application with other “open” systems” (Unix* or Windows* based)
2. Large scale integration projects were achieved using CORBA

Following are the major setbacks, which are obvious:
1. Too much custom coding

2. Absence of a message broker leading to inflexibility

Generation 2: Age of Many-to-Many

In this period, integration products brought in the concept of message brokers and paved a
way for n X n application integration to achieve “Hub and Spoke” integration. Product
vendors differed in the way the connectivity to the source and target systems are achieved
and used the proprietary way of communication mechanisms. They introduced the concepts
of “adapters”, which are the plug-ins for the application or the network, as the case may be.
The message broker is responsible for translation of the messages between systems (called
“documents” in the EAI terminology) and routing them to the appropriate target applications.
The routing rules and mapping rules are defined in the broker, using a visual application
editor. This eased a lot of custom development effort and coupled with the need of a faster
time to market in the Internet economy, generation 2 products became wide-spread and
popular.

The logic processing in the brokers to achieve custom transformation was done using
proprietary scripting languages. Each of the product vendors provided their own scripting
language. So EAI remained “pure play”, where one has to depend on the vendor’s product
for integration, particularly so because the messaging protocols are proprietary as well.

By its nature, bulk data integration, had to be handled separately by the Extract Transform
Load (ETL) products or by custom development. However, the second generation products
provide good data synchronization capabilities where smaller amount of data changes in one
system can be propagated to other systems in real time.

Figure 3. Second generation integration

System 3 System n

(Example: Web (Example: CRM)
Application)

Messaqe Broker

Routing Enaine

Application
adapters

Transformation
Engine

)
S
9]
9
o
©
]
<
=
o
2
Z
]
zZ

Integration Message Store and
Data Store forward engine

Workflow engines (later part of 2"
generation)

System 2

System 1
(Example: (Example: ERP)
Mainframe)

Application level integration is achieved using application adaptors provided by the EAI vendors.

Data level integration is achieved again through the database adapters provided by the EAI vendors, where
the integration is limited to short, n way, data synchronization.

For bulk data integration, ETL products became popular.
Presentation level integration remained only a dream. Some vendors offered “screen scraping” technologies

where the Ul schema is converted for the target system through XML. But this remained “proprietary” and
largely unpopular because the Ul level integration always provides limited level of integration.

Following are the major advantages provided by the second generation products:

1. Systems participating in the integration are shielded from one another. Hence, it was
possible to develop a largely non-intrusive integration.

2. The integration logic (for example, transformation and mapping rules) can be re-used
and shared among multiple projects.

3. The integration logic is modeled by visual editors with drag and drop features, which
accelerated the delivery of EAIl projects.

4. Real time data synchronization was achieved. In the first generation, synchronous
integration at data layer level could not be achieved without touching the business
layer or the Ul layer.

The major disadvantages of these solutions are as follows:

1. Proprietary language for coding the logic resulting in vendor lock-in — This changed
somewhat in the later part of this period as integration software vendors had to
adopt Java and XML because of the popularity of these languages.

2. Another less known effect: The EAI product became the center of all applications in
an enterprise. The future of an enterprise integration depended on the strength and
growth of the EAI vendor.

3. Not all vendors’ adopted the organic method of evolving the integration software. In
many instances the integration brokers were purchased (because of mergers and
acquisitions), and integrated with in-house messaging systems. This led to a period
of confusion about the logical placement, duplication of infrastructure, and frequent
product upgrades.

The second generation EAIl helped to a great extent in launching and consolidating e-
Commerce transactions over the Internet. For example, in a booking process in an online
store, inventory of the product can be verified with the backend ERP system using EAI, and
then the order can be placed by the system. The placed order information can be
propagated to a warehouse for shipping and once shipping happens from the warehouse the
customer can be informed of the same using EAIl with a CRM application. In effect, the
second generation products tended to bridge the gap between what is outside the
enterprise and what is inside.

Generation Now - Age of Consolidation and
Proliferation

Architecture First

The present generation of integration has the following four faces:

1.

Technology maturity and unified application and integration: Many of the popular EAI
vendors have consolidated the products and offer Portal, Integration Server, and
Workflow Management, as a product suite. Thus, it makes it simpler for the
enterprise to invest on a single vendor’s technologies.

Java has entered into the mainstream of integration. The application server vendors
have ventured into integration space and offer a unified product suite for server
application, integration, and workflow. Relatively, these offerings are new, but they
show great potential. For enterprises embarking on investments on integration, this
provides one more set of choices, and hence decision making is complicated. More
importantly these things got integrated into Java 2 Platform, Enterprise Edition
(J2EE)* standard and hence vendor lock-in is reduced to a great extent. With the
fear of application server vendors getting into EAI space, proprietary EAl vendors
turned J2EE compliant. Further, messaging got standardized through Java Message
Service (JMS)*.

The emergence of Service Oriented Architecture (SOA) and Web Services has
created re-thinking about integration among decision makers like enterprise
architects. The usage of Web services versus pure play integration products are
seriously debated before an integration project is started, even in cases of
enterprises that have invested in pure play integration products. Combined with the
two points above, the integration choices become more difficult. This is akin to “too
much of a good thing”.

B2B integration got a fillip from the Web services technology. Inter-enterprise
synchronous integration started. This has been traditionally through EDI.

The strengthening of partner integration with enterprises: In the extended enterprise
paradigm, business partners interact with the enterprise more and more. Depending
on the techniques available with both enterprise and business partners, the
exchange can happen either through the secure Electronic Data Interchange —
Internet Integration (EDIINT), Web services, or B2B extensions offered by integration
vendors. In addition, many enterprises have already deployed Partner Portals
(extranets). Thus, partner integration becomes technologically proliferated and it is
not uncommon to see multiple competing technologies deployed to achieve the same
goal.

For enterprises looking for simple and direct solutions, the above choices mean proliferation

of technology and confusion. It is less obvious that, the choices have a strong dependency

on architecture style rather than mere technology options. This has to be viewed in the
backdrop of the realization of the importance of enterprise architecture strategies and
principles. It is clear that enterprises do not want to invest on something that has to be
thrown away in a few years time: what is invested on should be justifiable, should provide
short and long term returns, and should support future initiatives. Thus, architecture
principles and guidelines are increasingly formulated at the enterprise level rather than at the
project level. This means that integration, which is within the purview of the architecture, is
increasingly seen to comply with the enterprise’s architecture principles and standards. This
is in contrast with the second generation integration, which was always considered only a
“black box” in the enterprise architecture. Projects were executed keeping in mind the short
term benefits based on the techniques that the products used and not necessarily based on
the “big” picture. This is perfectly well suited for small number of integrations to serve
tactical purposes.

Strategically this is a handicap, since re-usability, extensibility, and ease of maintenance are
critical in the long run. For example, in many enterprises the business logic is complex and
may involve data from multiple systems before arriving at an outcome. Thus, if one codes
this logic as part of the proprietary integration solution, it is extremely difficult to change,
extend or re-use. Therefore, the impact of placing the logic within proprietary integration (in
this case the integration hosts business logic) vs. placing the logic within one of the
participating systems (in this case integration is used only to fetch data) vs. placing the logic
as a service (either / or the previous two) has to be analyzed for various factors including
performance before embarking on a solution. Clearly this is an enterprise architecture issue
rather than an integration issue.

The result is that strategists and architects realize that integration issues should be tackled
keeping in mind the enterprise issues. Thus, one can see the formulation of Integration
Competency Centers (ICC) at the enterprise level to handle cross functional, cross projects,
integration issues, and conflict resolution.

Generation Now: Technologies

The following sections highlight some of the various integration technologies, which identify
with the present generation of EAI.

EDIINT

External integration using Internet has become an accepted norm. Proprietary EDI Value
Added Networks (VAN) are complemented by Internet protocols of communication. Internet
Engineering Task Force (IETF)* has formulated the standards of exchanging electronic
documents over the Internet. Many industries who want to retain the investments done on
EDI but at the same time want to reduce costs of VAN, have adopted EDI as the message
format and Internet as the communication medium. The Applicability Statement (AS) 2*
specifications formed by the IETF committee received good industry support and is
supported by almost all the leading vendors? This implies that small and medium enterprises
could easily take EDI over the Internet because of the low entry cost.

Traditional EDI transactions required EDI products, which handle EDI transmissions and
sometimes format conversions, and most of the transactions happen in a batch mode. Since

companies have to pay for the number and size of EDI transactions, it was profitable to
combine messages and send them. Further, the expectation was always that it will take
some time, sometimes days or weeks, to process these documents and take action. All this
changed in the Internet economy: Data processing need not take days or weeks and one
doesn’t have to pay much to send documents over the Internet.

The following diagram shows the difference: It is clear that the real time data exchange is
possible with the combination of EAI, EDI, and Internet.

Figure 4. B2B integration turns real time

Receiver’s
System
(Example
Finance)

Sender’s
System
(Example
ERP)

EDI EDE AN EDI Server
Server S Product
Product

e g
N7 Ny

~

Batch Programs
Batch Data Exchange

Receiver's
System
(Example
Finance)

Sender’s

System EDI /

(Example Integratio

ERP) n Server
Product

interface

e
Rt
T 4

Real time EAI or Web
Real time conversion of
EDI to internal data

LA
7\

H
it
N it

——

Java and Integration

The impact of Java and Web services’ on the middleware platform has created a new breed
of integration servers. This new breed has evolved from the Java application server: while
Java application servers’ markets were saturating, application server vendors ventured into
the integration arena and developed pure Java-based Application Platform Suite* (APS, a
term frequently used by technology analysts). Today, many of the leading Java middleware
vendors offer Portal Application Server and Integration Server, including Workflow
Management as a package. Of these suites, Application servers follow J2EE standards.
Portals, Integration, and Workflow, though in Java, are largely proprietary. Some elements of
standardizations, for example using Portlets standards, or Process Definition for Java
(PD4J)*, a workflow definition for Java are on the way. However, the core integration (apart

from J2EE Connector Architecture (JCA)*) will remain proprietary — Java’s proven usage in
an enterprise’s mission critical applications, coupled with extension of portal and integration
products divide the integration scenario as “Pure Play” and “Application Platform suites”.
This makes the selection of the integration product for an enterprise, who are beginning the
integration journey, difficult as discussed earlier.

On the other hand, Java has emerged as the single scripting language of choice for pure
play integration products and all the integration logic can be developed in Java. All other
proprietary scripting languages are sidelined and forced into oblivion owing to the developer
enthusiasm and popular demand for Java. As a result almost all integration products offer
Java as the main scripting language. This means that while one is still using a proprietary
integration product, the learning curve is smoothened by the elimination of the necessity of
learning a proprietary language.

JMS rules the messaging standards in integration and even all pure play software vendors
offer IMS as the standard. This gives flexibility for the enterprise to choose the messaging
vendors, which is the JMS provider, based on available infrastructure and/or enterprise’s
standards.

Integration and BAM

Business Activity Monitoring (BAM) is one of the most touted features of the current pure
play integration products. This concept is not new: enterprises’ always need to have
decision making tools. However, the data needed for the decision making had been in silos,
data quality was poor, and by the time data reached the decision maker it might have been
too late. But, because of the advancements in integration, the executive dashboards can be
populated with real time data (for example, based on the inventory levels the seller might
want to change the pricing or a red alert is raised when a critical shipment was not made).
Though all EAI vendors claim that they offer BAM, in my opinion, a true BAM goes beyond
integration and integration and can only be an enabler for BAM. Like all things that last
longer, BAM has to be designed for — thus, before BAM is possible, a robust data integration
framework has to be put in place, where data is cleaned, rules applied, and what-if analysis
done. EAl may be able to provide the “agents” for picking an important deviation or change,
but the final decision making goes beyond integration.

All the EAI products are essentially “non intrusive,” implying that the existing systems need
not be changed extensively for integration. As an example, it may be possible to interrupt
the purchase orders exchanged and calculate the total value of purchase orders (by vendor,
per line item, and so on.) But linking this data with the number of orders placed in the back
end and the value of the invoices raised, requires an integrated process flow rather than
integration. Further, in a decision making process where business processes span across
systems, the decision making is extremely complicated, which requires complex business
intelligence tools and pattern matching. Thus, unless the systems are designed for
providing data for BAM, the BAM features of the current generation of integration servers is
limited only to providing alerts and notifications of happening or absence of simple pre-
defined events. This means that the in the current generation, BAM can happen only within
the domain of integration. True BAM is only possible when the underlying architecture

provides hooks for BAM within and outside of the business process.

Figure 5. Business Activity Monitoring

. S A Enterprise
ST e Application
Partner / Partner
Application

ZHE Enterprise
Application

Current generation BAM features touted by EAI vendors are good — but true BAM goes beyond
integration. True BAM requires good data quality, and Business Intelligence, since the “sensor
threshold” of a business activity is very complex, unique to businesses and based on historical
data. Ell is also required.

Extended Enterprise

The concept of Extended Enterprise, where by the business’ internal systems and business
partners’ systems interact seamlessly has taken root, thanks to the Internet technologies.
This type of integration has more to do with the business process rather than the
technology. Simply put, the level of integration is determined by the business needs, the
participating parties’ technology maturity, and the level of mutual trust. Most enterprises
realize that this type of integration is needed, but they also realize that business process re-
design in most of the cases is a pre-requisite to enable seamless integration with partners
and suppliers. While the process design might happen, enterprises are taking three levels of
integration in parallel:

1. Data publication in Portals and Portal to Portal Integration
2. EDI over Internet or XML over Internet (through Portals or Integration Servers)

3. Web Services integration

Partner Integration Through Portals — Information Exchange

Extranet Portals have become significant mechanisms to transact B2B business transactions
over the Internet. Business partners access the portals and can do many things: download
manuals and historical information, (for example, the types of goods sold in the past month),
receive orders, submit latest price list, view the status of the purchase orders, payments,
and so on. Event-based alerts and notifications (for example, payment due or shipping delay)
are passed on to the partners through the portal. These types of portals are different from
mass market portals where customer self service (either online purchase or service request)

is the key thing, whereas in the B2B portals, self service, business transactions, and
transaction integrity are very important. This saves a lot of e-mail messages, which would
have been sent otherwise and also establishes the business contract more tightly — for
example, it is not uncommon for the suppliers of a company to do a mandatory check on the
partner portal for notifications or pending items. If the supplier is a large enterprise, it is
likely that the supplier’s processes are automated. Then information is exchanged using XML
or a Web service using the portals, that is, by means of portal integration.

Figure 6. Business partner integration using portals

Business Partner

irewalls and Domains

Enterprise’s Corporate Network

Partner Portal ;
hosted by the Enterprise
Enterprise Applications

I Internal

C Al
s

(v

Partner
Related Data

Enterprise
Data

Since partners and suppliers will access the portal using the public Internet, appropriate
security controls including network, application, encryption, authentication, and so on, are
to be in place. Fundamentally, the Internet will be separated from the enterprise network,
where core business data will be hosted. This minimizes the security vulnerability. Therefore,
in many cases the partner data is duplicated (undesirable in data point of view, but
recommended for better security.) This is depicted in the above figure. EAl is needed to
provide data synchronization and application integration.

In the case of the business partners having their own portals, the data exchange happens
through XML or a Web service. To make the exchange happen, the enterprise and the
business partner need to have a technology contract of how the data will be exchanged and
whose responsibility it is to disseminate the content down to the hierarchy of the partner’s
organization. Typically, custom built interfaces are used for this type of integration. With the
advent of Java Portlets Specification 168 (JSR)*® and Web services for Remote Portals
(WSRP)4, it will become easy to integrate portals. Though promising this is clearly a future
trend and is discussed separately in the subsequent sections.

Partner Integration— Document Exchange

The second level of integration is for exchanging business documents, where the event of
the document should trigger further business process. This can happen in two ways, either

through the portal and EAI or through EAI. There are arguments for each of these but
ultimately the choice will be based on the architecture style.

Figure 7. Partner integration: choosing an option is an enterprise architecture decision

Business Partner

Partner Portal
hosted by the
Enterprise

Partner
Related Data

Enterprise
Applications

Enterprise
data

\Qterprise’s Corporate Netvgl/

Business Partner

EAI B32B
Server hosted

Internal by the
Enterprise

1&3 - Documents exchanged through Portal; 2= through B2B product.
To choose one of the 3 options requires considerable evaluation specific to local environments.
Architecture standards play a key role here.

It is clear that the three options need different types of approaches. In option1 and 3 the
document exchange happens through the portal, and hence the portal has to be integrated
with the enterprise applications using either custom interfaces or EAIl. These two (custom or
EAIl) are still to be considered as options because the choice will depend on what sort of
application architecture the portal applications follow and whether any data transformations
are needed. EAIl of course can be used without considering the custom option; but it may
prove to be an overkill in many places where an API level integration might be a simpler
solution. For example, if the solution requires data transformation and complex workflows,
then EAIl solution might be a better fit. In the absence of these two requirements EAI
becomes redundant and a custom solution might be a better solution, if it is suitable for

future requirements as well.

Web Service Integration

Integration through web services is one of the most popular topics today. As it is well
known, web services provide a standard protocol, both for messaging (XML) and
communication (HTTP), thereby allowing systems to interact (messaging+communication) in
a standard way. This has received a lot of enthusiasm from the technology community and
many organizations are involved in refining the standards.

While web services will be a great tool, where custom development is an option, to come to
a level of sophistication provided by the “pure play” integration vendor, the web services
technology has a long way to go. For example, integration products offer robust security,
strong message handling capabilities like error handling, fail over, back up, store and
forward, and assured delivery, routing mechanisms like publish and subscribe (groups-
based, topics-based,) point-to-point, transformation mechanisms (format and schema
conversions of many types and variations of business documents like EDI, XML, SOAP, Files,
Proprietary formats and so on,) and communication and application adapters.

Web services can be made do all this but it will cost money to build these features into a
custom-based integration solution. Specifically, building the routing and transformation
engines will be tedious, where many formats and systems are involved. Therefore, Web
services cannot replace the EAl products when many-to-many integration is involved, at
least in the near future. But the good news is that all the integration servers offer web
services as an option, and hence standards-based interfaces to the EAIl product are
possible. In this approach, the external integration is done using Web services while the bulk
work of transformation and routing are done by the “core” EAI services.

But, for the point-to-point integrations, Web services can be directly used. Thus, a single
system can directly interact with another system using Web services or using a common
service, which is shared by others. The systems in question could be an internal (to the
enterprise) system or a mix of internal and external (to the enterprise) systems.

Figure 8. Integration through Web services

1 - When No / Simple transformation and

ey e —— transactio_n required_. Securit_y concerns are
excluded in the depicted option

Web sevice 2> When No / Simple Transformation and
transaction required

3 & 4 - When complex transformation and
. transaction required

““““““ _ Web service \

Enterprise
Applications

DMz

Enterprise
Partner data

Related Data
\ Enterprise’s Corporate Network /

Note: This picture shows possible integrations using Web services with a business partner. The same concept holds
good for Intra-Enterprise integration also. For brevity, that is not shown.

Summary
Generation-Now has the following advantages:

1. Integration space is mature. Many types of integration (pure play, J2EE-based and
Web services-based) have emerged, offering good choices for the enterprise.

2. Existing EDI investments need not be thrown away, owing to the EDIINT standard.

3. Owing to the maturity of technology and the development tools it is very easy to
assemble any integration solution (when extensive data transformations are not
required) even when expensive EAl products are not available with the enterprise.

One can assume that “Integration has arrived.” If so, what will be next? The next section
touches upon this question.

Generation Next - Service Composition and
Orchestration

Impact of SOA and EA

Let’s step back and ask a couple of questions — Why is there a need for integration within an
enterprise? Why should an enterprise buy expensive integration tools? The answers to these
questions can be traced back to the following:

1. Enterprises had multiple products and technologies on which applications were built.
Enterprise applications are always a mix of packaged applications (example ERP)
and custom applications (example Web applications and client server applications.)
They were built in silos, possibly to solve tactical problems, and hence were not built
to talk to one another. But changing business models mandate real time information
access, for which these systems are to be patched. Custom built integration
solutions were tedious and risky, particularly when the participating systems and the
data formats are more and varied. Integration products provided improved
productivity by means of pre-built transformation templates and adapters, which
accelerated the integration project.

2. With the advent of the Internet as a low cost medium, data exchange with business
partners became increasingly electronic. This space needs a high level of security,
robustness, and assured delivery of information, demanding products of high quality.
Integration product vendors offer such quality products, thus making inroads in to
the enterprises.

Whatever be the reason, one can observe that integration as of today is only an antidote and
quick fix for enterprise’s problems. Fundamentally, at best it is a “patchy” solution, and
“forced” — not “smooth”, however sophisticated the solution is. This is because integration
so far is applied after the applications are built in silos.

In Generation Next this trend is likely to change. One of the reasons for this is that
integration concerns will be addressed from the beginning and not rather at the end. This is
owing to the fact that enterprise architecture and standards are gaining importance within
enterprises, which enforces discipline in choosing technologies, products, and architecture
styles. However, the biggest impact is created by open standards (like Web services) and
SOAs.

Service orientation, though increasingly discussed today, has been known and applied for
decades - for example CORBA, Enterprise JavaBeans (EJB)*, and COM are meant to
encapsulate services. However, the application of these technologies has limitations in terms
of interoperability — they work well in an homogeneous environment, but extensive interfaces
have to be developed for interoperability with other technologies, sometimes within the same
technology (for example between two CORBA or EJB implementations by two vendors.)
I[ronically, instead of providing an integration solution, they became one more set of touch
points of integration.

The notion of a Web service (whether they act upon SOAP messages or XML messages or
proprietary messages) fuelled the revival of SOA. While some people think of the Web
service as the solution to everything, in my opinion, they stand a very good chance of
providing an interoperable interface. As a side note, | was involved in architecting two large
projects using this principle, both involving mainframe applications. At the time | had only a
vague idea of the value the architecture would provide. We re-engineered the applications to
be service enabled and to work with Web applications. For one application we

provided customer information control system (CICS) interfaces to act on XML from the
messaging middleware. We converted the other application to provide CICS services acting
upon messages from the middleware. These mainframe services can be invoked by sending
XML (former) and proprietary (later) messages, which provides transparent integration. While
they were designed for interoperability between only the mainframe and the Web, it's a small
step for them to interoperate now with any system. They were designed for service
orientation in general and for Web services technology in particular.

A successful basic SOA needs the following pre-requisites:

1. Modular, compact, and clean services. This has to be designed or wrapped (as in
the above examples.)

2. Standard messaging mechanism and transactional handling mechanism between the
services (either proprietary or industry standards-based.)

The Web services technology provides the following pre-requisites:

1. Advanced SOA needs mechanisms for dynamic discovery, binding, and fault
tolerance. However, the basic requirements are to take roots in enterprises before
dynamic discovery and other advanced service orchestration that can happen.

2. In an SOA-based architecture, integration is the beginning and not at the middle/end
of projects. This makes integration a serious topic for enterprise architects.

3. Further, the widespread awareness of SOA makes proprietary package vendors (of
ERP, CRM, or SCM) think in terms of services rather than black box products of
yesteryears, which were once difficult to integrate. This accentuates the need of
integration from the beginning and not at a later stage where monolithic applications
were built and they needed to be integrated. However, this doesn’t mean that
proprietary applications will become in their entirety “open” and service oriented. It
implies that while the core processing will be proprietary, the interfaces will become
standards-based, making the smooth integration of proprietary services with other
custom/proprietary services.

These changes make the world of integration to be transformed into “composition” where
multiple services are composed to provide end goals. The following diagram shows a
possible scenario in the new world of composition.

Figure 9. Service oriented architecture for integration

Role of EAI as it is known today will be limited for data translation and
Business Partner synchronization leaving the process fusion and orchestration to SOA. EAI
will become one of the enablers of SOA in the near future since it'll be too

risky and costly to reproduce the robustness and message translation
capabilities of EAI (why re-invent the wheel?) in the new service
composition framework.

Web service

With the blurring of product boundaries (application servers, portals, and
integration products), the service container could be any one of the product
types. However, the “core” integration functionality viz. transformation and
routing will be done by the EAI products as they are known today.

Service Enterprise
Composition and Service
orchestration Composition
(Partner and
processes) orchestration

Partner
Service

Web service

Partner Legacy Application
Related Data

Enterprise
Applications

Enterprise
data

Enterprise
data

Traditional EAI's touch points in SOA, but
the scope is limited to data
synchronization and transformation

Portal Integration

On the portal front, already portal-to-portal integration is gaining a lot of attention. In the
Java portal market, the Java Community Process’s Portlet standard has been formulated
and various vendors already offer some form of support for this. The Portlet standard
provides a mechanism for developing portal pages, and thus this concept can be extended

for integration between two Java portals. Another standard, which needs further industry
support before becoming a widely used standard is related to Web services and is known as
the WSRP. This allows for interoperability between various portlets.

Figure 10. Seamless Ul integration using portal standards

(Partner 1)
JSR Portlet Container

(101060160
1U81U0D) JBAISS [eliod

(Partner 2)
Microsoft Portal Container

Web
Parts

Enterprise Information Integration (Ell)

Data Integration, one of the key areas of integration has been handled by the Extract,
Transform and Load (ETL) vendors. These tools help to move data from one place to another
in bulk form and allow applying format changes to the data. For smaller amount of data,
which needs to be synchronized much more frequently, EAl tools are in use. There are many
cases in which these two types need to be integrated®. Enter EIl.

The following diagram shows the components of Ell.

Figure 11. Ell components: federation is key, so is meta data management

Service

Consumer

HTTP, SOAP, XML, RMI

Services Layer (Ul, interface, Security etc)

. Data Hub
Federated querying (Meta data, mapping and

and data consolidation transformation rules, Security
engine and access control)

Integravion layer (EAI + ETL)

Backend Backend Backend File
RDBMS Legacy System

Today, Ell is equated with database federation. If Ell is synonymous with virtual federation of
databases, then many of the products today offer solutions - though they have to be proven
in enterprise-class, mission-critical situations. These solutions will result in some quick wins.
However, if Ell is true to its word, that is "information integration”, then it must be part of
the enterprise data strategy. Enterprise data integration requires solutions that range from
point solutions to custom solutions and should holistically address the enterprise level meta
data management, business workflow management, and integration management in a
streamlined and cohesive manner.

Summary

The standardization of architecture at the enterprise level will mean that the integration
architecture has to follow the enterprise architecture’s strategies and standards, and this
changes the scenario where the Integration is given a serious consideration from the
beginning rather than at the end. This means that the various decisions and strategies of
integration like Web services vs. pure play integration, custom interfaces vs. Web services,
legacy code re-use vs. re-engineering will be made as part of enterprise standards and

accordingly products and technologies will be chosen. In this scenario, the strategists and
architects will not be satisfied with simple integration, unless integration is part of a large
picture. The enterprise architects will prefer a unified approach for development. Demands
about unification of business process modeling (visual modeling), execution (run time), and
orchestration (process integration in heterogeneous environments) shift the focus from
simple application integration to process integration. Already application server vendors are
likely to offer J2EE Made Easy* (J2EZ), and proprietary modeling (pure play EAI vendors).
This trend will further consolidate to more uniform, end-to-end offering using Web Services
Flow Language (WSFL) and BPEL4WS, PD4J, and so on, though it will take some time for
these technologies to penetrate into mainstream enterprise modeling.

The next generation integration will be centered on strong enterprise’s architecture
standards. SOA and Web services offer standardization of technology and integration within
and outside the enterprise. In this new paradigm, EAl products will still provide a strong
integration backbone for messaging, transactions, and transformation, but the focus will
shift from tactical application integration to strategic business process integration and
orchestration. These strategic needs cannot be fulfilled by a product alone and can be
satisfied only with deeper architecture cohesion, which will be brought in by SOA and Web
services.

Additional Resources

1. CORBA was the king in the making of Integration- one of the largest CORBA
implementations is at Boeing http://www.iona.com/pressroom/archive/boeing2.html.

2. EDIINT Standards are formulated by IETF for SMTP and HTTP. The chapter home
page and the AS2 standards are available at http://www.ietf.org/internet-
drafts/draft-ietf-ediint-as3-03.txt. The success of EDIINT is captured in this article:
http://www.nwfusion.com/news/2004/0223as2.html?page=2

3. OASIS technical committee on WSRP Web site describes the WSRP specification”
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp

4. An Open source version of JSR 168 implementation (Pluto* and Jetspeed®) is
available with Apache*: http://portals.apache.org/

5. Ell is a Strategy and not a technique, S. Radhakrishnan,
http://www.dmreview.com/article_sub.cfm?articleld=1014857

About the Author

Dr. S. Radhakrishnan is a senior enterprise class solution architect in TATA Consultancy
Services. He is responsible for the architecture and open source initiatives of his
organization. His primary focus is to analyze, define, and implement architectures for
enterprise applications, and he has been responsible for creating high-volume, mission-
critical applications and for providing guidance on architecture issues to a multitude of
international customers. He also holds a PhD in computer vision/image processing from
Indian Institute of Technology, Chennai, India. His active professional interests include Web
and distributed architectures and application integration.

! CORBA was the king in the making of Integration- one of the largest CORBA
implementations is at Boeing http://www.iona.com/pressroom/archive/boeing2.html.

2 EDIINT Standards are formulated by IETF for SMTP and HTTP. The chapter home page and
the AS2 standards are available at http://www.ietf.org/internet-drafts/draft-ietf-ediint-as2-
15.txt. The success of EDIINT is captured in this article:
http://www.nwfusion.com/news/2004/0223as2.html?page=2

4 An Open source version of JSR 168 implementation (Pluto and Jetspeed) is available with
Apache: http://portals.apache.org/

5 Ell is a Strategy and not a technique, S. Radhakrishnan,
http://www.dmreview.com/article_sub.cfm?articleld=1014857

http://www.iona.com/pressroom/archive/boeing2.html
http://www.ietf.org/html.charters/ediint-charter.html
http://www.ietf.org/html.charters/ediint-charter.html
http://www.ietf.org/internet-drafts/draft-ietf-ediint-as3-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-ediint-as3-03.txt
http://www.nwfusion.com/news/2004/0223as2.html?page=2
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp
http://portals.apache.org/
http://www.dmreview.com/article_sub.cfm?articleId=1014857
http://www.iona.com/pressroom/archive/boeing2.html
http://www.ietf.org/html.charters/ediint-charter.html
http://www.ietf.org/internet-drafts/draft-ietf-ediint-as2-15.txt
http://www.ietf.org/internet-drafts/draft-ietf-ediint-as2-15.txt
http://www.nwfusion.com/news/2004/0223as2.html?page=2
http://portals.apache.org/
http://www.dmreview.com/article_sub.cfm?articleId=1014857

intal.

	BBB1E204.pdf
	Introduction
	A Brief History of EAI
	Generation 1: Age of Point-to-Point
	Generation 2: Age of Many-to-Many
	Generation Now – Age of Consolidation and Proliferation
	Architecture First
	Generation Now: Technologies
	EDIINT
	Java and Integration
	Integration and BAM
	Extended Enterprise
	Partner Integration Through Portals – Information Exchange
	Partner Integration– Document Exchange
	Web Service Integration

	Summary

	Generation Next – Service Composition and Orchestration
	Impact of SOA and EA
	Portal Integration
	Enterprise Information Integration (EII)

	Summary
	Additional Resources
	About the Author

	BBB1E204.pdf
	Introduction
	A Brief History of EAI
	Generation 1: Age of Point-to-Point
	Generation Now – Age of Consolidation and Proliferation
	Architecture First
	Generation Now: Technologies
	EDIINT
	Java and Integration
	Integration and BAM
	Extended Enterprise
	Partner Integration Through Portals – Information Exchange
	Partner Integration– Document Exchange
	Web Service Integration

	Summary

	Generation Next – Service Composition and Orchestration
	Impact of SOA and EA
	Portal Integration
	Enterprise Information Integration (EII)

	Summary
	Additional Resources
	About the Author

	BBB1E204.pdf
	Introduction
	A Brief History of EAI
	Generation 1: Age of Point-to-Point
	Generation 2: Age of Many-to-Many
	Generation Now – Age of Consolidation and Proliferation
	Architecture First
	Generation Now: Technologies
	EDIINT
	Java and Integration
	Integration and BAM
	Extended Enterprise
	Partner Integration Through Portals – Information Exchange
	Partner Integration– Document Exchange
	Web Service Integration

	Summary

	Generation Next – Service Composition and Orchestration
	Impact of SOA and EA
	Portal Integration
	Enterprise Information Integration (EII)

	Summary
	Additional Resources
	About the Author

	BBB1E204.pdf
	Introduction
	A Brief History of EAI
	Generation 1: Age of Point-to-Point
	Generation 2: Age of Many-to-Many
	Generation Now – Age of Consolidation and Proliferation
	Architecture First
	Generation Now: Technologies
	EDIINT
	Java and Integration
	Integration and BAM
	Extended Enterprise
	Partner Integration Through Portals – Information Exchange
	Partner Integration– Document Exchange
	Web Service Integration

	Summary

	Generation Next – Service Composition and Orchestration
	Impact of SOA and EA
	Portal Integration
	Enterprise Information Integration (EII)

	Summary
	Additional Resources
	About the Author

	BBB1E204.pdf
	Introduction
	A Brief History of EAI
	Generation 1: Age of Point-to-Point
	Generation 2: Age of Many-to-Many
	Generation Now – Age of Consolidation and Proliferation
	Architecture First
	Generation Now: Technologies
	EDIINT
	Java and Integration
	Integration and BAM
	Extended Enterprise
	Partner Integration Through Portals – Information Exchange
	Partner Integration– Document Exchange
	Web Service Integration

	Summary

	Generation Next – Service Composition and Orchestration
	Impact of SOA and EA
	Portal Integration
	Enterprise Information Integration (EII)

	Summary
	Additional Resources
	About the Author

