
WSMB: a middleware for enhanced Web services
interoperability

Trung Nguyen Kien, Abdelkarim Erradi and Piyush Maheshwari

School of Computer Science and Engineering
The University of New South Wales, Australia

{trungnk, aerradi, piyush}@cse.unsw.edu.au

Abstract. Service-Oriented Architecture (SOA) using Web services is considered as
the state-of-the-art approach to support interoperability between distributed sys-
tems and therefore facilitates complex interactions between heterogeneous and
autonomous systems both within the enterprise and for cross-organizational collabo-
ration. Message-based interactions are seen as the core building block in this new
document-centric computing paradigm. Building SOA-based applications is a com-
plex undertaking, design patterns and frameworks have an important role to play to
ease the process and to provide high interoperability. This paper reviews interop-
erability challenges and possible solutions to address them then it reports our ex-
periments with Web Services Message Bus (WSMB), a lightweight service-oriented
integration framework for dependable Web services interactions using broker pat-
tern. The main goal that guided the framework’s deign is to maximize interoperabil-
ity through a scalable mediation service to cope with the inherit heterogeneity of
systems involved. We discuss the system architecture, some implementation issues
and report our experiences in building WSMB as well as some initial performance re-
sults.

1. Introduction

The increasing move towards extensive automation of business processes coupled with
the need for agile inter-enterprise cooperation over the Web, has fuelled interest in Service
Oriented Architecture (SOA) as business processes are likely to involve high number of
participants with diverse and incompatible technologies. SOA is an approach for design-
ing, architecting and delivering interoperability-centric and loosely coupled integration
where software capabilities are seen as services delivered and consumed on demand [1].
Message-based interactions using an orchestrated sequence of message exchanges
(rather than invoking methods on interfaces) are seen as the core building block for appli-

cations using this emerging computing paradigm as they provide the glue that ties ser-
vices together [1].

Web services offer a strong foundation for software interoperability through the core
open standards of XML, SOAP, WSDL, and UDDI. Moving Web services beyond simple
point-to-point applications to Internet-scale application-to-application interoperation,
requires a paradigm shift from RPC-based/object-based architecture to a loosely-coupled,
message-focused and service-oriented architecture. This paper contributes to an improved
understanding of Web services interoperability challenges. It presents WSMB, as a light-
weight integration framework that mediates Web services interactions to enhance interop-
erability and reliability. WSMB adds value and directly addresses some of the most critical
issues surrounding the enterprise-grade deployment of Web services.

The rest of this paper is organized as follows. Section 2 discusses background material
about Web services interoperability challenges and solutions while Section 3 discusses
related work. Section 4 describes the architecture and features of WSMB. Section 5 pre-
sents initial evaluation results and discusses interoperability and performance aspects of
WSMB. Section 6 finally concludes the paper and provides some thoughts on future work.

2. Background and problem area

Interoperability between systems is becoming more challenging in the Web era because
the increased level of connectivity, the information space is large and dynamic, the data
formats and semantics are becoming more diverse, systems are autonomous and there is a
need for integration to be simple, fast, secure and adaptable to changes.

Interactions between heterogenous and autonomous applications require interoperabil-
ity at three layers: communication, content and business process layer [4]. Interacting
applications need to agree on their joint business process (e.g., documents format, con-
tracts), the content of the exchanged documents as well as the communication protocol to
exchange messages.

The communication layer (Transport) provides protocols for exchanging messages
among applications (e.g., HTTP, JMS...). The objective of interoperability at this layer is to
achieve seamless interactions over various communication protocols (e.g., RMI, JMS,
DCOM…). Gateways could be used to mediate between heterogeneous protocols.

The content layer (Data) provides languages and models to describe and organize in-
formation. The objective of interoperability at this layer is to resolve semantic and struc-
tural heterogeneity issues in order to achieve a seamless integration of data formats, data
models, and languages, through reconciliation/transformation among disparate representa-
tions, vocabularies, and semantics.

The business process layer (Services composition) is concerned with semantic consis-
tency in business processes such as ordering, billing, or shipping, by explicitly defining

the implications of processing of messages and what responses are expected, etc. The
objective of interoperability at this layer is to allow autonomous and heterogeneous part-
ners to advertise their terms and capabilities, and engage in peer-to-peer interactions.

The objective of achieving software interoperability at different layers has been there

for years and still remained a main research focus. Before Web services came into picture,
there have already been number of prior technologies like EDI (Electronic Data Inter-
change), CORBA (Common Request Broker Architecture), DCOM (Distributed Component
Object Model) and Java RMI (Remote Method Invocation) with limited success. Neither of
the existing technologies could gain broad industry supports and acceptance due to their
complexities (e.g., CORBA, DCOM), cost factors (EDI), or platform/language specifics
(e.g., RMI). Nevertheless, these attempts have yielded tightly coupled systems that are not
suitable for B2B integration [3]. Web services promises to overcome these limitations by
promoting standards-based interoperability and loose coupling.

Web services are software components that expose some computational or data offer-
ing capabilities in a standard format and accessible using standard Internet protocols [1].
Web services interactions are based on exchanging standards-based XML documents
(i.e., message-based interoperability). Interoperability is one of the main features that Web
services promise. Along with its open standards, Web services permit seamless communi-
cation between applications in a platform and language neutral way.

Simple Object Access Protocol (SOAP) is one of the most important standards in build-
ing a backbone infrastructure for Web services communication [9]. SOAP deals with ob-
jects serialized to plain text and not with remote object references, distributed garbage
collection has no meaning and is not covered. For the same reason, SOAP clients do not
hold any stateful references to remote objects. Due to these characteristics, using SOAP,
disparate components implemented in different programming languages and different
technologies can talk to each other in a distributed, decentralized environment, as long as
component frameworks can issue and process XML messages.

In a fully autonomous collaboration, a Web service can be viewed as a black box that is
able to exchange messages conforming to well-defined schemas. This gives interacting
partners more local control over implementation and operation of services, and flexibility to
change their processes without affecting each other.

However, the capabilities of current Web services frameworks are limited and do not
address the potential mismatches that hinders Web services interoperability, particularly
data mismatch (data structure and semantic), protocols mismatch (the interacting applica-
tions might use different protocols) and semantic mismatch (the interacting parties might
interpret the same information in different way). We propose a mediation layer named Web
Services Message Bus (WSMB) that bridges differences in communication protocols, data
formats and in future work will extend the framework to support the reconciliation of in-
compatibilities in business protocols and processes .

3. Related work

Several ongoing efforts recognize the need to extend the current technological infra-
structure to foster wider adoption of Web services and SOA. In our early work [5], we tried
to explore enhancing Web services by introducing Message Oriented Middleware (MOM)
in the architecture. We came to the conclusion that it is unlikely that Web services can
simply adapt existing MOM technologies to achieve higher QoS properties, given that
they try to address interoperability on a scale at whic h conventional technologies have
failed. Hence there is a clear need for new wide-area messaging infrastructure to enhance
service delivery in web-centric environment. WSMB is a first step towards achieving this.
Its design was initially inspired from ideas introduced by the Web services Invocation
Framework (WSIF) [6] but it adds more advanced QoS features as well as support for mes-
sage-oriented interactions instead of RPC-based invocations promoted by WSIF. Web
services are also an active area of standard ization; our approach builds upon the building
blocks of these standards and seeks to refine them by providing early implementations.
The efforts around Enterprise Service Bus (ESB) [8] are closely related to our work but
their focus is on Enterprise Application Integration (EAI). In our approach we contribute
to the realization of ESB vision while putting more focus on decentralized architecture, and
broadening ESB application space as well as validating its feasibility and benefits.

Our future work will leverage the outcomes of Harmonized Messaging Technology
(HMT) project [9] which is working on defining a formal and generic specification lan-
guage to express and capture rules and constraints that govern messaging-based interac-
tions.

WSMB aims to extend and leverage the principles of messaging systems as well as the
emerging Web services standards to support more interoperable and manageable Web
services interactions using a decentralized architecture. The next stage of our research is
to complete the development of the framework and to develop a number of services to fully
test the features of WSMB.

4. WSMB – A highly interoperable middleware for Web services

WSMB is an important architectural component for SOA-based applications. It is a service
intermediary that enhances the delivery of Web Services by providing run-time support for
reliable messaging, routing, monitoring and managing Web Services. It can be used inter-
nally and in B2B scenarios. WSMB aims to facilitate large scale deployment of Web ser-
vices in a secure, reliable and consistent manner by offering the following features:

§ Multi-protocol services to bridge interfaces and protocol differences. This is moti-
vated by the difficulty to dictate specific protocols and policies to business partners.
Therefore, WSMB infrastructure acts as a service façade exposing services via num-
ber of protocols and policies that can be declaratively defined and enforced. For ex-
ample, for secure access, a Web service client can choose between HTTS and WS-
Security over http.

§ Protect applications from emerging and rapidly evolving Web services standards:
WSMB provides an extensible infrastructure to abstract away and implement stan-
dards compliance without application changes.

§ Protect servers from overload by queuing or redirecting messages when the average
response time goes beyond a certain threshold that is configured on a specific Web
service using WSMB management console. Interested parties can also subscribe to
violation alert notifications by e-mail or SOAP action. For example, a trigger could be
configured for an order processing service to raise an alert when more than 10 orders
are being processed per second or if order processing takes more than 5 seconds.
WSMB could then be configured to respond to the trigger by queuing orders or by
processing high value orders first. This allows WSMB to perform basic load balancing
and fail-over.

This paper concentrates on the interoperability features of WSMB.

4.1 Architecture overview

Figure 1. WSMB architecture overview

Figure 1 illustrates WSMB architecture. Though WSMB is implemented by using the
basic Message Oriented Middleware (MOM) concepts [13], it serves as a bus, analogous
to computer hardware bus system, rather than a normal queuing system. This bus architec-
ture emphasizes on the integration capability among connected applications (e.g., Service
clients, Web service endpoints, MOM application, etc).

The core idea of WSMB is to act as a bus which conveys SOAP messages from one
end to another regardless the transport protocols (e.g., HTTP, JMS) being used in either
ends.

4.2 WSMB communication layer interoperability

HTTP is considered as the standard transport protocol for exchange SOAP messages.
Consequently, Most of the current Web services frameworks like Axis are almost exclu-
sively geared to synchronous invocation over HTTP which might not be suitable for ap-
plications with high reliability requirements.

As a middleware bridging between clients and Web service providers, WSMB provides
a configurable framework for reliable Web services interactions. WSMB provides various
channels to access the registered Web services (each service is bound to one or more
channels). The incoming message is assessed on arrival through the channel to determine
the destination service. Filters bound to the destination service –if any- intercept and
manipulate both request and response messages (e.g., transform old-format messages into
new formats). The message is then passed through a reliability layer where it is checked -
for expiration, duplication, and ordering- and then it get queued for pro cessing. WSMB
then dispatches the message to the destination Web service and the response is passed
back to the requester via the same path. The diagram in Figure 2 shows WSMB communi-
cation layer interoperability.

......

JMSSOAP
HTTP

SOAP
JMS

HTTP
SOAP

Target
Web

services
SOAPClient WSMB

Figure 2. Supporting multiple transport protocols enhances interoperability

WSMB handles interception of messages and protocol bridging to allow interactions
over multiple communication protocols (e.g., HTTP, JMS, MSMQ…). The choice of the
appropriate protocol to use can be decided based on the required Quality of Service (QoS)
and available infrastructure. WSMB allows the Web service client to choose the desired
transport without directly interfacing any deployed middleware that transports SOAP.
From the schema of the endpoint URL of the destination Web service (e.g., jms :) WSMB
transparently uses the appropriate communication channel. Our goal here is to allow a
client to transparently send a message to queue as it would to an http-based endpoint.
WSMB demonstrates the ability to effectively switch between transports protocols by

simply altering the target endpoint from a HTTP URL, to a listener waiting on JMS or
WebsphereMQ queue in synchronous and asynchronous fashion.

Multi-protocol support helps to preserve interoperability while leveraging existing in-
frastructure. For instance, a purchase order encapsulated in a SOAP message could arrive
using HTTP then WSMB could place the SOAP message in a message queue to be to be
pickup, validated, prioritized and processed by an order processing workflow system. The
requesting process will eventually receive a SOAP message confirming or rejecting the
order through WSMB mediation. This allows shielding external users and partners from
the internal implementation details while keeping data losses to a minimum.

4.2 WSMB content layer interoperability

WSMB infrastructure is based on interception (Figure 3). At start -up it loads the con-
figuration and starts a pool of listeners to begin receiving messages. The listeners read
messages from different channels and then call a series of configurable handlers to ma-
nipulate both request and response messages (e.g., transform old-format messages into
new formats) as instructed by the configuration settings. Messages travels along a con-
figurable pipeline made of a series of operations for processing and relaying messages .
WSMB support two types of operations generic (like validate a message against a schema,
transform a message with XSLT, split, route, encrypt/decrypt message…) and specific (like
a custom handler to evaluate or enforce a business rule). Operations can be assigned to
different nodes in the infrastructure. Each node receives the messages into a private
queue, and processes them through a configurable sequence of handlers, after that the
message(s) could leave the node to a certain destination or set of destinations.

Figure 3. SOAP handler pipeline mechanism enhances content level interoperability

5. Evaluation and discussion

5.1 Performance Evaluation

Our performance tests aimed at comparing the direct invocation using SOAP-over-HTTP
with channelling interactions through WSMB.
We run independent tests with increasing number of clients, and fixed the number of re-
quests sent by each client to 50 requests per client. The graph in Figure 5 summarizes
some of the results.

Muliple clients - multiple requests
(50 request per client)

0

50

100

150

200

250

5 10 20 30 50 70 100 200

Number of clients

R
es

p
o

n
se

 ti
m

e
in

 s
ec

o
n

d
s

Axis

WSMB

Figure 1. Multiple clients send multiple requests

Looking at the graph, we can observe that direct SOAP-over-HTTP using Axis slightly
outperforms channelling SOAP messages through WSMB. However, Axis cannot handle
more than 70 clients. Whereas scalability of WSMB still grows up to 200 clients. So mes-
saging through WSMB is more resilient and the response time is more predictable.

5.2 Interoperability Evaluation

SOAP over HTTP is commonly used to invoke Web services. In this evaluation, we dis-
cuss an alternative approach to convey SOAP messages to the target Web service (i.e.,
SOAP-over-JMS).

Scenario 1 – SOAP/JMS: Invoking Web service deployed in Oracle AS J2EE 10g

In this scenario, we deployed a NewsService [14] in OC4J.

Figure 6: SOAP/JMS with OC4J

The above figure illustrates the work flow of the scenario.
NewsService is a JMS Document Style Web Service which exposes a JMS Queue (News

Queue) as a Web Service. This service accepts messages (clients send messages by in-
voking the 'send()' operation of the Web Service), extracts the news content from the mes-
sage, persists to the data source and finally publishes to a JMS Topic (News Topic).

The JMS Topic (News Topic) is also exposed as a JMS Document Style Web Service
and hence all clients can subscribe to this Topic and receive news items. This is done by
invoking the 'receive()' operation of the Web Service.

The above scenario illustrates the interoperability features of WSMQ with a commercial
Web services container.

 6. Discussion and Conclusion

In this paper we argue that XML-based messaging accompanied by a uniform accessi-
ble and manageable communication bus fulfils the interoperability and scalability require-
ments among services in a generic and dynamic manner.

We presented an initial design and prototype implementation of WSMB, a lightweight
messaging framework using broker pattern, it builds on current standards to meet the in-
teroperability and manageability requirements of Web services based applications. WSMB
is a first step towards the realization of an interoperable and QoS-aware integration infra-
structure to move SOA beyond simple point-to-point service integration by facilitating
large-scale implementation of the SOA principles with suitable service levels and manage-
ability. The fundamental principle behind WSMB is abstracting away interoperability fea-
tures so they can be configured and enforced instead of being hand-coded into the service
logic. This results in a greater flexibility and a better maintainability and reuse. While not
claiming to be a sliver bullet, WSMB has achieved (in non-invasive way) some success in
enhancing interoperability through virtualization of communication protocols and end-
points as well as the provision of a configurable SOAP handlers pipeline to ease the rec-
onciliation of content layer mismatches. However, the framework needs to be improved by
adding support for semantic transformation, content-based routing, and advanced recon-
ciliation services using ontological information to allow increased interoperability.

References

1. Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju: Web Services Concepts,
Architectures and Applications. 2004: Springer.

2. W3C: Web Services Glossary. http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/. Febru-
ary 2004

3. IBM Web Services Architecture Team: Web Services Architecture Overview. http://www-
106.ibm.com/developerworks/library/w -ovr/. September 2000

4. Dabous, F. T., Rabhi, F. A., Ray, P. K. and Benatallah, B., 'Middleware Technologies for B2B
 Integration', The International Engineering Consortium (IEC) Annual Reviews of Communica-
tions, IEC Press, USA, Vol 56,July, 2003.

5. Maheshwari, P., Nguyen, T. and Erradi, A., 'QoS-based Message-Oriented Middleware for Web
services', in WISE 2004 Web Services Quality Workshop, Brisbane, Australia, LNCS
3307, pp. 241-251.

6. Mukhi, N. K., Khalaf, R. and Fremantle, P., 'Multiprotocol web services for enterprises and the
grid', in Proceedings of the EuroWeb 2002 Conference on the Web and the Grid: From e-
science to e-business, Oxford, UK

7. SonicSoftware: SonicMQ Datasheet. http://www.sonicsoftware.com/products/docs/sonicmq.pdf.
Accessed on October 2004

8. Chappell, D. 2004, Enterprise Service Bus, O'Reilly, ISBN 0-596-00675-6.
9. Sadiq, S. W., Orlowska, M. E., Sadiq, W. and Schulz, K., 'Facilitating Business Process Man-

agement with Harmonized Messaging', in 6th International Conference on Enterprise In-
formation Systems (ICEIS 2004), Porto, Portugal

10. Wipro Web Service Team: Interoperability Issues of Web Services- An Overview.
http://whitepapers.zdnet.co.uk/0,39025945,60045354p-39000542q,00.htm (registration
required). March 2003

11. Microsoft Soap Interop Server . http://www.mssoapinterop.org/.
12. SOAPBuilders Interoperability Lab. http://www.xmethods.net/ilab/.
13. Piyush Maheshwari, Hua Tang, and Roger Liang: Enhancing Web Services with Message-

Oriented Middleware. in Proceedings of the IEEE International Conference on Web Ser-
vices. July 2004. San Diego.

14. Oracle, JMS Web Service Sample (News Service application). Accessed on October 2004.
http://www.oracle.com/technology/sample_code/tech/java/web_services/jmsws/index.html

