Developing Web
Services with
Apache CXF and
Axis2

By
Kent Ka lok Tong
Copyright © 2005-2010
TipTec Development

Publisher: TipTec Development
Author's email: freemant2000@yahoo.com
Book website: http://www.agileskills2.org

Notice: All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system or transmitted, in any
form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission
of the publisher.

Developing Web Services with Apache CXF and Axis2 3

ISBN: 978-99937-929-1-8
Edition: Third edition Jan 2010

Developing Web Services with Apache CXF and Axis2 5

Foreword

Learn web services and Apache CXF and Axis2
easily

If you'd like to learn how to create web services (in particular, using Apache
CXF or Axis2) and make some sense of various standards like JAX-WS, JAX-
RS, JAXB, SOAP, WSDL, REST, MTOM, WS-Security, WS-Policy, XML
Encryption and XML Signature, then this book is for you. Why?

« It has a tutorial style that walks you through in a step-by-step manner.
- ltis concise. There is no lengthy, abstract description.

« Many diagrams are used to show the flow of processing and high level
concepts so that you get a whole picture of what's happening.

« It contains working code.

- The first two chapters are freely available on http://www.agileskills2.org. You
can judge it yourself.

Content highlights in this book

This book covers the following topics not commonly found in other books on
Java web services:

« How to work with both Apache CXF 2.2.x and Axis2 1.5.x using standard API
(JAX-WS, JAX-RS) as much as possible.

« How to use caching to create scalable RESTful web services.
« How to encrypt and sign SOAP messages using Rampart.

« How to send user authentication information using Rampart.
« How to send and receive binary files using MTOM.

« How to unit test web services.

Target audience and prerequisites

This book is suitable for those who would like to learn how to develop web
services in Java.

In order to understand what's in the book, you need to know Java and to have

6 Developing Web Services with Apache CXF and Axis2

edited XML files. However, you do NOT need to know the more advanced XML
concepts (e.g., XML schema, XML namespace), servlet, Tomcat or PKI.

Acknowledgments

I'd like to thank:

« The CXF developers for creating CXF.

« The Axis2 developers for creating Axis2.

« The WSS4J developers for creating WSS4J.

- Anne Thomas Manes, an expert in web services, for reviewing the book (first
edition).

- Helena Lei for proofreading this book.

« Eugenia Chan Peng U for doing book cover and layout design.

Developing Web Services with Apache CXF and Axis2 7

Table of Contents

FOr@WOIA. e e e 5
Learn web services and Apache CXF and Axis2 easily............. 5
Content highlights in this bookK..............ccccciiii 5
Target audience and prerequisites...........ccccovvvveevviiiiiiiiieeeeennnnnn. 5
AcCkNOWIEdgmMENtS. ... 6

Chapter 1 Designing the interface for a simple web service........ 11
What's in this chapter?........cooeeiie e, 12
Providing cross platform operations across the Internet.......... 12
RPC style web Service........ooiiiiiii 13
Document style Web Service..........ccccceeeeiiiniiiiiiiee e 16
Determining the operation for a document style web service..19
POt AYP. e 20
Binding.....coo o, 21
POr. e ———— 22
Target NAMESPACE.........iieii i 24
WSttt e e 26
SUMMAIY ...t e e e e e e e e e e e era e e e 27

Chapter 2 Implementing a web service............oooevveviiiiieiiiiinnnn. 29
What's in this chapter?.........ccccoooriii e, 30
InStalling EClipSe....uuuiiiii i 30
Using a web service library..........cccooooooiiiiii e 30
Downloading the jar files easily...........ccccoeoiiiiiiiieeeeee 31
Installing Apache CXF..........oooiiiiiiiiee e 33
WSDL file for the web service.........ccccovviiiiii, 36
RPC version of the web service............c.coo i 39
Creating the WSDL file visually............ooeviviiiiiiiieiiiiiiiiiieeeeeee, 40
Validating the WSDL file.......cooooiiiiiiieeeee e 50
Generating the service code.........cccccvvvveiiiiiiieiii e 51
Creating a client.. ... 57
Controlling the package name...........cccooiviiiiiiiiiniieeee 59
Practical significance of the annotations..............ccccceeeen. 59
Creating the web service with Apache AXiS2.................ceeee. 62
Creating a client using Apache AXiS2...........ccccuiiiiiiiieeeeeeeenn. 65
Undeploying a web service from AXiS2.............coovvviiiiiiiinnnnnnnn. 67
10010 0= Y 67

Chapter 3 Viewing the SOAP messages...........ccccvveeeeeeeeiinnnieenn. 69

8 Developing Web Services with Apache CXF and Axis2

What's in this chapter?.........ccccooo e, 70
Seeing the SOAP mMeSSages.........cc.ueeeeiieeiiiiiiiiiiiieeeeee e 70
10010 = Y 74
Chapter 4 Accepting multiple parameters..........cccceeviviievveennnnnnnn. 75
What's in this chapter?..........ooo e, 76
Splitting the XML element into multiple parameters................ 76
Using the wrapped style in AXiS2..........occooviiiiiiiiiiiiiiiiiiiiis 81
Interoperability...........coooiiiiiii s 82
SUMIMAIY ...ttt e e e as 82
Chapter 5 Sending and receiving complex data structures.......... 83
What's in this chapter?........cooeeiie e, 84
ProducCt QUENY......cooeeeeiiee e 84
Sending more data in @ MeSSage........cccccevvvvveeiiiiiiiiiiiiiieeeeenn 96
Returning faultS..........ooooiviiiiii 96
Referring to existing XML elements............cccooeviiiiiiiiiiiiinnn. 105
DoiNG it N AXIS2....ueeiiieii e 108
SUMMAIY ...t e e e e e e e e e e eennaeeeas 110
Chapter 6 Sending binary fileS.............euveiiiiieeeiiiiieeeeeee 111
What's in this chapter?.........ooooviiiiiiiiiii e, 112
Providing the image of a product.............ccccoooiiiiiiiiiiinnn. 112
Enabling MTOM in the service.........ccoooeeieieiiiiiieeeiicec e, 119
DoiNg it iN AXIS2.. ..o 120
Interoperability..........ccooviiiiiiii 122
SUMIMAIY ...ttt et e e e e 122
Chapter 7 Invoking lengthy operations...........ccccooeecciiiiiiinnnnn. 123
What's in this chapter?..........oooeiiiiiie e, 124
Invoking a time consuming operation...........ccccccceeeiiiiiieccnnnnn. 124
What if you can't modify the WSDL file?..........cccccccriiiinnnnne 128
Extremely lengthy processing..........ccccuevevieiiiiiiiiiiiiieeeeees 129
Specifying the reply address.........cccccoiiiiiiiiiiiiii e 134
Using an asynchronous client in AXiS2...........cccccceeveeeiiniinnnn. 136
SUMIMAIY ...ttt e e e e e 137
Chapter 8 Signing and encrypting SOAP messages................. 139
What's in this chapter?..........oooviiiiiiiiie e, 140
Private key and public Key.............eeeveiiiiiiiii e 140
Digital signature..........ccoooeeieiiiiiii 142
Signing and encrypling..........cceeeeeiiiiiiiiiiieeeee e 143
Certificate and CA.........eieieee e 144

Distinguished name..........ccooii e 145

Developing Web Services with Apache CXF and Axis2 9

Performance issue with asymmetric encryption..................... 146
Keeping key pair and certificates in Java...........ccccccvvvennnnnnnn. 146
Generating @ KeY Pair.........coooccuiiiiiiiee e 147
Setting uUp @ CA .. 150
Importing the certificate into the keystore..............cccccceeeiis 152
Signing SOAP MESSAQJES......coiviiiiiiiiiiieeee e 156
Supporting digital signatures in the web service.................... 164
Encrypting SOAP mMeSSages.......cccuvuviiiiiiiiiiiiiiieieeeeeeeeeeiiiines 168
Security issues when performing both signing and encrypting
.. 173
Sending login information..............cccccei i 176
Installing Rampart into AXis2............cccceoeeeii, 182
Creating a secure client in AXiS2.........ccccveeeeeeieiiiiiiiieeee 183
Creating a secure service in AXiS2........ccceeeeeeeeiiieeeeeeeeeine, 188
SUMIMAIY ...ttt e e e e e 192

Chapter 9 Creating scalable web services with REST............... 193
What's in this chapter?.........cccooooiiiiiiiiiiiceeeee e, 194
Scalability difficulty with SOAP........coovviiiii 194
USING @ GENEIIC PrOXY...ceeeeirieiieieeeeeeeeeeiineaeeeeeeeeeeennnneeeanneeees 196
Creating a RESTful web service.........ccccceeeeiiiiiiiiieececiiiin. 198
Enabling caching by @ proXy.......cccccveveiiiiiiiiiiieeeeeeeeiee e 201
Validating the cached response after expiry.........cccccoeveeeene. 203
Using other kinds of versions................ccccciiiee e, 209
What if books can be updated at any time?........................... 211
Performing an update..................cccc 211
Implementing add............cccoiiiiiiiiii s 213
Implementing delete...........ooo 217
Listing the reviews on @ booK.............ccooviiiiiiiiiiiiiiiiiin 218
Providing the full review text on demand..............c..cceeveennnn. 224
Implementing Search.............ooeeeiiiiiiiii e, 227
DoiNG it iN AXIS2....coiiiiiieeee e 230
SUMIMAIY ...ttt e e e e e 230

Chapter 10 Deploying your services and integrating them with

] o] 11T RPN 231
What's in this chapter?..........ooooveiiiiiiieii e, 232
Deploying the simple ServiCe.........ccvvvvviiiiiiiiieeeeeeeeiee e 232
Installing Tomceat..........oooiiiii s 233
Invoking Spring beans from your implementation object....... 235

Deploying RESTful web services...........ccccceviiiiiiiiiiiiiiin, 237

10 Developing Web Services with Apache CXF and Axis2

Invoking Spring beans from your resource objects................ 238
Deploying Axis2 web services. ... 240
Using Spring With AXIS2..........cooiiviiiiiiieeeee e 241
SUMIMAIY ...ttt e e e e 244
Chapter 11 Unit testing your web services.............ccccvvvvvnnnnnn. 245
What's in this chapter?..........ooooiiiiiieiiieee e, 246
Difficulties in testing a web service in a container.................. 246
Testing a web service out of container, in isolation............... 246
SUMIMAIY ...ttt e e e e 251
REfEIENCES. 253

Alphabetical INAEX.........uuuue e 256

11

Ghapter 1

Designing the interface for
a simple web service

12 Chapter 1 Designing the interface for a simple web service

What's in this chapter?

In this chapter you'll learn how to design the interface for a simple web service.

Providing cross platform operations across the
Internet

Suppose that you'd like to provide a service to the public or to some business
partners: They can send you two strings and you will concatenate them and
return the string. Of course, in the real world you provide a more useful service.

There are several major requirements: First, the users may be using different
languages (Java, C# and etc.) and using different platforms (Windows, Linux
and etc.). Your service must be accessible by different languages and
platforms. Second, they will call your service across the Internet and there may
be firewalls in between. Your service must be able to go through firewalls.

Given these requirements, the best solution is to provide a so-called "web
service". For example, you may make a web service accessible on the host
www.ttdev.com and accessible as /SimpleService (see the diagram below), so
the full URL is http://www.ttdev.com/SimpleService. This is called the "endpoint"
of the web service. Your web service may support one or more operations. One
operation may be named "concat":

Combined together, the full path of the

web service is
http://www.ttdev.com/SimpleService.

A web server at http://www.ttdev.com

A web service at the path /SimpleService

An operation

Name: concat

An operation

Name: ...

i Internet

However, you hope to provide a globally unique name to each operation so that
you can have your "concat" operation while another person may have his

Chapter 1 Designing the interface for a simple web service 13

"concat" operation. So, in addition to the name, you may declare that the
"concat" name above is in the "namespace" of http://ttdev.com/ss (see the
diagram below). A namespace is just like a Java package, but it is not in a dot
format like com.ttdev.foo; it is in the format of a URL. So, the full name of the
operation will be "concat" in namespace http://ttdev.com/ss. The name "concat"
is called the "local name". The full name is called a "QName (qualified name)":

A web server at http://www.ttdev.com

A web service at the path /SimpleService

An operation

Local name: concat
Namespace: http://ttdev.com/ss

An operation

Local name: ...
Namespace: ...

‘ Internet

You may wonder what this http://ttdev.com/ss namespace means. The answer
is that it has no particular meaning. Even though it is a URL, it does NOT mean
that you can use a browser to access this URL to get a web page (if you do, you
may get a file not found error). The only important thing is that it must be
globally unique. As | have registered the domain name ttdev.com, it must be
globally unique.

Note that the namespace is a completely different concept from the endpoint.
The endpoint really is the location, while the namespace is just a unique id. |
could easily move the web service to another web server and thus it will have a
different endpoint, but the namespaces of its operations will remain unchanged.

RPC style web service

Your concat operation may take two parameters. One is named "s1" and is a
string. The other is named "s2" and is also a string. The return value is also a
string:

14 Chapter 1 Designing the interface for a simple web service

An operation
Local name: concat
Namespace: http://ttdev.com/ss
Parameters:
sl: string
s2: string
Return:
string

However, what does the above "string" type mean? Is it the Java string type?
No, you can't say that because it must be language neutral. Fortunately, the
XML schema specification defines some basic data types including a string
type. Each of these data types has a QName as its id. For example:

Data type Local name namespace
string string http://www.w3.0rg/2001/XMLSchema
integer int http://www.w3.0rg/2001/XMLSchema

So, the interface of your operation should be written as:

An operation
Local name: concat
Namespace: http://ttdev.com/ss
Parameters:
sl: string in http://www.w3.0rg/2001/XMLSchema
s2: string in http://www.w3.0rg/2001/XMLSchema
Return:
string in http://www.w3.0rg/2001/XMLSchema

Actually, in web services, a method call is called an "input message" and a
parameter is called a "part". The return value is called an "output message" and
may contain multiple parts. So, it is more correct to say:

An operation
Local name: concat
Namespace: http://ttdev.com/ss
Input message:
Part 1:
Name: sl
Type: string in http://www.w3.0rg/2001/XMLSchema
Part 2:
Name: s2
Type: string in http://www.w3.0rg/2001/XMLSchema
Output message:
Part 1:
Name: return
Type: string in http://www.w3.0rg/2001/XMLSchema

When someone calls this operation, he can send you an XML element as the
input message like:

Chapter 1 Designing the interface for a simple web service

Local name:[concat

Namespace: |http://ttdev.com/ss

Input message:
Part 1:
Name: sl

Part 2:
Name: g2
Type: s

Output message:

Part 1:
Name: pyeturn

Type: string in http://www.w3.org/2001/XMLSchema

tring in hitp://www.w3.0rg/2001/XMLSchema

Type: string in hitp://www.w3.0rg/2001/XMLSchema

There is a child
element for each
part. Each child
element has the
same name as
that part ("s1" in
this case).

When you return, the output message may be like:

is trying to call

The QName of this XML element
is exactly that of the operation he

foo is a "namespace prefix" representing
the http://ttdev.com/ss in the rest of this
element including its children.

<sl>abc</sl>
<s2>123</82>
</foo:concat>

<foo:concat xmlns:foo="http://tt

ev.com/ss">

Local name:%concat

ttp://ttdev.com/ss

Namespace:
Input message:
Part 1:
Name: sl
Part 2:
Name: s2

Output message:
Part 1:
Name: return

Type: string in hitp://www.w3.0rg/2001/XMLSchema

Type: string in http://www.w3.0rg/2001/XMLSchema

Type: gtring in hitp://www.w3.0rg/2001/XMLSchema

The QName of this XML element
Each child element is gxactly that of the operation

being called
has the same name
as a part in the
output message
("return” in this
case).

<foo:cdncat xmlns:foo="http://ttdev.com/ss">

</foo:c

<return>abcl23</return>

oncat>

15

This kind of web service is called "RPC style" web service (RPC stands for

16 Chapter 1 Designing the interface for a simple web service

"Remote Procedure Call"). That is, the operation QName and the names of the
parts are used to create the input and output messages.

Document style web service

The above way is not the only way you design the interface of your web service.
For example, you may say that its input message only contains a single part
(see the diagram below) which is an element defined in a schema. In that
schema, it is defined as an element named "concatRequest" that contains two
child elements <s1> and <s2>:

An operation

Local name: concat
Namespace: http://ttdev.com/ss
Input message:

Part 1:
Name: concatRequest
Element:

Output message:

<concatRequest> is a complext type The elements defined here are put into
because it contains child elements this namespace ————

<xsd:schema
targetNamespgce="http://ttdev.com/ss"
xmlns:xsd="h tp://www.wﬁ.org/2001/XMLSchema">
<xsd:element |name="concatRequest'">
<xsd:complexType>
<xsd:sequence>
y <xsd:element name="gl" type="xsd:string"/>
Qemenm.Thefwﬂ <xsd:element name="g2" type="xsd:string"/>
isan<s1> </xsd:sequence>
element, thenisan /.54 complexType>
<s2>element. </xsd:element>
</xsd:schema>

It contains a
sequence of child

<fog:concatRequest xmlns:foo="http://ttdev.com/ss">
<sl>abc</sl>
<s2>123</s2>

</fTo:concatRequest>

Note that the schema is included in the interface of your web service:

Chapter 1 Designing the interface for a simple web service 17

A web service

A schema
<xsd:schema
targetNamespace="http://ttdev.com/ss"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="concatRequest">
<xsd:complexType> .
<xsd:sequence>
<xsd:element name="sl" type="xsd:string"/>
<xsd:element names"s2" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

An operation

[Local name: concat
Namespace: http://ttdev.com/ss
Input message:
Part 1:
Name: concatRequest
Element: concatRequest in http://ttdev.com/ss
Output message:

As you can see above, a part may be declared as a particular element
(<concatRequest> defined in your schema) or as any element having a
particular type (string defined in XML schema specification). In either case it is
identified using a QName.

When someone calls this operation, he will send you a <concatRequest>
element as the input message like:

<foo:concatRequest xmlns:foo="http://ttdev.com/ss">
<sl>abc</sl>
<s2>123</s2>

</foo:concatRequest>

Similarly, for the output message, you may specify that it contains only one part
and that part is a <concatResponse> element:

18 Chapter 1 Designing the interface for a simple web service

A web service

A schema
<xsd:schema
targetNamespace="http://ttdev.com/ss"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="concatRequest">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="sl" type="xsd:string"/>
<xsd:element name="s2" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="concatResponse" type="xsd:string"/>
</xsd:schema>

An operation

[Local name: concat
Namespace: http://ttdev.com/ss
Input message:
Part 1:
Name: concatRequest
Element: concatRequest|in http://ttdev.com/ss
PQutput message:
Part 1:
Name: concatResponse
Element: concatResponse in|http://ttdev.com/ss

This <concatResponse> element is a "simple
type element”, meaning that it has no attribute
and can't have elements in its body (so only
simple string or number in its body).

foo:concatResponse
xmlns: foo="http://ttdev.com/ss">abcl23</foo:concatResponse>

This kind of web service is called "document style" web service. That is, the

input message will contain a single part only which is well defined in a schema.
The same is true of the output message.

If you go back to check the input message for the RPC style service, it should
be revised as:

Chapter 1 Designing the interface for a simple web service 19

<foo:concat>
xmlns: foo="http://ttdev.com/ss"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-Instance">
<sl xsi:type="xsd:string">abc</sl> 1
<s2 xsi:type="xsd:string">123</s2>
</foo:concat

This attribute is used to explicitly state the XML data

type of the body of an element ("abc" here). This is

useful when the element (<s1>) itself is not defined

in a schema. This "type" attribute is defined in the
http://www.w3.0rg/2001/XMLSchema-Instance

namespace, so you need to introduce a prefix for it: ——

This is because <foo:concat>, <s1> and <s2> are not defined in any schema
and therefore you must explicitly state the XML element types of the content of
<s1>and <s2>.

Now, let's compare the input messages of the RPC style web service and the
document style web service:

RPC style

<foo:concat>
xmlns: foo="http://ttdev.com/ss"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-Instance">
<sl xsi:type="xsd:string">abc</sl>
<s2 xsi:type="xsd:string">123</s2>

</foo:concat>

Document style

<foo:concatRequest xmlns:foo="http://ttdev.com/ss">
<sl>abc</sl>
<s2>123</s2>

</foo:concatRequest>

Not much difference, right? The significant difference is that the former can't be
validated with a schema while the latter can. Therefore, document style web
service is becoming the dominant style. According to an organization called
"WS-I (web services interoperability organization)", you should use document
style web services only.

Determining the operation for a document style web
service

To call an operation in a document style web service, one will send the single
part of the input message only. Note that it does NOT send the operation name
in any way. Then if there are more than one operations in the web service (see
the diagram below), how can it determine which one is being called? In that

20 Chapter 1 Designing the interface for a simple web service

case, it will see if the input message is a <concatRequest> or a
<someElement> to determine. What if both take a <someElement>? Then it is
an error and it won't work:

A web service

A schema

An operation

Input message:

Part 1:
Name: con
Element:

[Local name: concat
amespace: http://ttdev.com/ss

Putput message:

catRequest
concatRequest in http://ttdev.com/ss

An operation

Input message:

Part 1:
Name: bar
Element:

Local name: bar
amespace: http://ttdev.com/ss

Putput message:

Request
someElement in http://ttdev.com/ss

Port type

Actually, a web service doesn't directly contain a list of operations. Instead (see
the diagram below), operations are grouped into one or more "port types". A
port type is like a Java class and each operation in it is like a static method. For
example, in the web service above, you could have a port type named
"stringUtil" containing operations for strings, while having another port type
named "dateUtil" containing operations for dates. The name of a port type must

also be a QName:

Chapter 1 Designing the interface for a simple web service 21

A web service

A schema

A port type A port type

Local name: stringUtil Local name: dateUtil

Namespace: http://ttdev.com/ss Namespace: http://ttdev.com/ss
An operation An operation
Local name: concat Local name: ...
Namespace: http://ttdev.com/ss amespace: http://ttdev.com/ss
An operation An operation
Local name: bar Local name: ...
Namespace: http://ttdev.com/ss amespace: http://ttdev.com/ss

Actually, a port type may allow you to access it using different message formats.
The message format that you have seen is called the "Simple Object Access
Protocol (SOAP)" format. It is possible that, say, the stringUtil port type may
also support a plain text format:

‘concat(sl='abc' , s2='123")

In addition to the message format, a port type may allow the message to be
carried (transported) in an HTTP POST request or in an email. Each supported
combination is called a "binding":

22

A web service

Chapter 1 Designing the interface for a simple web service

A schema

Port type: stringUtil

concat

-
Binding Binding
Name: bindingl ame: binding2
Port type: Port type:
Format: SOAP Format: TEXT
Transport: HTTP Transport: SMTP

For example For example

POST /DWSAA/test/ts.php [FROM: kent@ttdev.com
TO:
KconcatRequest>
<sl>abc</sl> concat (sl='abc', s2='123")
<s2>123</s82>
</concatRequest>

What bindings should your port type support? SOAP+HTTP is the most
common combination. So, you should probably use this binding in practice.

Port

Suppose that there are just too many people using your web service, you decide
to make it available on more than one computers. For example (see the
diagram below), you may deploy the above binding 1 on computers c1, ¢2 and
c3 and deploy binding 2 on c3. In that case it is said that you have four ports.
Three ports are using binding 1 and one using binding 2:

Chapter 1 Designing the interface for a simple web service 23

A web service

A schema

Port type: stringUtil
concat

Binding Binding
ame: bindihgl Name: binding2
Port type: Port type:
Format: SOAP Format: TEXT
Transport: HTTP Transport: SMTP
[
\
Deployed to
Deployed to Deployed to Deployed to
Port 10 Port 200 Port 30
Port 40
c1 c2 c3

Note that it does NOT mean that the requests received by these three
computers will be forwarded to a computer hiding behind for processing.
Instead, it means that there is some software implementing the port type
installed on these three computers. There is no requirement that the same
piece of software is installed onto the different computers. For example, on c1,
port 1 may be written in Java, while on c2, port 2 may be written in C#. The
important point is that they both support the operations specified in port type
stringUtil and the message format and transport specified in the binding 1. Port
4 must also implement the same operations too (same port type) but the
message format and transport are different.

To tell others about this arrangement, you include these ports in the interface of
the web service:

24 Chapter 1 Designing the interface for a simple web service

A web service

A schema

Port type: stringUtil

concat
Binding Binding
Name: bindingl Name: binding?2
Port type: Port type:
Format: SOAP Format: TEXT
Transport: HTTP Transport: SMTP
t
Port Port Port Port
Name: portl Name: pont2 Name: port Name: poft4d
Binding: Binding: Binding: Binding:
Endpoint: Endpoint: Endpoint: Endpoint:

Target namespace

You have been using the same namespace for the operation names, port type
names and etc. in this web service. Do they have to be in the same
namespace? By default, this is the case: There is a single namespace for a web
service to put the names into. This is called the "target namespace" for the web

service:

Chapter 1 Designing the interface for a simple web service 25

A web service

Target namespace: http://ttdev.com/ss
A schema
Port type: stringUtil
concat
Y
Binding Binding
Name: bindingl Name: binding2
Port type: Port type:
Format: SOAP Format: TEXT
Transport: HTTP Transport: SMTP
Port Port Port Port
Name: portl Name: pont2 Name: port3 Name: port4d
Binding: Binding: Binding: Binding:
Endpoint: ... Endpoint: ... | Endpoint: ... Endpoint: ...

You've been using http://ttdev.com/ss as the target namespace. Is it a good
choice? Basically a namespace is good as long as it is globally unique. So this
one should be good. However, people may try to download a web page from
this URL. When it doesn't work, they may suspect that your web service is out
of order. To avoid this confusion, you may use something called URN (Uniform
Resource Name) as the namespace.

A namespace must be a URIL URI stands for Uniform Resource ldentifier.
There are two kinds of URI. One is URL such as http://www.foo.com/bar. The
other is URN. A URN takes the format of urn:<some-object-type>:<some-
object-id>. For example, International ISBN Agency has made a request to the
IANA (International Assigned Numbers Association) that it would like to manage
the object type named "isbn". After the request has been approved, the
International ISBN Agency can declare that a URN urn:isbn:1-23-456789-0 will
identify a book whose ISBN is 1-23-456789-0. It can determine the meaning of
the object id without consulting IANA at all.

Similarly, you may submit a request to IANA to register your Internet domain
name such as foo.com as the object type. Then on approval you can use URNs
like urn:foo.com:xyz to identify an object xyz in your company. What xyz means
or its format is completely up to you to decide. For example, you may use
urn:foo.com:product:123 (so xyz is product:123) to mean the product #123
produced by your company, or urn:foo.com:patent/123 (so xyz is patent/123) to
mean a patent coded 123 in your company.

26 Chapter 1 Designing the interface for a simple web service

However, this will create a lot of workload on you and on IANA (one registration
per company!). As you have already registered the domain name foo.com, it is
unlikely that someone will use it in their URN's. So, you may want to go ahead
and use foo.com, or, as many people do, foo-com as the object type without
registration with IANA and hope that there won't be any collision.

An XML namespace must be a URI. You can use a URL or a URN. Functionally
there is no difference at all. For example, you may use say urn:ttdev.com:ss as
the target namespace for your web service instead of http://ttdev.com/ss without
changing any functionality.

By the way, if you are going to lookup references on URN, do NOT try to find
terms like "object type" or "object id". The official terms are:

URN namespace specific
string (NSS)

urn:isbn|:[L-23-456789-0]

URN namespace identifier
(NID). This namespace is NOT
the namespace in XML!

WSDL

By now you have finished designing the interface for your web service:

Chapter 1 Designing the interface for a simple web service 27

A web service

Target namespace: http://ttdev.com/ss
A schema
Port type: stringUtil
concat
Y
Binding Binding
Name: bindingl Name: binding2
Port type: Port type:
Format: SOAP Format: TEXT
Transport: HTTP Transport: SMTP
Port Port Port Port
Name: portl Name: pont2 Name: port3 Name: port4d
Binding: Binding: Binding: Binding:
Endpoint: ... Endpoint: ... | Endpoint: ... Endpoint: ...

It fully describes your web service. This description language (terms and
concepts) is called "WSDL (Web Services Description Language)".

Summary

A web service is platform neutral, language neutral and can be accessed across
the Internet.

A web service has one or more ports. Each port is a binding deployed at a
certain network address (endpoint). A binding is a port type using a particular
message format and a particular transport protocol. A port type contains one or
more operations. An operation has an input message and an output message.
Each message has one or more parts. Each part is either a certain element
defined in the schema of the web service, or any element belonging to a certain
element type in that schema. All this information is fully described in WSDL.

To call a RPC style web service, one will create an XML element with the name
of the operation and a child element for each of its input message part. To call a
document style web service, one will just send the one and only part of its input
message. Because the XML element used to call a RPC style web service is
not defined in any schema, for better interoperability, one should create
document style web services.

The web service, and each of its ports, bindings, port types and operations, has

28 Chapter 1 Designing the interface for a simple web service

a QName uniquely identifying it. A QName has a local part and an XML
namespace. An XML namespace is a URI that is globally unique. By default the
names of all these components are put into the target namespace of the web
service.

There are two kinds of URI: URL and URN. URN takes the form of
urn:<NID>:<NSS>. You can use either as an XML namespace. The only
difference is that a URL is suggesting that it is the location of an object, while a
URN is purely an id of the object.

29

Ghapter 2

Implementing a web service

30 Chapter 2 Implementing a web service

What's in this chapter?

In this chapter you'll learn how to implement the web service interface designed
in the previous chapter.

Installing Eclipse

You need to make sure you have a recent version Eclipse installed (in this book
v3.4 is used) and it is the bundle for Java EE (the bundle for Java SE is NOT
enough). If not, go to http://www.eclipse.org to download the Eclipse IDE for
Java EE Developers (e.g., eclipse-jee-ganymede-SR2-win32.zip). Unzip it into a
folder such as c:\eclipse. To see if it's working, run c:\eclipse\eclipse.exe and
make sure you can switch to the Java EE perspective:

& Open Perspective @

(53 C¥3 Repository Exploring
(3 Database Debug

L_fj Databaze Development
ﬁDehu‘g

%’J&va

5 s Browsing
?_g Jawa EE (defanlt)
E Jawa Twpe Hievarchor

Using a web service library

How to create a web service? You can easily create a Java class that can
concatenate two strings together, like:

Class Foo {
String ml (String sl, String s2) {

}
}

However, when a client calls your web service, it will send a message (probably
a SOAP message) as shown below. It will be great if there is a converter that
can convert the incoming SOAP message into a Java object and then call a
Java object you provide:

Chapter 2 Implementing a web service 31

1: Arequest (a SOAP message) comes in.

<Kfoo:concatRequest>
<sl>abc</sl>
</f§§22éii;$2> . 2: Convert the message
H u . .
d into a Java object.

3: Call a particular method on
a class that you provided and
pass that ConcatRequest
object to as an argument.

Class Foo {
ConcatResponse ml (ConcatRequest) {

}

}

The good news is, there are libraries available that can act as such a converter.
The most popular ones are Apache CXF, Apache Axis2 and Metro from Sun
Microsystems.

Downloading the jar files easily

You're about to download Apache CXF and add its jar files to your Eclipse
project. However, CXF itself needs jar files from other 3™ parties so you must
download those too.

To do that easily, you can use the Maven2 Eclipse plugin. Once it is installed,
you can tell it download CXF. Then it will go to the Internet to download CXF
and add its jar files to the classpath of your project. The cool thing is, it will
download all jar files needed by CXF automatically. To install this Maven2
Eclipse plugin, choose Help | Install New Software. You'll see:

32 Chapter 2 Implementing a web service

@ () Install ——————) (=) ®

o

>

Available Software

Select a site or enter the location of a site.

Work with:a[type or select a site v] Add...

Find more software by working with the 'Available Software Sites' preferences.

MName \ersion

(D There is no site selected.

<
Details

-~
¥| Show only the latest versions of available software Hide items that are already installed

¥| Group items by category What is already installed?

¥| Contact all update sites during install to find required software

S,
i)
T

? < Bac Next = FEinish Cancel

Click Add and define a new update site and input the data as shown below. The
name is not really important; the location URL is:

ﬂ O Add Site =————— @ @
Name: | mZ2eclipse Lacal...
Location: [http:ﬂm?eclipse.sonatype.orgfupdate|] Archive...

Then choose this m2eclipse site and the available packages on that site will be
listed (see below). Choose "Maven integration for Eclipse" and "Maven
integration for WTP" as shown below:

Chapter 2 Implementing a web service 33

Available Software

3

@
P

Work with: 'mZ2eclipse - http:ffm2eclipse.sonatype.orgfupdate v Add...

@ O Instal ———— ®

Check the items that you wish to install.

Find maore software by working with the 'Available Software Sites' preferences.

Mame \ersion
w |=| 000 Maven Integration

L Maven Embedder 2.1.0.20080530-2300

B Maven Integration for Eclipse (Required)

Maven POM Editor (Optional)
 Maven POM XML Editor (Optional)
Maven: The Definitive Guide book (Option
» || 000 Maven Optional Components
v =/ 000 Maven Project Configurators
i Maven Integration for AJDT (Optional)
¥| & Maven Integration for WTP (Optional)

£

Nataile

Then continue until you finish the installation.

Installing Apache CXF

0.9.8.200905041414
0.9.8.200905041414
0.9.8.200905041414
0.9.8.200905041414

0.9.8.200905041414
0.9.8.200905041414

Note: Even if you are going to use Axis2, you should still follow the steps for
working with CXF as many common and important concepts are introduced in

the process.

Next, create a Java project as usual in Eclipse. Let's name it SimpleService.
Then right click the project and choose Maven | Enable Dependency

Management. You'll see:

34 Chapter 2 Implementing a web service

@ () Create new POM) (=) 3
Maven2 POM
This wizard creates a new POM (pom xml) descriptor for Maven2.
Project: ﬂfSimpleSewice] Browse...
Artifact
Group ld: | SimpleService v
Artifact Id: |SimpleService v
\fersion: 0.0.1-SNAPSHOT +
Packaging: |jar v
Name: v
Description: g
@j < Bac Next = Cancel

Accept the defaults and click Finish. Then, right click the project and choose
Maven | Add Dependency. Enter the "cxf" as the keyword to search for the
packages (see below). Then choose the cxf-bundle package:

Chapter 2 Implementing a web service 35

©
®
%)

@ () Add Dependency ————

Enter groupld, artifactid or shal prefix or pattern (*):

This is called the "group
ID" of the package. It
presents the
organization that created
the package. It is like
package name in Java.

exf
Search Results:

The keyword

> (0 org.apache.cxf cxf-api

=

» [org.apache.cd od-archetypes

> (0 org.apache.cxf cxf-buildtools

g E‘u} org.apache.cxf‘ ‘cxf—bundle

This is called the "artifact ID"
of the package. It identifies a
specific product created by
that organization. Think of it
as the class name in Java.

= 2.2.5 - exf-bundle-2.2.5-javadoc jar - 11652K - Sun Mov 15 04:01:58

= 2.2.5 - exf-bundle-2.2.5-sources jar - 3597K - Sun Mov 15 04:01:13 +
F, 2.2.4 - exf-bundle-2.2.4 bundle - 4509K - Thu Oct 08 20:41:25 HKT 2~
v

<

exf-bundle-2.2.5 4685104 Tue Dec 08 14:26:07 HKT 2009

@j Scope:

compile

¥

Make sure you're connected to the Internet. Then the Maven2 plugin will
download all the jar files in Apache CXF and those it needs from a central
repository. However, it will fail to download some jar files as they aren't in the
central repository. To solve the problem, modify the pom.xml file in the root of

your project:

<project ...>

<modelVersion>4.0.0</modelVersion>
<groupId>SimpleService</groupId>
<artifactId>SimpleService</artifactId>
<version>0.0.1-SNAPSHOT</version>

<dependencies>
<dependency>

<groupld>org.apache.cxf</groupld>

<artifactId>cxf-bundle</artifactId>

<version>2.2.5</version>

</dependency>
</dependencies>
<repositories>

<repository>

<id>apache-incubating</id>
<name>Apache Incubating Repository</name>
<url>http://people.apache.org/repo/m2-incubating-repository/</url>

</repository>
</repositories>
</project>

What you did was to tell the Maven2 plugin to look for packages in an additional
repository (http://people.apache.org/repo/m2-incubating-repository). Save the

file and the plugin will finish the download shortly.

36 Chapter 2 Implementing a web service

WSDL file for the web service

Suppose that you'd like to create a web service described in the previous
chapter:

Target namespace: http://ttdev.com/ss

Schema
<xsd:schema
targetNamespace="http://ttdev.com/ss
xmlns:tns="http://ttdev.com/ss"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="congatRequest">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="sl" type="xsd:string"/>
<xsd:element name="s2" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="con¢atResponse" type="xsd:string"/>
K/xsd:schema>

Port type
Name :
Operations:
Name: concat
Input msg:
Part 1:
Name: concatRequest

Element: concatRequest element as defined in the schema
Output msg:
Part 1:
Name: concatRequest
Elemgnt: concatResponse element as defined in the schema

Binding
Name :

Port type:
Format: SOAP
Transport: HTTP

Port
Name :
Binding:
Endpoint:

To write it using the real WSDL language, it should be:

Chapter 2 Implementing a web service

The names of the port types, operations,

bindings and ports will be put into this
namespace

<?xml versign="1.0" encoding="UTF-8"?>

37

All the elements and element types
defined in the schema will be put into
this namespace

<wsdl:definitions xmlns:soap="http://schemas.xmlgoap.org/wsdl/soap/"

xmlns:tns
xmlns:wsd
xmlns:xsd

"http://ttdev.com/ss"

targetNamespace="http://ttdev.com/ss">

="http://schemas.xmlsoap.org/wsdl/"
"http://www.w3.0rg/2001/XMLSchema"™ name="SimpleService"

<wsdl:types> I

<xsd:schema \

<xsd:complexType>

targetNamespace="http://ttdev.com/ss"
xmlns:tns="http://ttdev.com/ss">
<xsd:element name="concatRequest">

| Put the schema
into the <types>
section

<xsd:sequence>

</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>

<xsd:element name="sl" type="xsd:string"/>
<xsd:element name="s2" type="xsd:string"/>

<xsd:element name="concatResponse" type="xsd:string"/>

The input message
contains a single part.
The name of the part

is unimportant.

</wsdl:types>

<wsdl:message name="concatRequest"#—
<wsdl:part name="concatRequest" elemen

</wsdl:message>

<wsdl:message name:"concatResJonse">

<wsdl:part name="concatResponse" e

</wsdl:message>

<wsdl:portType name="SimpleService">

leme

t="tns:corlcatRequest" />

nt="tns:concatResponse" />

The output message

<wsdl:operation name="concat">

</wsdl:operation>

<wsdl:input message="tns:concatR
<wsdl:output message="tns:concatResponse"

equest"

contains a single part.
The name of the part
is unimportant.

/>
/>

</wsdl:portType>

L concat operation
</wsdl:definitions>

This defines the schema and the port type. To define the binding and the port:

38 Chapter 2 Implementing a web service

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://ttdev.com/ss"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" name="SimpleService"
targetNamespace="http://ttdev.com/ss"> The binding uses the SOAP format

<wsdl:types> and HTTP transport. SOAP
supports RPC and document styles.

</wsdl:types> Here you use the document style.

<wsdl:message name="concatRequest">

<wsdl:part name="concatRequest" element="tns:concatRequest" />
</wsdl:message>
<wsdl:message name="concatResponse">

<wsdl:part name="concatResponse" element="tns:concatResponse" />
</wsdl:message>

<wsdl:portType name="SimpleService# This binding
<wsdl:operation name="concat"> implements this
<wsdl:input message="tns:concatRequest" /> port type

<wsdl:output message="tns:concatResponse" />

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="SimpleServiceSOAP" type="tns:SimpleService">

<soap:binding style="document™

‘ transport="http://schemas.xmlsoap.org/soap/http" />
</wsdIl:binding>
<wsdl:service name="SimpleService"> [The portsupports this binding
<wsdl:port binding="tns:SimpleServiceSOAP"

name="pl">
The port <soap:address
location="http://localhost:8080/ss/pl" />

</wsdl:pqrt> |
</wsdl:serviice> ‘

</wsdl:definitions> You'lldeployiton You can use anything as the path, but it is a good
The endpoint of the port ~ your own convention to include the service name (here a
computer. shorthand "ss" is used) and the port name so that,

for example, you could deploy another port p2 for
the same service on the same host (/ss/p2) or
deploy a p1 port for another service (/s2/p1).

In fact, in a SOAP binding, you need to specify some more details:

Chapter 2 Implementing a web service

<wsdl:definitions ...>

<wsdl:message name="concatRequest">

<wsdl:part name="concatReqg
</wsdl:message>
<wsdl:message name="concatRe

<wsdl:part name="concatRes
</wsdl:message>

<wsdl:binding name="SimpleSex
<soap:binding style="docum
transport="http://schemg

best" element="tns:concatRequest" />

ponse'">

ponse" element="tns:concatResponse " />

viceSOAP" type="tns:SimpleService">
ent"
s.xmlsoap.org/soap/http" />

39

<wsdl:operation name="concat">
<soap:operation

<wsdl:input>

soapAction="http://ttdev.com/ss/concat"

The soap action is used

/P to tell the HTTP server

‘<soap:body parts="concatRequest" use="literal" />

that it is a SOAP
message and its

</wsdl:input>
<wsdl:output>

purpose. It is up to the

‘<soap:bod

parts="concatResponse"

- HTTP server to
use="literal" /ﬁ

</wsdl:output
</wsdl:operatiorn>

interpret the actual
meaning. In your case,
it is useless because

</wsdl:binding>

</wsdl:definitions>

Put the input message parts listed
The output message here (just one in this case: the
parts listed here will <concatRequest> element) into the
be put into the body body of the SOAP request
of the SOAP message:
response message.

Axis will handle the
SOAP message, not
Tomcat.

Literal means the message
parts are already in XML. No
need to convert (encode) it
further.

A SOAP message is like a mail. The
outermost is an <Envelope>. The
main content is in a <Body>. One or
more headers can be put into
<HeacIer>.

<soap-env:Envelope

<soap-env:Header>

xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/">
L The <Header> is optional

A "header entry" or "header element”. It is
used like email headers.

< 00>
< >
<...0>
</...>

</soap-env:Header>

Another header element

It must have a <Body>. The real message

<soap-env:Body>

content is put there.

<sl>...</sl>
<s2>...</s2>

<foo:concatRequest...>

</foo:concatRequest>

| | Thisis called a "body entry" or "body
element”

Another body element. However, in most

<.o00>

</...>
</soap-env:Body>

cases you should have a single message
part and thus a single body element only.
Otherwise interoperability will be affected.

</soap-env:Envelope>

RPC version of the web service

If the web service was a RPC style service, then the WSDL file would be like:

40 Chapter 2 Implementing a web service

<wsdl:definitions ...>
<wsdl:types>
<xsd:schema ...>
el - —u R u
drelement—ram freatReat
<xsercomplrextype> [
Don't need these
<tsdseguence>
el DRI ST ST any more
drelement—ram + Sad string
el . —woon o T
drelement—ram B string
</fxsarsegquence>
& 1 eseT
eomplextyp
el + —n LR n g BT BN
crelement—ram freatRespon yd destring
</xsd:schema>
<wsdl:types/>
<wsdl:message name="concatRequest"> The input message has two parts.
<wsdl:part name="sl" type="xsd:string" /> Each part is of element type
<wsdl:part name="s2" type="xsd:string" /> xsd:string (not elements).
</wsdl :message>
<wsdl:message name="concatResponse"> The output message has one part
[<wsdl:part name="return" type="xsd:string" />L—4HsofdementheXstUMg(nm
</wsdl :message> elements).

<wsdl:portType name="SimpleService">
<wsdl:operation name="concat">
<wsdl:input message="tns:concatRequest" />
<wsdl:output message="tns:concatResponse" />
</wsdl:operation>

</wsdl:portType> RPC style
<wsdl:binding name="SimpleServiceSOAP" type="tns:SimpleService">

<soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http" />

<wsdl:operation name="concat"> Two message parts are listed. So, they
<soap:operation will be included into the <Body> (but not
soapAction="http://ttdev.com/ss/concat" /> directly). As it is a RPC style service, the
<wsdl:input> caller must create an element with the
<soap:body parts=1sl s2" use="literal” /> QName of the operation and then add
</wsdl:input> each message part listed here as a child
<wsdl:output> element. So it should still have a single

<soap:body parts="return" use="literal" /> element in the <Body>:
</wsdl:output>
</wsdl:operation>
</wsdl:binding>

</wsdl:definitions>

<soap-env:Envelope
xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
<soap-env:Header>

</soap-env:Header>
<soap-env:Body>
<foo:concat ...>
<sl>...</sl>
<s2>...</s2>
</foo:concat>
</soap-env:Body>
</soap-env:Envelope>

No schema
to validate
it

As RPC style is not good for interoperability, you'll continue to use the document
style version.

Creating the WSDL file visually

It may be error prone to manually create such a WSDL file. Instead, you may

Chapter 2 Implementing a web service 41

use the Eclipse to do it. First, create a new folder src/main/resources in the root
of your project. Next, right click on that folder and choose New | Other and then
Web Services | WSDL:

Select a wizard
Create a new WEDL File

Wizards:
[type tilter teset

= Web
== Web Bervices
&) bt Files
= Unit Test UDDI
75 Web Bervice
5 Web Service Client

== IML
[6¢ DID

If you don't see this option, it means that you haven't installed the Java EE
version of Eclipse. If it is working, click Next and enter SimpleService.wsd| as
the filename:

42 Chapter 2 Implementing a web service

8 () New WSDL File

New WSDL File
Create a new WSDL File

Enter or select the parent folder:

®e ®

|simpleService/src/mainfresources

i = =
v & simpleService

= .settings
= bin

v [=src
v [= main

E resources
» [= target

> &2 Test

File name: [SimpleService.wsd“

| Advanced => |

@ [

< Back |[Next =] |

Finish

Cancel

Click Next. Then input as shown below:

Chapter 2 Implementing a web service 43

& New WSDL File

Options
Specify the attributes for the new WEDL file. =
TTrget namespace for the WSDL file 4
Target namespace: |hﬂp:.".ﬂ'hdev.cbm."w| |
Prefix: [tns |

Create WiDL Sheleton

Protocol: [SOAP v
SOAP Binding Options Use the SOAP format
&) document literal Remember, you're using the
. document style (the only input
O e literal message part is the whole
) ipe encoded message) and literal use for
that part.

Modify project complisnce sthing

© weas | [Bmh) [el

Click Finish. Then you will see something like:

44 Chapter 2 Implementing a web service

@ SimpleService wsdl 53

k?xml wersion="1.0" encoding="UTF-5">
<wsdlidefinitions xmlns:wsdl="hoop://schewas. xmlsoap.oryg/ wsdl/ ™ xmlns:s
“wsdl:types>
<x=2d:schems targetNamespace="http:///otdev. com’ss™ xmlns:isd="http:/
<xsdielement name="Newlperation™:>
<xsd:complexType:>
<xsd: sequence:
<izdrelement nawe="in" type="xsd:string"/>
</ Hsdisequences
</ usdicomplexTypes
</®sdielement>
<xsd:element nawe="NewlperationResponse™:
<xsd:comwplexTypes
<xsd: sequence:
zxsdielement name="out" type="xsd:string"/>
</wadisequences
</ wadiconplexTypes
</Hsdielement>
</ %ad: schemasr
</wadl:typess
<wsdl:message name="NewOperationReguestc™:>
<ysdl:part element="tnz:NewlOperation™ name="parameters"/ >
</ wsdlimessager
<wsdl:message name="NewlperationResponse™:>
<ysdl:part element="tnz:NewOperationResponse’” name="parameters"/ >
</ wsdlimessager
<wsdl:portType name="Zimplelervice™:>
<wsdl:operation name="NewOperation™:>
<wsdl:input message="tns:NewOperationRegquest™/ =
<wsdl:output message="tns:NewlperationResponse"/ >

<fwadl:operation>
Sdmadl s rnnrt Tone™s

<
Design | Sounce

This is the WSDL code. To edit it visually, click the Design tab at the bottom of
the editor window. Then you'll see:

A binding (SOAP

The‘ service and ‘ HTTP) Po‘rt type
75 SimpleService @) © SimpleService
= BimpleferviceSOLP 488 NewOperation
‘ ht'l'p:.".“www.example.o‘rg/ [#] input [parsmeters | [E] WewOperation
‘ Clloutput | [P parameters [8] NewOperstionResponse

A port. A service
may contain one Endpoint of the

or more ports. port An operation. A port Part name XML element name
type may contain or element type for
one or more that part
operations.

Double click on the endpoint to change it to http://localhost:8080/ss/p1:

Chapter 2 Implementing a web service

4 SimpleService

> SimpleServiceSOAP

Jflocalhost:8080/ss/p.

Double click on the name of the port and change it to "p1":

=1

4 SimpleService

http:fflocalhost:808...

Double click on the name of the operation and change it to "concat™:

Set the name of the operation.

The XML element names for

the input and output parts will

be changed automatically:

€ simpleService

conca

[¥input

[parameters

[e] concat

Il output

[parameters

[€] concatResponse

45

For the moment, the input part is an <concat> element. You'd like to change it
to <concatRequest>. But for now, put the cursor on the arrow to its right first.
The arrow will turn into blue color. Wait a couple of seconds then a preview
window will appear showing the definition of the <concat> element:

46 Chapter 2 Implementing a web service

€9 SimpleService
&% concat
[input [parameters | [€] concat —
<11 output [parameters [8] concatResponss

concat -

(comsatType)

w[elin string

tpfftidey comdss Cpen In New Editox

Clicking anywhere else will make that preview window disappear. To edit the
schema definition, click on the blue arrow. A new editor window will appear:

B *impleService wadl [S| #nline Schema of Simplefervice wadl 53

kxsd:element name="concat "
<xsd:complexTypes
<xsd:sequence:
<xzd:element name="in" type="xsd:string”/>
</ xad: sequence>
<jwsd:icomplexTypes
</uadielements>
<xsd:element name="concatResponse™:
<xsd:complexTypex
<xad:sequencex
<xzd:element name="out" type="xad:string™/>
</ ®ad: sequence

To edit it visually, click the Design tab at the bottom, you'll see:

Chapter 2 Implementing a web service 47

Double click on "in" and change it to "s1":

(concatType)
Le] shring

Right click it and choose Insert Element | After and set the name to "s2":

(concatTpe)
sl sting
[e] ¥ shing

By default the type is already set to string. If you wanted it to be, say, an int

instead, you would double click on the type and it would become a combo box
and then you could choose "int":

(concatType)

[] el string
|e] &2 sting o

Browss. ..
New...
bioolean
date

date Time
dowhble
float
hexBinary
int

If you wanted s2 to appear before s1 in the sequence, you could drag it and
drop it before s1:

{romncatType)

[e[2 string
[e]l sl string

But for now, make sure it is s1 first and then s2. Next, right click on the

<concat> element and choose Refactor | Rename, then change its name to
concatRequest:

48 Chapter 2 Implementing a web service

@I‘J {eomncatType)

Zet Twpe 4
et Multiplicity L4

¥ Delete

] Show properties

Feferences L4

You're done with the <concatRequest> element. Now return to the WSDL editor
to work on the response message. For the moment, the <concatResponse> is
like:

68 SimpleService

&8 concat

L] dnpart [parameters | [B] concatRequest

<11 output [parameters [8] concatResponse —

koncatResponse -

s [B] out string

Hpfttde v commdss Open In New Editeg

That is, it is an element that contains a sequence of <out> element:

<foo:concatResponse>
<foo:out>abe</foo:out>
</foo:concatResponse>

However, in your design, the response is simple type element, not a complex
type element:

Chapter 2 Implementing a web service 49

To do that, go into the schema editor to edit the <concatResponse> element:

R

s [B] out string

Right click it and choose Set Type | Browse:

= -
concat] onze Type:
O R T

*

Set Multiplicity

¥ Delete
] ¥how properties
Refactor r

References 4

Choose "string":

Name (7 =any character, * =y sting);

L — |
L You can also type "s" so that only those starting with
"s" will be listed

Tupes

-
|y [P N | Y :
Declaration Location:
Search Scope
() Workspace () Enclosing Project (%) Current Resource
O Working Sets | | [Choose...]

0K | [Camesl |

Then it will be like:

50 Chapter 2 Implementing a web service

That's it. To review the whole schema, click on the icon at the upper left corner:

= Click it to see the whole
schema

Then you'll see:

|5] Schema : http:itidey comds

(2= Directives

(18! Elements

= Types

[e] concatResponse | string

[
8] concatRequest ‘ ‘

This looks fine. Now, save the file.

Validating the WSDL file

The next step is to validate the WSDL file to make sure it conforms to the
various web services standards. To do that, right click the SimpleService.wsdl
file in Eclipse and choose Validate. If there were anything wrong, they would be
reported in the Problems window. For example, here | had introduced an error
into the file:

Chapter 2 Implementing a web service 51

<wsdl:binding name="SimpleServiceSOAP" type="tns:5impleService"=
<spap:binding style="documeht"
transport="http://schemas.xmlsoap.org/soap/http" /=
<wsdl:operation name="concat"=
<spap:operation soapAction="http://ttdev.com/ss/NewOperation"
<wsdl:input>
<spap:body use="literal" />
<fwsdl:1nput=>
<wsdl:output=
<spap:body use="literal" />
</wsdl:output=>
</wsdl:operation=
</wsdl:binding>
<wsdl:service name="SimpleService"=
<wsdl:port binding="tns:SimpleServiceSOAP2" name="pl"=>
=soap:address location="http://localhost:860806/ss/pl" /=
</wsdl:port=
</wsdl:service=>

The binding names no longer
match.

tl

<
Design | Source
|2 Problems 2 @ Javadoc | [&, Declaration| Bl Console

2 errors, 0 warnings, 0 others
Description Resource

v @ Errors (2 items)

@ SimpleServicelmpl cannot be resclved to a type SimpleService_!

(X) The 'p1' port has an invalid binding - 'SimpleServiceSOAP2'. Check tl : Simpl eService.v

Now, correct the error and validate it again. It should pass without any errors.

Generating the service code

As mentioned before, a web service library such as Apache CXF can create a
converter to convert an incoming SOAP message into a Java object to be
passed as a method argument. To generate this code, create a src/main/java
folder and then right click the project root and choose Maven | Update Project
Configuration. This will turn that java folder into a source folder in Eclipse (so
the Java class files in it will be compiled).

Next, in that src/main/java folder, create a Java class as shown below:

52 Chapter 2 Implementing a web service

This class comes with Apache
CXF. It can be used to convert a

WSDL file into Java code.
package com.ttdev; ‘

import org.apache.cxf.tools.wsdlto.WSDLToJava;

public cj[ass CodeGenerator { It can be run as a Java

public| static vgid main (String[] args) { application by a user. Here,
Generate Java code WSDLToJava.main (new String[] { call its main() method from
for the server (e, _-server", YOUF OWN program.
the service). If you "-d", "src/main/java"]
specify -client, it will "src/main/resources/SimpleService.wsdl" });
generate Java code System.out.println("Done!");

for the client. }
}

Tell it to put the files into the src/main/java The most important part: Tell the it
folder. This is a relative path. When this the path to the WSDL file so that it
program is run in Eclipse, the current folder can read that file. Again, this path
will be the project root. So this relative path is a relative path from the project
is correct. root.

Run it as a Java application. If you receive an error such as
java.lang.AbstractMethodError in a class somewhere inside the
org.apache.xerces package, it means that the Xerces library brought in by
Apache CXF is too old for your computer (which has its own . To fix this
problem, add a new Maven dependency:

Group ID xerces
Artifact ID xercesImpl
Version A recent version such as 2.9.1

After running it successfully, right click the project and choose Refresh. You
should see a com.ttdev.ss package has been created and that there are some
files in it:

Chapter 2 Implementing a web service 53

[Package Explorer 2 2 Hierarchy| = O || SimpleSenvice.java &2

=% = package com.ttdev.ss;

v Bl simpleService ®import javax.jws.WebMethod;[]
v E#srcfmainfjava =

.
£
v i com ttdev

 This class was generated by Apat
“ Tue Dec 15 09:43:01 HKT 2009

> [J] CodeGenerator.java Generated source version: 2.2.5

¥ K X ® ¥ %

v i com ttdev.ss

/

» @] ConcatRequest.java

» {J] ObjectFactoryjava # @ebService(targetNamespace = "htty
» &) package-info.java 8 @mlsesplso({objectFactory.class})
P 9 1 & @s0APBinding(parameterStyle = SOAPE
» @) SimpleService_P1_Server.java public interface SimpleService {
SimpleService_Service]
>) SimpleService_Service java a8 = @iebResult(name = "concatRespor
M SimpleService.java & @ebMethod(action = "http://ttc
v (sre/mainjresources public java.lang.String concat!
)) a3 @v\w'ebparam(partName = "parar
2 SimpleService wsd| ConcatRequest parameters

The files are marked as in error because when you updated the project
configuration, the Maven Eclipse plugin set the project to use Java 1.4 which
doesn't support annotations. To fix the problem, modify the pom.xml file as
shown below:

<project ...>
<dependencies>

</dependencies>
<repositories>

</repositories>
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>l.6</source>
<target>1.6</target>
</configuration>
</plugin>
</plugins>
</build>
</project>

This tells Maven to use Java 1.6 (i.e., Java 6) for this project. Then, update the
project configuration again and all the compile errors will be gone except for the
SimpleService P1_Server file, which is a simple class to launch your web
service:

54

Chapter 2 Implementing a web service

package com.ttdev.ss;

import javax.xml.ws.Endpoint;

public class SimpleService Pl Server {

}

This main() method simply launches
the server, waits for 5 minutes and
then terminates the JVM (and thus
ending the HTTP server).

This class is to be implemented by
you. It needs to implement the
concat() method.

protected SimpleService Pl Server() throwg Exception {

}

Sy;tem.gut.println(iStartipg Serverf); The endpoint address
Object implementor = new SimpleServiceImpl (); taken from the WSDL
String address = "http://localhost:8080/ss/pl"; file
Endpoint.publish (address, implementor);

public static void main(String args[]) throws|Exception ({

new SimpleService Pl Server();
System.out.println("Server ready...");
Thread.sleep(5 * 60 * 1000);
System.out.println ("Server exiting");
System.exit (0);

This is the most important part: This method starts an
HTTP server on port 8080 (these pieces of information
will have been extracted from the endpoint address). If
someone sends a request to /ss/p1, it will take it as a
SOAP message, try to convert it to a Java object and
pass it to the concat() method of the SimpleServicelmpl
object.

It is in error because there is no such a SimpleServicelmpl class yet. So, create
this class in the com.ttdev.ss package:

Chapter 2 Implementing a web service 55

The <concatRequest> element will
package com.ttdev.ss; have been converted to an object of
this class.

public class SimpleServicelImpl implements SimpleService ({

@Override
public String concat (ConcatRequest parameters) {
return parameters.getSl() + parameters.getS2();

} Implement this interface. This
Access the <s1> element inside the <concatRequest> interface was generated by
} element.. As it only contains a string in its body, just WSDLToJava and corresponds to
access it as a string. the port type in the WSDL file. It is
.) called the service endpoint
As these annotations are defined under avax, This annotation marks this | interface (SEI).

you can see that they have been standardized. interface as corresponding
The specification is called JAX-WS (Java API to a port type and attaches

for XML-based Web Services). It means the information from the WSDL
code here is not limited to CXF. file (e.g., the target
package |com.ttdev.ss; namespace).

import| javax.jws| WebMethod;
import| javax.jws| WebParam;
import| javax.jws| WebResult;
import| javax.jws| WebService;
import javax.j .
import|javax.xml.bind.annotation.XmlSeeAlso;

@WebService (targetNamespace = "http://ttdev.com/ss", name = "SimpleService")
@XmlSeeAlso({ ObjectFartory.class })

@SOAPBinding (parameterStyle = SOAPBinding.ParameterStyle.BARE)

public interface SimpleService {

Use SOAP as @WebResult (
the message name = "concatResponse",
format. You can c@rgetNamespace = "http: //ttdev.com/ss",
ignore.the partName = "parameters")
parameterStyle @WebMethod (action = "http://ttdev.com/ss/NewOperation™)
uplic java.lang.String concat .
for now. P @We]bParam (i 9 (This parameter corresponds to a message part
o " named "parameters" that is an <concatRequest>
partName = "parameters",
o " element.
name = "concatRequest",
targetNamespace = "http://ttdev.com/ss") ConcatRequest parameters);

This method corresponds to
an operation in the port type.

In fact, you must also mark your implementation class (SimpleServicelmpl) as a
web service and link the SEI (port type) to it:

56 Chapter 2 Implementing a web service

It is implementing this SEI (port type).
Why it doesn't follow the "implements"
. . . keyword to find out SEI? If you don't
This class implements a web service. specify the endpoint interface explicitly,
CXF will assume that take the public
methods defined in this class as the
SEI.

package|com.ttdev.ss;
import javax.jws.WebService;

@WebService (endpointInterface = "com.ttdev.ss.SimpleService")
public class SimpleServiceImpl implements SimpleService {

QOverride
public String concat (ConcatRequest parameters) {
return parameters.getS1l() + parameters.getS2();

}
}

The ConcatRequest class (also generated by WSDLToJava) is shown below.
You can ignore the precise meaning of annotations. Basically they are mapping
the Java elements (class, fields) to XML elements (element, child-elements):

package com.ttdev.ss;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;

@XmlAccessorType (XmlAccessType.FIELD)

@XmlType (name = "", propOrder = { "sl", "s2" })
@XmlRootElement (name = "concatRequest")

public class ConcatRequest {

@XmlElement (required = true)
protected String sl;
@XmlElement (required = true)
protected String s2;

public String getS1() {
return sl;

}

public void setS1(String value) {
this.sl = value;

}

public String getS2() {
return s2;

}

public void setS2(String value) {
this.s2 = value;

}

}

Now, run the SimpleService_P1_Server class as a Java application. You should
see some output in the console and finally a "Server ready" message:

Chapter 2 Implementing a web service 57

[Z¢ problems | @ Javadoc |[&, Declaration | El Console £2

SimpleService_P1_Server [Java Application] jusr/libfjvmjjava-6-sun-1.6.0.1¢€
Dec 15, 2009 10:44:07 AM org.mortbay.log.Slf4jLog info
INFO: Logging to org.slf4j.impl.JDK14lLoggerAdapter(org.mortt
Dec 15, 2009 10:44:07 AM org.mortbay.log.Slf4jLog info
INFO: jetty-6.1.21

Dec 15, 2009 10:44:07 AM org.mortbay.leg.Slf4jLog info
INFO: Started SelectChannelConnector@localhost:2020

Server ready...

To test if it is working, go to a browser and try to access
http://localhost:8080/ss/p1?wsdl (that is, the endpoint address with a query
parameter named "wsdl" appended). Then it should return the WSDL file to the
browser:

@ © Mozilla Firefox

Fle Edit VWiew History Bookmarks Tools Help
@ 5 v e (%] m @) | http:jlocalhost:2080/ss/p 1 7wsdl

(@) http:ylocalhost:8080/ss/p 1 7wsdl +

This ML file does not appear to have any style information associated with it. The document tree is

—<wsdl:definitions name="5impleServicelmplService” targetNamespace="http: //ss. ttdev. com/™ >
<wsdl: import location="http: //localhost: 8080/5s/pl Ywed] =Simpledervice. wadl™ namespace="http: //
— <wsdl:binding name="3impledervicelmplierviceSoapBinding” type="nsl: impledervice” >
<soap: binding style="document” transport="http: //schenss. wnlsoap, org/soap bty />
—<wsdl: operation name="concat”>
<soap: operation soapAction="http://ttdev.com/ss/Mewlperation”™ style="document” />
— <wsdl: input name="concat”»
<soap: body use="literal” />
</wsdl: input)>
— <wsd]: output. name="concatResponse” >
<soap: body use="literal” />
</wsdl: output>
</wsdl: operation>
</wsdl:binding>
— <wsdl: service name="SimpleServicel mplService”™ >
—<wsdl:port binding="tns:SimpleServicelmplServiceSoapBinding” name="3impleServicelmpl Port”™ >
<soap: address location="http: //localhost: 8080/ss/pl" />
</wsdl: port>
</wsdl: service>
</wsdl:definitions>

To end the service, just wait 5 minutes or kill the application in Eclipse by
clicking the red button in the console window.

Creating a client

To call this web service, again you can ask Apache CXF to generate a
converter running on the client side (called a service stub). When you call a
method on the stub, it will convert your Java data/objects into the right format
(XML) and send it to the real web service. When it gets the response, it will
convert it back from XML to Java.

So, copy the SimpleService project and paste it as a new project named

58 Chapter 2 Implementing a web service

SimpleClient. Then modify the CodeGenerator class so that it converts the
WSDL file to Java code for the client, not for the service:

package com.ttdev;
import org.apache.cxf.tools.wsdlto.WSDLToJava;

public class CodeGenerator {
public static void main(String[] args) {
WSDLToJava.main (new String[] {
"-client",
"-d", "src/main/java",
"src/main/resources/SimpleService.wsdl" });
System.out.println("Done!");
}

}
Delete the whole com.ttdev.ss as the client shouldn't have access to the code
implementing the service (which could have been written in, say, C#); all it has
is access to the WSDL file.

Now, run the CodeGenerator class and it should generate some files into the
com.ttdev.ss package (refresh the project to see them). Among them, the
SimpleService_P1_Client class is the client:

package com.ttdev.ss;
public final class SimpleService Pl Client {

private static final QName SERVICE NAME = new QName ("http://ttdev.com/ss",
"SimpleService");

private SimpleService Pl Client() {

}
public static void main(String args[]) throws Exception {

URL wsdlURL = SimpleService_ Service.WSDL_LOCATION;

try

{

if (args.length > 0) {
File wsdlFile = new File(args[0]);

if (wsdlFile.exists())

{

wsdlURL = wsdlFile.toURI () .toURL() ;

} else {
wsdlURL = new URL(args([0]);
}
} catch (MalformedURLException e)
e.printStackTrace () ;

{

This code is to allow you to specify
another WSDL file on the
command line.

You can specify a path to the WSDL
file and the QName of the service (in
case the WSDL file contains multiple
services). You can simply omit these
and use the default.

}

}
SimpleService_Service ss = new SlmpleServ1ce_Serv1ce(%sdlURL, SERVICE_NAME) ;
SimpleService port = ss.getPl();
{ . — Get the p1 port. the service on the client side. This is
System.out.println ("Invoking concat..."); the most important thing.
com.ttdev.ss.ConcatRequest _concat_parameters = null;
java.lang.String _concat return = port.concat(_cgncat parameters);
System.out.println("cpncat.result=" + _concaly_ refjurn) ;

Create the service stub. It is simulating

}
System.exit (0);

} Call the operation:

The resulting XML
element will have
been converted into
a Java string.

You'll need to create
a ConcatRequest
object.

Next, modify the code to create a ConcatRequest object:

public final class SimpleService Pl Client {

Chapter 2 Implementing a web service 59

public static void main(String args[]) throws Exception ({

{
System.out.println("Invoking concat...");
com.ttdev.ss.ConcatRequest concat parameters = new ConcatRequest();
_concat_parameters.setS1("abc") ;
_concat_parameters.setS2("123") ;
java.lang.String _concat__return = port.concat(_concat_parameters);
System.out.println("concat.result=" + concat return);

}

System.exit (0);

}
}

Now, run the service first and then run this client. It should work and print the
following output to the console:

Invoking concat...
concat.result=abcl23

Controlling the package name

You may wonder why WSDLToJava puts the files into the com.ttdev.ss
package. This is because the target namespace of the WSDL file is
http://ttdev.com/ss, it simply reverses the domain name and turn the slash(es)
into dots:

Of course this is just the default. If you'd like to put them into, say, the
com.ttdev.simple package, just invoke the WSDLToJava class like:

package com.ttdev;
import org.apache.cxf.tools.wsdlto.WSDLToJava;

public class CodeGenerator {
public static void main(String[] args) {

WSDLToJava.main (new String[] {
"—-client",
"-d", "src/main/java",
"-p", ﬂhttp://ttdev.com/ss%bom.ttdev.simpler,
"src/main/resourcel/SimpleService.¥sdl™ });

System.out.println ("Done!") ;

}

Map this namespace to this
package.

Then run it again and it will put the files into the com.ttdev.simple package.

Practical significance of the annotations

You've seen the web service related annotations in the SEI:

QWebService (targetNamespace = "http://ttdev.com/ss", name = "SimpleService")
@XmlSeeAlso({ ObjectFactory.class })

@SOAPBinding (parameterStyle = SOAPBinding.ParameterStyle.BARE)

public interface SimpleService {

60 Chapter 2 Implementing a web service

@WebResult (
name = "concatResponse",
targetNamespace = "http://ttdev.com/ss",
partName = "parameters")
@WebMethod (action = "http://ttdev.com/ss/NewOperation™)
public java.lang.String concat(
@WebParam (
partName = "parameters",
name = "concatRequest",
targetNamespace = "http://ttdev.com/ss") ConcatRequest parameters);

}
Do they serve any practical purpose? For example, when an incoming SOAP
message arrives at http://localhost:8080/ss/p1 (see below), CXF will use the
relative path in the HTTP request to find the implementor object. But then which
which method should it call on that implementor object? It will first try to use the
SOAP action HTTP header (only if the HTTP transport is used to send the
SOAP message) and use the value to find a method. In this case, it will find the
concat() so that it can call that method. What if it didn't match? Then it would
use the XML element's QName (concatRequest in the http://ttdev.com/ss
namespace) to find a matching method.

Chapter 2 Implementing a web service 61

SOAP message in an HTTP request

POST /ss/&]
SOAPActidn: http://ttdev.com/ss/NewOperation

4foo:concatRequest xmlns:foo="http://ttdev.com/ss">

<sl>abd</sl>
<s2>123</s2>
</foo:corjcatRequest>

1: Try to match the path.

Yes. found 3: Try to use the soap action
es, found. HTTP header to find a
method. In this case, a
public class SimpleService Pl Server { E:?ghMMIbefoundandbe
protected SimpleService Pl Sexver() ... {

Object implementor = new SimpleServiceImply();
String address = "http://lo¢talhost:8080/ss/pl";
Endpoint.publish (address, implementor);
} f2: So, found this Java
- object. Going to pass to
} this Java object to handle.
4: If the soap action didn't match, it But which method to call?
would use the XML element
QName to find the method.

@WebService (...)
@XmlSeeAlso({ ObjectFactory.class| })

@SOAPBinding (parameterStyle = SOAPBinding.ParameterStyle.BARE)
public interface SimpleService {

@WebResult (
name "concatResponse",
targetNamespace = "http://ttdev.com/ss",
partName = "parameters"
@WebMethod (action = "http://ttdev.com/ss/NewOperation")
public java.lang.String concat (
@WebParam (
partName = "parameters",
name = "concatRequest",
targetNamespace = "http://ttdev.com/ss"
ConcatRequest parameters);

}

To verify this behavior, try renaming both the SOAP action and the XML local
name such as:

@WebService (...)
@XmlSeeAlso({ ObjectFactory.class })

@SOAPBinding (parameterStyle = SOAPBinding.ParameterStyle.BARE)
public interface SimpleService {

@WebResult (
name = "concatResponse",
targetNamespace = "http://ttdev.com/ss",
partName = "parameters")
@WebMethod (action = "http://ttdev.com/ss/bar")
public java.lang.String concat (
@WebParam (
partName = "parameters"
name = "baz",
targetNamespace = "http://ttdev.com/ss")
ConcatRequest parameters);

62 Chapter 2 Implementing a web service

Run the service again. Then run the client and the client will fail as the service
will not recognize the message.

Creating the web service with Apache Axis2

If you'd like to use Apache Axis2 instead of Apache CXF, you can follow this
section.

First, copy the SimpleService and paste it as a new project named
Axis2SimpleService. Then modify the pom.xml file to add the Axis2 dependency
(this is an alternative to using the Add Dependency GUI):

<project ...>

<dependencies>
<dependeney>

Id
Sroupter

LT
+er

-
FEETTa

<fdependeney>

<dependency>
<groupld>xerces</groupId>
<artifactId>xercesImpl</artifactId>
<version>2.9.1</version>

</dependency>

<dependency>
<groupId>org.apache.axis2</groupId>
<artifactId>axis2-codegen</artifactId>
<version>l1.5.1</version>

</dependency>

<dependency>
<groupId>org.apache.axis2</groupIld>
<artifactId>axis2-adb-codegen</artifactId>
<version>l1.5.1</version>

</dependency>

</dependencies>

<reposttories>

<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.6</source>
<target>1l.6</target>
</configuration>
</plugin>
</plugins>
</build>
</project>

Save the file. Then the Maven Eclipse plugin will download the files for Axis2.
After it's done, modify the CodeGenerator class:

Chapter 2 Implementing a web service 63

Put the source files and resource files into these
two folders respectively. What is a resource file?

import org.apache.axis2.wsdl.WSDL2Code; BydehuﬂitwmtwtqcopytheVVSDLﬁbinm
there as a resource file.

package com.ttdev;

public class CodeGenerator {

public static void main(String[] args) |throws Exception {

WSDL2Code.main (new String[] {
"_ss",

Generate code for Map the namespace to the

the server side. ,,_:f,i' t "src/main/java’, package. This is not really
"-R", "src/main/resources/META-INF", needed here as it is the
"-ns2p", "http://ttdev.com/ss:com.ttdev.ss”,dewum
"-uri", "src/main/resources/SimpleService.wsdl" });
System.out.println("Done!");
}
} Tell it the path to the WSDL file

Generate the "service descriptor" file. so thatit can read that file.

This file controls how to deploy your
service.

Delete the com.ttdev.ss package. Then run the CodeGenerator class. Refresh
the project and you should have some files in the com.ttdev.ss package and
some files in the src/main/resources/META-INF folder. In particular, the
services.xml file is the service descriptor. For now, you don't need to modify it
and the default will work just fine.

To implement the web service, modify the SimpleServiceSkeleton class which is
the service skeleton:

package com.ttdev.ss;
public class SimpleServiceSkeleton {

public com.ttdev.ss.ConcatResponse concat (
com.ttdev.ss.ConcatRequest concatRequest) {
String result = concatRequest.getSl() + concatRequest.getS2();
ConcatResponse response = new ConcatResponse() ;
response.setConcatResponse (result) ;
return response;

}

}
To run the web service, you need to run it inside the Axis2 server. To do that, go
to http://ws.apache.org/axis2 to download the Standard Binary Distribution (e.g.
axis2-1.5.1-bin.zip). Unzip it into, say, a folder named axis in your home folder.
To run the Axis server, change into axis/bin and run axis2server.bat. Make sure
the JAVA_HOME environment variable has been set to point to the location of
your JDK/JRE. When it is started, it should print something like the following to
the console:

Using AXIS2_HOME: /home/kent/axis2-1.5.1

Using JAVA HOME: /usr/lib/jvm/java-6-sun-1.6.0.16

[INFO] [SimpleAxisServer] Starting

[INFO] [SimpleAxisServer] Using the Axis2 Repository/home/kent/axis2-
1.5.1/repository

[SimpleAxisServer] Using the Axis2 Repository/home/kent/axis2-1.5.1/repository
[SimpleAxisServer] Using the Axis2 Configuration File/home/kent/axis2-
1.5.1/conf/axis2.xml

[INFO] Clustering has been disabled

[INFO] Deploying module: mtompolicy-1.5.1 - file:/home/kent/axis2-
1.5.1/repository/modules/mtompolicy-1.5.1.mar

64 Chapter 2 Implementing a web service

[INFO] Deploying module: script-1.5.1 - file:/home/kent/axis2-
1.5.1/repository/modules/scripting-1.5.1.mar

[INFO] Deploying module: soapmonitor-1.5.1 - file:/home/kent/axis2-
1.5.1/repository/modules/soapmonitor-1.5.1.mar

[INFO] Deploying module: addressing-1.5.1 - file:/home/kent/axis2-
1.5.1/repository/modules/addressing-1.5.1.mar

[INFO] Deploying module: ping-1.5.1 - file:/home/kent/axis2-
1.5.1/repository/modules/ping-1.5.1.mar

[INFO] Deploying module: metadataExchange-1.5.1 - file:/home/kent/axis2-
1.5.1/repository/modules/mex-1.5.1.mar

[INFO] Deploying module: metadataExchange-1.5.1 - file:/home/kent/axis2-
1.5.1/1lib/mex-1.5.1.jar

[INFO] Deploying Web service: version.aar - file:/home/kent/axis2-
1.5.1/repository/services/version.aar

[INFO] [SimpleAxisServer] Started

[SimpleAxisServer] Started

[INFO] Listening on port 8080

To deploy your web service, right click the project and choose Run As | Maven
package. It will create a file SimpleService-0.0.1-SNAPSHOT .jar in the target
folder in your project. This jar file combines the class files compiled from
src/main/java and the files in src/main/resources (see below).

SimpleService

The jar file

resources

services.xml

SimpleService.wsdl AlngETA—INF

java Copy the L7services.xml
L configuration files.

SimpleService.wsdl

Compile the Java |
files into .class files. ce

To deploy this jar file, copy it into the axis/repository/services folder and rename
rename it to have an .aar extension (aar stands for Axis2 ARchive), such as
SimpleService.aar. Note that this can be done while Axis2 server is still running
(hot deployment). The Axis2 server will pick up your .aar file and deploy it:

[INFO] Deploying Web service: SimpleService.aar - file:/home/kent/axis2-
1.5.1/repository/services/SimpleService.aar

Té 't'est it, open a browser and access http://localhost:8080. You should see:

Chapter 2 Implementing a web service

@ () Axis2: Services - Mozilla Firefox <2> — ~ @

File Edit Wiew History Bookmarks Tools Help
= e [%] @ [@) | httpyflocalhost v |2~

[@) Axis2: Services +
Deployed services
Version
&iailable operations

e ethlersion
SimpleService

&iailable operations

e concat

Done

To see its WSDL file, just click the SimpleService link.

Creating a client using Apache Axis2

65

To create a client using Apache Axis2, copy the Axis2SimpleService project and
paste it as a new project named Axis2SimpleClient. Then add two new

dependencies in pom.xmil:
<project ...>

<dependencies>

<dependency>
<groupld>xerces</groupId>
<artifactId>xercesImpl</artifactId>
<version>2.9.1</version>

</dependency>

<dependency>
<groupld>org.apache.axis2</groupld>
<artifactId>axis2-codegen</artifactId>
<version>1.5.1</version>

</dependency>

<dependency>
<groupIld>org.apache.axis2</groupId>
<artifactId>axis2-adb-codegen</artifactId>
<version>1.5.1</version>

</dependency>

<dependency>
<groupId>org.apache.axis2</groupIld>
<artifactId>axis2-transport-http</artifactId>
<version>l1.5.1</version>

</dependency>

<dependency>
<groupId>org.apache.axis2</groupId>
<artifactId>axis2-transport-local</artifactId>
<version>l1.5.1</version>

</dependency>

</dependencies>

66 Chapter 2 Implementing a web service

</project>
Then modify the CodeGenerator class so that it converts the WSDL file to Java
code for the client, not for the service:

package com.ttdev;
import org.apache.axis2.wsdl.WSDL2Code;

public class CodeGenerator {
public static void main(String[] args) throws Exception ({
WSDL2Code.main (new String[] {
= ss"l
7
"-S", "src/main/java",
"-R", "src/main/resources/META-INE",
"-ns2p", "http://ttdev.com/ss=com.ttdev.ss"
"-uri", "src/main/resources/SimpleService.wsdl" });
System.out.println("Done!");
}

}

Delete the whole com.ttdev.ss and run the CodeGenerator class. It should
generate some files into the com.ttdev.ss package (refresh the project to see
them). Among them, the SimpleServiceStub class is the client stub.

Next, create a SimpleClient.java file in the com.ttdev.ss package:

<wsdl:definitions ...>

<wsdl:service name="SimpleService">
<wsdl:port binding="tns:SimpleServiceSOAP" name="pl">
<soap:address
location="http://localhost:8080/ss/pl" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

package com.ttdev.ss; L
. This is the name of the service as
import com.ttdev.ss.SimpleServiceStub.ConcatRequest; defined in the WSDL file

import com.ttdev.ss.SimpleServiceStub.ConcatResponse;

public class SimpleClient {
public static void main(String[] args) throws RemoteException {
SimpleServiceStub service = new SimpleServiceStub (
"http://localhost:8080/axis2/services/SimpleService");
ConcatRequest request = new ConcatRequest();
request.setSl ("abc");
request.setS2 ("123");
ConcatResponse response = service.concat (request);
System.out.println (response.getConcatResponse()) ;

} Note that this is the endpoint, not
http://localhost:8080/ss/p1. This is
because your service must be run
inside the Axis2 server and it
determines the URL for you.

Run it and it should print "abc123" successfully.

Undeploying a web service from Axis2

If you'd like to undeploy a web service from the Axis2 server, all you need to do

Chapter 2 Implementing a web service 67

is to delete the .aar file. This works even when the Axis2 server is running.

Summary

Most usually your input message or output message is sent in a SOAP
message. A SOAP message is always an <Envelope> element. It may contain a
<Header> which contains one or more header entries/elements. The
<Envelope> must contain a <Body> which may contain one or more body
entries/elements. For a document style web service, the one and only input
message part is usually the single body entry. For a RPC style web service, the
element named after the operation will usually contain all message parts and is
then included as the single body entry.

A web service library such as Apache CXF and Axis2 will convert the XML
elements in a request message into Java data/objects, pass them to your Java
method and convert the Java objects returned back to XML elements and put
them into the response message.

To create a web service with Apache CXF, you first create a WSDL file
describing its interface. This can be done manually or using a tool like Eclipse.
Then run the WSDLToJava class to read the WSDL file to generate the
corresponding Java code. This includes a Java interface representing the port
type (SEIl), a Java class to represent the incoming XML message element, a
Java class to represent the outgoing XML message element (if not a simple
type like a String), a main program to start the service. Then all you need to do
is to create a class to implement that SEI.

The generated Java code, in particular, the SEI contains many standard Java
web service annotations to associate information taken from WSDL to the
various Java elements (class, fields and etc.). This way, the CXF runtime can
find out, say, which method should be called to handle a given SOAP message.

To deploy a web service with CXF, just run the main program. The endpoint is
specified by you (in the WSDL file).

To call a web service, run the WSDLToJava class again to generate a service
stub simulating the web service on the client side. Then, can create an instance
of the service stub and call its methods as if it were the web service. The
service stub will convert the Java data/objects into XML elements, create the
request message in the right format, send it to the right endpoint using the right
transport protocol and convert the XML elements in the response message
back into Java data/objects.

Creating a web service with Axis2 is very similar, except that it doesn't use the
standard web services annotations. Instead, this mapping information is
converted into Java code.

To deploy a web service it with Axis2, package the class files and the
services.xml file into a .aar file and copy it into the services folder in Axis2
server. To undeploy a web service, just delete that .aar file. The Axis2 server

68 Chapter 2 Implementing a web service

supports hot deployment. It means you can deploy or undeploy a service while it
is running. The endpoint of the deployed web service is
http://localhost:8080/axis2/services/<name-of-your-service>.

69

Viewing the SOAP
messages

70 Chapter 3 Viewing the SOAP messages

What's in this chapter?

In this chapter you'll learn how to capture and view the SOAP messages sent
between the client and the web service.

Seeing the SOAP messages

To see the SOAP messages, you'll use a program called "TCP Monitor". It
works like this (see the diagram below). You tell the client to treat the TCP
Monitor as the destination. Then when the client needs to send the request
message, it will send it to the TCP Monitor. Then TCP Monitor will print it to the
console and then forward it to the real destination (the web service). When the
web service returns a response message, it will return it to the TCP Monitor. It

will print it to the console and then forward it to the client:
2

6: This is the response message d 4: This s the response message
(' TCP Monitor

1: This is the request message - 3: This is the request message
2: Printitto | | 5: Printitto
the console the console
m1 | m2 |

To implement this idea, go to http://ws.apache.org/commons/tcpmon to
download the binary distribution of TCP Monitor. Suppose that it is tcpmon-1.0-
bin.zip. Unzip it into a folder, say, tcpmon. Then change into the tcpmon/build
folder and run tcpmon.bat:

Client

C:~>cd tcpmonsbuild

C:~tcpmonsbuild>tcpmon . bat

Note that directly running tcpmon/build/tcpmon.bat will NOT work; it requires the
current folder to be tcpmon/build. Next, you'll see a window. Enter the data as
shown below:

Chapter 3 Viewing the SOAP messages 71

EIBX

Adinin | Sender

Create a new TCPMon...
Listen Port #| 1234 | —— Enter a port that is currently
unused

Actaza..
() Listenex
Target Hostname | 127.0.0.1 |
TargetPort# | | 8080 — Forward whatever it receives to

O Proxy 127.0.0.1 at port 8080 (i.e., the
web service)

O phions
[HTTP Prowy Support
Hostame

Port #

[Stmulate ¥low Connection
Burtes per Pans
Dielazr i b illisecond:

Add

Click Add. This will open a new tab (shown below). Then it will listen on port
1234. Check the XML Format option. This way it will format the content of the
TCP connection (an HTTP request containing a SOAP request, but it doesn't

know that) nicely as XML:

72

Chapter 3 Viewing the SOAP messages

TCPHon
Admin || Sender| Fort 1234 |

Stop | Listen Port: | 234 | Hn:nst:| 127001

| Port:| 080 | Proney

Time Fequest ..

Target Host Eequest..

Elapsed T...

Remove Selected Remove A1

Waiting for Connection.

Save Rewnd

Jwitch Lagont

Cloza

For the client, you need to tell it to use localhost:1234 as the endpoint. For
example, modify the SimpleService_P1_Client class as shown below:

public final class SimpleService Pl Client ({

The port object is mainly a proxy for the
service at that port (endpoint and
binding). Therefore, it contains
information about the binding and is
called a binding provider in this context..

public static void main(String args[]) throws Exception {

}

SimpleService Service ss = new SimpleService Service(...);

SimpleService port = ss.getPl();

BindingProvider bp = (BindingProvider) port;
Map<String, Object> context = bp.getRequestContext() ;
context.put (BindingProvider.ENDPOINT ADDRESS_PROPERTY,

"http://localhost:1234/ss/pl") ;
{

System.out.println ("Invoking concat...")|;

}

System.exit (0); address.

The binding provider allows you
to customize some options
regarding the binding
(formating and transport) by
setting some properties in the
"request context".

Here, you set the endpoint

Run the client and you will see the messages in TCP Monitor:

Chapter 3 Viewing the SOAP messages 73

(2] © TcPMon ®e ®
Admin | Sender Port 1234
Listen Port: 123< Host: 127.0.0.1 Port: 8080 []Proxy

State Time Fequest Host Target Host Fequest. .. Elapsed Time
--- |Most Recent -—= -—- -—= -—-

Done |2009-12-17... [localhost 127.0.0.1 FOST /ss/pl HTTP/L.1 ... [331

| Remove Selected | | Remove All

FOST /ss/pLHTTP/L.1 a

Content-Type: text/xml; charset=UTF-8
SOAPACtion: "hitp: fftidev.com/ss /MewOperation”
Accept: T

User-Agent: Apache CxXF 2.2.5

Cache-Control: no-cache]|

Pragma: no-cache

Host: 127.0.0.1:1234

Connection: keep-alive \Request message \
Content-Length: 204

<soap:Envelope xmins: soap="http://schemas.xmlsoap.org/soap/envelope />
<soap:Body>
<hs2:concatRequest xmins:ns2 ="http: //ttdev.com /55" >
<sl=abc</sl>
<s2>123</s2>
< /ns2.concatRequest =
< fsoap:Body> < /soapEnvelope >

[«

[T I [»

HTTR/1.1 200 0K

Content-Type: text/xml; charset=utf-8
Content-Length: 188 Response message |

Server: Jettys. 1.21)

[»

<soap:Envelope xmins:soap="http://schemas.xmlsoap. org/soap/envelope /" =
<soap:Body>
<ns2:concatResponse xmins:ns2 ="http: / fttdev.com/ss"=abcl23 < /ns2:concatResponse >
< /soap:Body= < /soap:Envelope =

-

q] Il [[*]

XMLFurmat| Save || Resend || Switch Layout |

Similarly, for Axis2, you can modify the SimpleClient class to specify the
endpoint address:

public class SimpleClient ({
public static void main(String[] args) throws RemoteException {
SimpleServiceStub service = new SimpleServiceStub (
"http://localhost:1234/axis2/services/SimpleService") ;
ConcatRequest request = new ConcatRequest();
request.setSl ("abc") ;
request.setS2("123");
ConcatResponse response = service.concat (request) ;
System.out.println(response.getConcatResponse());

74 Chapter 3 Viewing the SOAP messages

Summary

To check the SOAP messages, you can use the TCP Monitor and modify the
client to use a different endpoint address.

To change the endpoint address (part of the binding information), you first
obtain the port (a proxy) which is a binding provider. Then configure the request
context in it by setting a endpoint address property.

In Axis2, just specify the endpoint address when creating the service stub.

75

Ghapter 4

Accepting multiple
parameters

76 Chapter 4 Accepting multiple parameters

What's in this chapter?

In this chapter you'll learn how to accept multiple parameters in your
implementation class.

Splitting the XML element into multiple parameters

For the moment, for the concat operation, the incoming <concatRequest> is
converted into a single Java object (ConcatRequest) as pass to the method as
the single argument (see below). But wouldn't it be nicer if each child element
such as <s1> and <s2> is individually converted into Java objects to be passed
as individual arguments? This would make it a little bit easier to write the
concat() method as you wouldn't need to call getS1() and getS2() anymore:

SOAP message

<foo:concatRequest xmlns:foo="http://ttdev.com/ss">
<sl>abc</sl>
<s2>123</s2>

i</ foo:concatRequest>

The whole XML element
is converted into a single
Java object.

ConcatResponse concat (ConcatRequest r) {
}

Each child element is

SOAP message converted into a Java
<foo:concatRequest xmlns:foo="http://ttdev.com/ss"> object.

<sl>abc</sl> ‘
<52>123<Zs2>

</foo:concatRequest>

String concat (String sl, String s2) {
}
To tell Apache CXF to do that, you need to make two changes to the WSDL file:

Chapter 4 Accepting multiple parameters 77

<?xml version="1.0" encoding="UTF-8"7?>

<wsdl:definitions ...> The element must be a sequence,
<wsdl:types> which is indeed the case here.
<xsd:schema ...>

<xsd:element name="eereatReegmrest concat">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="sl" type='xsd:string" />
<xsd:element name="s2" type='xsd:string" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="concatResponse" fype="xsd:string" />
</xsd:schema>
</wsdl:types>
<wsdl:message name="concatRequest">
<wsdl:part name="parameters" element="fns:eeneatReguest concat" />
</wsdl:message>
<wsdl:message name="concatResponse">
<wsdl:part name="parameters" element="tns:concatResponse" /
</wsdl:message>
<wsdl:portType name="SimpleService">
<wsdl:operation name="concat™

<wsdl:input message="tns:concatRequest" /> Make sure the element
<wsdl:output message="tns:concatResponse" /> name of that single part in
</wsdl:operation> the input message is the
</wsdl:portType> same as that of the
operation.

</wsdl:definitions>

Similarly, for the output message, you hope to have Apache CXF wrap the
return value as a child element:

SOAP message

<foo:concatResponse xmlns:foo="http://ttdev.com/ss">

<r>abcl23</r>

</foo:cophcatResponse>

The return value is
converted into a child
element.

String concat (String sl, String s2) {
}

To do that, in the WSDL file, the element name of the output message must be
the name of the operation with the word "Response" appended and it must be a
sequence (containing a single child element):

78 Chapter 4 Accepting multiple parameters

<?xml version="1.0" encoding="UTF-8"7?>
<wsdl:definitions ...>
<wsdl:types>
<xsd:schema ...>
<xsd:element name="concat">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="sl" type="xsd:string" />
<xsd:element name="s2" type="xsd:string" />

</xsd:sequence> It must not be a simple type
</xsd:complexType> such as string. It must be a
</xsd:element> sequence
<xsd:element name="concatResponse" type=lxsdrstring® >
<xsd:complexType> The sequence must
<xsd:sequence> contain a single element.
<xsd:element name="r" type="xsd:string" /> —— The element name (<r>
</xsd:sequence> here) is unimportant.
< /:s@isedl'emr:,péeﬂype> The element name must be
</xsd:schema> "concat" + "Response”, which
</wsdl:types> happens to be the case
<wsdl:message name="concatReguest"> already.

<wsdl:part name="parametens" element="tns:concat"| />
</wsdl:message>
<wsdl:message name="concatRegponse">
<wsdl:part name="parameters" element="tns:concatResponse" />
</wsdl:message>
<wsdl:portType name="SimpleService">
<wsdl:operation name="concat">
<wsdl:input message="tns:concatRequest" />
<wsdl:output message="tns:concatResponse" />
</wsdl:operation>
</wsdl:portType>

</wsdl:definitions>

This style of parameter handling is called wrapped style or wrapper style. In
contrast, passing the whole XML element as the single parameter is called the
bare style.

Note that this service described by this WSDL file is still a 100% document style
service. The clients can still call it the same way (except that <concatRequest>
is changed to <concat>). The difference is how the Apache CXF runtime calls
your implementation and how it handles your return value. There is no
difference seen by the client.

To implement this idea, modify the SimpleService.wsdl file (in the
src/main/resources folder):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://ttdev.com/ss" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" name="WrappedService"
targetNamespace="http://ttdev.com/ss">
<wsdl:types>
<xsd:schema targetNamespace="http://ttdev.com/ss">
<xsd:element name="concat">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="sl" type="xsd:string" />
<xsd:element name="s2" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>

Chapter 4 Accepting multiple parameters

</xsd:element>
<xsd:element name="concatResponse'">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="r" type="xsd:string">
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</wsdl:types>
<wsdl:message name="concatRequest">
<wsdl:part element="tns:concat" name="parameters" />
</wsdl:message>
<wsdl:message name="concatResponse">
<wsdl:part element="tns:concatResponse" name="parameters" />
</wsdl :message>
<wsdl:portType name="WrappedService">
<wsdl:operation name="concat">
<wsdl:input message="tns:concatRequest" />
<wsdl:output message="tns:concatResponse" />
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="WrappedServiceSOAP" type="tns:WrappedService'">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="concat">
<soap:operation soapAction="http://ttdev.com/ss/NewOperation" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="WrappedService">
<wsdl:port binding="tns:WrappedServiceSOAP" name="pl">
<soap:address location="http://localhost:8080/ss/pl" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

79

Delete the whole com.ttdev.ss package and then run the CodeGenerator

program again. Note the SEI generated (the WrappedService interface):

To implement the service, create a WrappedServicelmpl class:

80 Chapter 4 Accepting multiple parameters

@WebService (targetNamespace = "http://ttdev.com/ss", name = "WrappedService")
@XmlSeeAlso({ ObjectFactory.class })
public interface WrappedService {

@WebResult (name = "r", targetNamespace = "")

@Requestiirapper (| lttells CXF that when a <concat>
localName = "concat", element is received, unwrap it to get its
targetNamespace = "http://ttdev.com/ss", child elements and pass them to this
className = "com.ttdev.ss.Concat") method as individual arguments.

— @ResponseWrapper (
localName = "concatResponse",
targetNamespace = "http://ttdev.com/ss",
className = "com.ttdev.ss.ConcatResponse")

@WebMethod (action = "http://ttdev.com/ss/NewOperation™)

public java.lang.String concat (

@WebParam (name = "sl1l", targetNamespace = "") |java.lang.String|sl,
@WebParam (name = "s2", targetNamespace = "") |java.lang.String|s2);
}
Similar to request handling, it tells Now the arguments are
the CXF runtime to wrap the return Strings, not a complex
value into a <concatResponse> data structure.
element.

@WebService (endpointInterface="com.ttdev.ss.WrappedService")
public class WrappedServiceImpl implements WrappedService {

@Override
public String concat (String sl, String s2) {
return sl + s2;
}
}

To create a client, copy the SimpleClient project and paste it as WrappedClient.
Copy the SimpleService.wsdl from the WrappedService project into the
WrappedClient project (in the src/main/resources folder). Delete the whole
com.ttdev.ss package and then run the CodeGenerator program again. Modify
the client code in WrappedService_P1_Client:

public final class WrappedService Pl Client {
public static void main(String args[]) throws Exception {

WrappedService Service ss = new WrappedService Service (wsdlURL,
SERVICE_NAME) ; N
WrappedService port = ss.getPl();
{
System.out.println("Invoking concat...");
java.lang.String concat sl = "abe";
java.lang.String _concat_s2 = "123";
java.lang.String concat return = port.concat(_concat sl,
_concat_s2);
System.out.println("concat.result=" + concat return);
}
System.exit (0);
}

}
Note that the concat() method in the service stub is now accepting two Strings,
not a complex data structure.

Finally, run the service and then run the client. The client should print the
"abc123" successfully.

Chapter 4 Accepting multiple parameters 81

Using the wrapped style in Axis2

To do it in Axis2, copy the Axis2SimpleService and paste it as
Axis2WrappedService, copy the Axis2SimpleClient and paste it as
Axis2WrappedClient. Copy the SimpleService.wsdl file from the
WrappedService project into both of these two new projects.

Next, modify the CodeGenerator class in the Axis2WrappedService project to
enable unwrapping:

public static void main (String[] args) throws Exception {
WSDL2Code.main (new String[] {

"-S", "src/main/java",

"-R", "src/main/resources/META-INE"

"-ns2p", "http://ttdev.com/ss=com.ttdev.ss"

"-uri", "src/main/resources/SimpleService.wsdl" });
System.out.println("Done!");

}

}
Do the same thing in the Axis2WrappedClient project:

public class CodeGenerator ({
public static void main(String[] args) throws Exception ({
WSDL2Code.main (new String[] {
"aw",
"-S", "src/main/java",
"-R", "src/main/resources/META-INF"
"-ns2p", "http://ttdev.com/ss=com.ttdev.ss"
"-uri", "src/main/resources/SimpleService.wsdl" });
System.out.println("Done!");
}
}

Delete the com.ttdev.ss package and the src/main/resources/META-INF folder
in both projects. Then run CodeGenerator in both projects. Fill in the code in the
SimpleServiceSkeleton class:

public class SimpleServiceSkeleton {

public java.lang.String concat(java.lang.String sl, java.lang.String s2) {
return sl + s2;

}

}
Note that the concat() method is now taking two Strings and returning a String.
Run the project as Maven package. It will still create a SimpleService-0.0.1-
SNAPSHOT jar file in the target folder because the pom.xml file still uses
SimpleService as the artifact ID:
<project ...>
<modelVersion>4.0.0</modelVersion>
<groupld>SimpleService</groupIld>
<artifactId>SimpleService</artifactId>
<version>0.0.1-SNAPSHOT</version>
</§£éject>
Copy it into the Axis2 server (in the axis2/repository/services folder) as
WrappedService.aar.

Then, in the client project, create a WrappedClient class:

82 Chapter 4 Accepting multiple parameters

public class WrappedClient {
public static void main(String[] args) throws RemoteException ({
WrappedServiceStub service = new WrappedServiceStub (
"http://localhost:8080/axis2/services/WrappedService") ;
System.out.println(service.concat ("abc", "123"));

}

}
Run it and it should print "abc123" successfully.

Interoperability

The wrapped style is a good idea. It is the only kind of web service supported by
the .NET framework. Obviously CXF and Axis2 have also implemented this
style. The good news is, from the viewpoint of the caller, it is just a
document+literal style service. So if the caller doesn't understand the wrapped
convention, it can still access it as a regular document style service.

Summary

The wrapped parameter style means that the web service runtime should
extract the child XML elements in the input message and pass them as
individual arguments to your method. It does the opposite when it receives the
return value: wrap it as a child XML element in the output message.

To allow the wrapped style, the XML element in the input message should be a
sequence and should have the same name as the operation. For the XML
element in the output message, it should be a sequence (containing one
element only) and should have the same name as the operation with the word
"Response" appended.

The code generation tool in CXF will recognize this pattern automatically and
uses the wrapped style. To enable the wrapped style in Axis2, you need to
specify an option to the code generation tool.

The clients understanding the wrapped style can also call the service using
multiple parameters. For those not understanding it, they can still call it as a
regular document style service.

To ensure interoperability with .NET, you should use the wrapped style.

83

Sending and receiving
complex data structures

84 Chapter 5 Sending and receiving complex data structures

What's in this chapter?

In this chapter you'll learn how to send and receive complex data structures to
and from a web service.

Product query

Suppose that your company would like to use web service to let your customers
query the product availability and place orders with you. For this you need to
discuss with them to decide on the interface. It doesn't make sense to say that
"When doing query, please send me an object of such a Java class. In this
class there are this and that fields..." because perhaps the people involved
aren't programmers or don't use Java. Instead, XML is what is designed for this.
It is platform neutral and programming language neutral. So, suppose that you
all agree on the following schema:
Use the XML schema namespace as the default

namespace. It defines elements such as .
<element>, <complexType> needed for you to Put your elements and types into

define new elements. this namespace
<?xml version="1.0"?> A <productQuery> contains one
<schema or more <queryltem> elements.
xmlns="http://www.w3.0rg/2001/XMLSchema" Here is an example:

<element name="productQuery">— Define an element <productQuery>
<complexType>
<sequence>
<element name="queryItem"| minOccurs="1" maxOccurs="unbounded"
<complexType>
<attribute name="productId" type="string"/>‘
<attribute name="gty" type="int"/>
</complexType>
</element>
</sequence>
</complexType>
</element> A <queryltem> must
</schema> appear at least once (1).
There is no upper limit of
its occurrence.

targetNamespace="http://foo.com"

>

The string type and int type are defined in the
XML schema. They are usually shown as
xsd:string and xsd:int, but the XML schema
namespace here is the default namespace, so
no prefix is needed.

A <productQuery> has
two attributes named
"productld" and "qty"
respectively.

<?xml version="1.0"?>
<foo:productQuery xmlns:fog="http://foo.com">
<queryItem [productId="p01" gty="100'1/>
<queryItem productId="p02" gty="200"/>
<queryItem productId="p03" gty="500"/>
</foo:productQuery>

That is, when they need to find out the availability of some products, they will
send you a <productQuery> element. For example if they'd like to check if you

Chapter 5 Sending and receiving complex data structures 85

have 100 pieces of p01, 200 pieces of p02 and 500 pieces of p03, they may
send you a request like this:

<foo:productQuery
xmlns: foo="http://foo.com">
<queryItem productId="pO0l" qgty="100"/>
<queryItem productId="p02" qty="200"/>
<queryItem productId="p03" gty="500"/>
</foo:productQuery>

Your web
service

- Client

How does your web service reply? Use an XML element of course. So, in the
schema you may have:

<?xml version="1.0"?>

<schema
xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://foo.com">
<element name="productQuery">

</element>

<element name="productQueryResult"> For each <queryltem>, if the product is
<complexType> available, create a <resultltem> telling
<sequence> the unit price.
<element name="resultItem" minOccurs="1" maxOccurs="unbounded">
<complexType>
<attribute name="productId" type="string"/>
<attribute name="price" type="int"/>
</complexType>
</element>
</sequence>
</complexType>
</element>
</schema>

So, for the sample query above, if you have over 100 pieces of p01 and 500
pieces of p03 but only 150 pieces of p02, and you're willing to sell p01 at 5
dollars each and p03 at 8 dollars each, you may reply:

foo:productQueryResult
xmlns: foo="http://foo.com">
<resultItem productId="pOl" price="5"/>
<resultItem productId="p03" price="8"/>

/foo:productQueryResult>
7 Nourweb

service

> Client

To implement this idea, create a new project named BizService as usual (You
may copy an old one). Delete the existing WSDL file and create a
BizService.wsdl file (use Eclipse or manually):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://foo.com" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" name="BizService"
targetNamespace="http://foo.com">
<wsdl:types>

86 Chapter 5 Sending and receiving complex data structures

<xsd:schema targetNamespace="http://foo.com">
<xsd:element name="productQuery" type="tns:productQueryComplexType">
</xsd:element>
<xsd:element name="productQueryResult">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="resultItem" maxOccurs="unbounded" minOccurs="1">
<xsd:complexType>
<xsd:attribute name="productId" type="xsd:string" />
<xsd:attribute name="price" type="xsd:int" />
</x%sd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:complexType name="productQueryComplexType">
<xsd:sequence>
<xsd:element name="queryItem" maxOccurs="unbounded" minOccurs="1">
<xsd:complexType>
<xsd:attribute name="productId" type="xsd:string"/>
<xsd:attribute name="qgty" type="xsd:int"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>
</wsdl:types>
<wsdl:message name="queryRequest">
<wsdl:part element="tns:productQuery" name="parameters" />
</wsdl:message>
<wsdl:message name="queryResponse">
<wsdl:part element="tns:productQueryResult" name="parameters" />
</wsdl:message>
<wsdl:portType name="BizService">
<wsdl:operation name="query">
<wsdl:input message="tns:queryRequest" />
<wsdl:output message="tns:queryResponse" />
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="BizServiceSOAP" type="tns:BizService">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="query">
<soap:operation soapAction="http://foo.com/BizService/NewOperation" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="BizService">
<wsdl:port binding="tns:BizServiceSOAP" name="BizServiceSOAP">
<soap:address location="http://localhost:8080/bs/pl" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

If you edit it visually, here are the key steps: First, rename the operation to
"query". The input element is automatically renamed to <query>. Double click on
the arrow to right of the <query> element in order to edit it. Then right click on it
and choose Refactor | Rename:

Rename it to "productQuery":

Her
[T

Chapter 5 Sending and receiving complex data structures 87

|
el que igueryType)
E‘ Set Type 3 .

Setbultiplicity ~ » | (€1 sting

¥ Delete

=] Bhaw properties

Refactor Fename...

References L

_B

Note that the name of its type will be changed from (queryType) to
(productQueryType) automatically.

[e] productQuery

(productQueryType)

[elin string

Also note the meaning of the parentheses: (fooType) means that it is the
anonymous type for the <foo> element:

<xsd:element name="foo">
<Kxsd:complexType>

</xsd:complexType>
</xsd:element>

This is the anonymous
type named (foo).

It is possible to name this type explicity. For example, right click
(productQueryType) and choose Refactor | Make Anonymous Type Global:

88 Chapter 5 Sending and receiving complex data structures

(x| EproductQUerj-" [Add Element

s [€lin strin ¢l Add Element Ref
7&| Add Any

Add Attribute

& Add Attribute Ref

& Add Attribute Group Ref
5 Add Any Attribute

== Add Sequence
£= Add Choice
=2 Add All

¥ Delete

=1 Show properties

Refactor >
References >

Make Anonymous Type Global
Input Methods >

Then it will be given a name (by default, productQueryComplexType) and the
XML schema will become:

<xsd:schema targetNamespace="http://foo.com">
<xsd:element name="productQuery"
type="tns : productQueryComplexType" Let the element refers
</xsd:element> to the type.
<xsd:complexType name='"productQueryComplexType'">

</xsd:complexType> ‘
</xsd:schema> The type now has a

name and is an
independent entity.

Anyway, now, Rename the "in" element to "queryltem":

[e] productQuery productQueryComplexType

[e] queryltem string

For the moment the <queryltem> element is a string. Right click on it and
choose Set Type | New:

Chapter 5 Sending and receiving complex data structures 89

[e] productQuery productQueryComplexType

== [e] queryltem _strina
——[e] Add Element

Set Type > New...
Set Multiplicity > Browse...
W Delete

=] show properties

Refactor >
References >
Input Methods >

Choose to create an anonymous local complex type:

& New Type El

(#) Complex Twpe
() Simple Twpe

V] eate as local anorymous type:

Maime: |

[ox || camca |

It will be like:

[e] productQuery productQueryComplexType

[e] queryltem (queryltemType)

You need to edit it next

Next, you'd like to edit the (queryltemType). But clicking on it will NOT allow you
to edit it. Instead, it will only let you choose another type for <queryltem>:

90 Chapter 5 Sending and receiving complex data structures

[e] productQuery productQueryComplexType

[e] queryltem [EIEg0L: nel(iR%

~

New...
boolean
date
dateTime
double
float
hexBinary
int

string

time

queryltemType

This is because Eclipse will not allow you to directly edit something too deep.
Instead, it requires you to drill down by one level. So, double click on
productQueryComplexType (Note: NOT (queryltemType)) to drill down. You'l
see that the (queryitemType) is available for editing:

productQueryComplexType (queryltemType)

[e] queryitem (queryitemType) ‘

Now it is available for editing.

Right click on (queryltemType) and choose Add Attribute:

| iqueryltemType) !

£33 Element
£33 Element Ref
Add Attribte

Add Attribute Ref
Add Attribute Group Ref
Add Ly Athibute

Rename the attribute to "productld”. The type is by default string which is what
you want:

(uertem Type)
productld sting

Similarly, add another attribute "qty" and set its type to int:

Chapter 5 Sending and receiving complex data structures 91

{gmeryltemType)
productld string
aty int

To tell that there can be 1 to many <queryltem> elements, right click the
<queryltem> element and choose Set Multiplicity | 1..* (One or More):

productQueryComplexType | / (queryltemType)

It . o roductld strin
M [] Add Element P E

|

t int
Set Type > aty
Set Multiplicity » 1..1 (Required)
Delete 0..1 (Optional)

0.* (Zero or more)

] Show properties
= e 1.*(0One or more)

Refactor >
References >
Input Methads >

You'll see:

[E] productQueryComplexType / [E] (queryltemType)
[e] queryltem (queryltemType) @ productld string

qty int

Now, it is done. To return to one level up, click the left arrow icon as if it were a
browser:

Go back one screen as if you were

in a browser
- B= A - *{:3| o ||100% v | @
—|Back to Inline Schema of BizService wsdl (Alt+Left)
slecClient java [J] WrappedClient java P BizService wsd ST TAnme Sch

productQueryComplexType (queryltemType)
[e] queryltem (queryltemType) productld string
qty int

Similarly, create the <productQueryResult> element. As usual, validate it when
you're done.

Next, modify the CodeGenerator class:

92 Chapter 5 Sending and receiving complex data structures

public class CodeGenerator {
public static void main(String[] args) {
WSDLToJava.main (new String[] {
"-server"
"-p", "http://foo.com=com.ttdev.biz",
"-d", "src/main/java",
"src/main/resources/BizService.wsdl" });
System.out.println("Done!");
}
}
Delete the whole com.ttdev.ss (if any). Run the CodeGenerator class. Note that

top level XML types have been converted to Java classes. If the XML type is
named such as productQueryComplexType, the name will be used as the Java
class name. If an XML type is anonymous such as (productQueryResult), the
element name will be used as the Java class name:

public interface BizService {

public ProductQueryResult query (ProductQueryComplexType parameters) ;
}
XML types have been
mapped to Java
classes.

<xsd:schema ...>
<xsd:element name="productQuery" type="tns:productQueryComplexType">

</xsd:element>
<xsd:element name="productQueryResult">

</xsd:element>
<xsd:complexType name="productQueryComplexType">

</xsd:complexType>
</xsd:schema>

If you inspect the ProductQueryComplexType class, you'll note the mapping is
like this:

Chapter 5 Sending and receiving complex data structures 93

protected Ljst<ProductQueryComplexType.Qu

@XmlAccessorType (XmlAccessType.FIELD)

Each element in a
<sequence> is
mapped to a field in
the class. If that
element can occur
multiple times (i.e.,
maxOccurs > 1), the
type of the field will
be a List.

@XmlAccessorType (XmlAccessType.FIELD)
@XmlType (name = "productQueryComplexType",
public class ProductQueryComplexType {

@XmlElement (required = true)

@XmlType (name = "")

public static class Queryltem f——

@XmlAttribute

protected String productId;
@XmlAttribute

protected Integer gty;

ropOrder = { "queryItem" })

eryItem> querylItem;

The field name is the
element name.

Use the element name
as the Java class name.

<xsd:schema ...>

<xsd:complexType name="produg¢tQueryCo

<xsd:sequence>

Attributes are also
mapped to fields, just like
elements in a sequence.

A named XML type is
mapped to a Java
class.

plexType">

maxOccurs="unbounded"
minOccurs="1">

An anonymous XML type is
mapped to a Java inner
class.

<xsd:element name="queryItem"

<xsd:complexType>

Exsd:attribute name="productId" type="xsd:string" />’47

xsd:attribute name="qgty" type="xsd:int" />

</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Similarly, inspect the ProductQueryResult class to see how a top level

anonymous XML type is mapped to a Java class:

94 Chapter 5 Sending and receiving complex data structures

@XmlAccessorType (XmlAccessType.FIELD)

@XmlType (name = "", propOrder = { "resultItem" }) The anonymous XML type of a top
—@XmlRootElement (name = "productQueryResult") level (root) XML element is
—public class ProductQueryResult { mapped to a Java class. The class

- name is the element name.
@XmlElement (required = true)

protected List<ProductQueryResult.ResultItem> resultItem;

@XmlAccessorType (XmlAccessType.FIELD)
@XmlType (name = "")
public static class ResultItem {

@XmlAttribute
protected String productId;
@XmlAttribute
protected Integer pricge;

}

The anonymous XML type is ég:g:;eenac%i(?lsegggéie%?o .

mapped to an inner class. The field. As maxOccurs is > 1, the

class name is the element t ’ f the field is a List ’

name. ype of the field is a List.
<xsd:schema ...>

<xsd:element name="prodyctQueryResult">
<xsd:complexType>
<xsd:sequence>
xsd:element name="resultItem" maxOccurs="unbounded"
minOccurs="1">
<xsd:complexType>
<xsd:attribute name="productId" type="xsd:string" />
<xsd:attribute name="price" type="xsd:int" />
</xsd:complexType>
/xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

This way of mapping between XML and Java and the annotations like
@XmIType or @XmlElement are standardized in the Java Architecture for XML
Binding (JAXB).

To implement the service, create a BizServicelmpl class:

Chapter 5 Sending and receiving complex data structures 95

package com.ttdev.biz;

Even though it says
getQueryltem(), actually it is a
List due to the maxOccurs.

import com.ttdev.biz.ProductQueryComplexType.Queryltem;
import com.ttdev.biz.ProductQueryResult.ResultItem;

@WebService (endpointInterface = "com.ttdev.biz.BizService")
public class BizServiceImpl implements BizService ({

@Override
public ProductQueryResult query(ProductQueryComplexType parameters) {
ProductQueryResult result = new ProductQugryResult();
List<QueryItem> queryltem = parameters.getQueryltem() ;
for (QuerylItem item : queryItem)—f LOOPtthQheaCh
if (item.getQty() <= 200) { query item. Assume
ResultItem resultItem = new ResultItem(); it's available if gty is

resultItem.setProductId(item.getProductId()); <=200.
resultItem.setPrice (20);
result.getResultItem() .add(resultItem);
} Assume the unit price is
} always 20.
return result; Add the result item to the
} query result.

}

Create a project for the client and name it BizClient. Fill in the code in the
BizService_BizServiceSOAP_Client class:

public final class BizService_BizServiceSOAP_Client {
public static void main (String args[]) throws Exception ({

BizService_Service ss = new BizService_Service (wsdlURL, SERVICE_NAME) ;
BizService port = ss.getBizServiceSOAP();
{
System.out.println("Invoking query...");
com. ttdev.biz.ProductQueryComplexType _query parameters =
new ProductQueryComplexType () ;
QueryItem item = new QueryItem() ;
item.setProductId("p01") ;
item.setQty (100) ;
_query parameters.getQueryItem().add(item);
item = new QueryItem();
item.setProductId("p02") ;
item.setQty (200) ;
_query parameters.getQueryItem().add(item);
item = new QueryItem();
item.setProductId("p03") ;
item.setQty (500) ;
_query parameters.getQueryItem().add(item);
com. ttdev.biz.ProductQueryResult _query return = port
.query (_query parameters) ;
for (ResultlItem resultlItem : _query return.getResultItem()) {
System.out.println(resultItem.getProductId() + ": "
+ resultItem.getPrice());
}
}
System.exit (0) ;
}

}
Run the service and then the client. The client should print the result as shown
below:

Invoking query...

96 Chapter 5 Sending and receiving complex data structures

p0l: 20
p02: 20

Sending more data in a message

By the way, this query operation demonstrates a good practice in web services:
You generally hope to send more data in a message. For example, you may be
sending many query items in a single response message. This is more efficient
than sending a single query item object in a message. This is because there is
a certain overhead involved in sending a message, even if it contains no data:

M. M, MM
ge 1 ge 2 ge 3
| I | I | |

@ 9 @ Qo @ 9
] =] = 9] =
< = < = £ >
[} [[[o [}
> p=} > p=} > =]
o g o g o g

A single message
|

Overhead

Query item
Query item
Query item

Returning faults

Suppose that a client is calling your query operation but a product id is invalid
(not just out of stock, but absolutely unknown) or the quantity is zero or
negative. You may want to throw an exception. To return an exception to the
client, you send a "fault message", which is very much like an output message.
To do that, modify the WSDL file:

Chapter 5 Sending and receiving complex data structures 97

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wsdl:definitions ...>
<wsdl:types>
<xsd:schema ...>

<xsd:element name="invalidProductId" type="xsd:string" />
<xsd:element name="invalidQty"i type="xsd:int " />
</xsd:schema>
</wsdl:types>
<wsdl:message name="queryRequest'">
<wsdl:part element="tns:productQuery" name="parameters"
</wsdl:message>
<wsdl:message name="queryResponse'">
<wsdl:part element="tns:productQueryResult" name="parameters" />
</wsdl:message>
<wsdl:message name="queryInvalidProductId">
<wsdl:part name="parameters"| element="tns:invalidProductId" />
</wsdl:message>
<wsdl:message name="queryInvalidQty">
<wsdl:part name="parameters'"| element="tns:invalidQty" />
</wsdl:message>

The one and only
/> part is a well defined
XML element in the
schema.

<wsdl:portType name="BizService"> A fault message is like an
<wsdl:operation name="query"> output message, but it
<wsdl:input message="tns:queryRequest" /> indicates an error.

<wsdl:output message="tns:queryResponse" />
<wsdl:fault message="tns:queryInvalidProductId" />
<wsdl:fault name="£02"| message="tns:queryInvalidQty" />
</wsdl:operation>
</wsdl:portType>

. Unlike an input or output message which doesn't need
</wsdl:definitions> @ name, afault needs a unique name because there
can be multiple fault messages (here you have two).
Later you'll refer to a fault using its name.

How to include the fault message in a SOAP message? It is included in the
SOAP body, but not directly:

98 Chapter 5 Sending and receiving complex data structures

<wsdl:definitions ...>

<wsdl:portType name="BizService">
<wsdl:operation name="query">
<wsdl:input message="tns:queryRequest" />
<wsdl:output message="tns:queryResponse" />
<wsdl:fault name="f01l" message="tns:queryInvalidProductId" />
<wsdl:fault name="f{2" message="tns:queryInvalidQty" />
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="BizServiceSOAP" type="tns:BizService">
<soap:binding style="document"
transport="http://s¢hemas.xmlsoap.org/soap/http" />
<wsdl:operation name="|query">
<soap:operation soapAction="http://foo.com/BizService/NewOperation" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input> How to store this fault
<wsdl:output> message in a binding?
<soap:body use="literal" />
</wsdl:output>
. —n "
<wsdl:fault name="fO1"> = o InSOAP, include the fault
<soap:fault name="£01" use="literal" /> K
message into SOAP <Body> |
</wsdl:fault> <Fault> | <detail>:
<wsdl:fault name="£02">
<soap:fault name="£02" use="literal" />
</wsdl: fault>
</wsdl:operation> The message part is
</wsdl:binding> ... already in XML.
</wsdl:definitions>

Ksoap-env:Envelope
xmlns:soap-env="http://http://schemas.xmlsoap.org/soap/lenvelope/">
<soap-env:Header>

</soap-env:Header>
<soap-env:Body>
<soap-env:Fault>
<soap-env:faultcode>...</soap-env:faultcode>
<soap-env:faultstring>...</soap-env:faultstring>
<soap-env:detail>
<foo:invalidProductId xmlns:foo="http://foo.com">
pl000
</foo:invalidProductId>
</soap-env:detail>
</soap-env:Fault>
</soap-env:Body>
Ksoap-env:Envelope>

The SOAP <Fault> element tells the caller that something is wrong. The
<faultcode> is a QName acting as an error code. The <faultstring> is an error
message for human reading. The <detail> will contain any information that both
sides agree on. In this case, it contains your fault message part.

To make the above changes to the WSDL file visually, right click the query
operation and choose Add Fault:

Chapter 5 Sending and receiving complex data structures

9 BizService

& query
L[] tnput
Movtput | [3¢ Delete

] Show properties

48 Add Operation
= 2dd Fault

Eefartor

Eeferences

JueryFemlt

99

Right click the fault message and choose Show properties. Then in the

Properties window, set its name to fO1:

& Console |[Z) Problems | @ Javadoe | [, Declaration | 457 Search | =] Properties £

[g fault
General Wame: | 01
Documentation Mesmge: |query_faultMsg

Brdancimme

Choose to create a new message:

sblems | @ Javadoo | [, Declaration | 7 Search | 5

quervEesponse
guery faulthds,

Enter the name for the message:

& New Messzage

Mame: |qusr}rInvaJidPdeucﬂd

Lok JI

Cancel]

Set the one and only part to a new XML element <invalidProductld>. By default
it should be of type xsd:string which is what you want here. Create the second
fault similarly. Set the message name to querylnvalidQty, set the XML element

to <invalidQty> whose type is xsd:int. Finally it should be like:

100 Chapter 5 Sending and receiving complex data structures

&9 BizService
g query
[input parameters | [€] productQuery
<11 output parameters (8] productuervFesult
it parameters [e] tnvalidProductld
p 02 parameters (8] tnvalidCrtyr

You've done with the port type. Next, create the binding for the two faults.
Choose the binding and click Generate Binding Content in the Properties
window:

Choose it. It represents

the binding
[3 BizService
i queny
[fnput parameters | [€] productQueny
<11 output parameters (8] productueryResult
miol parameters (8] invalid Productld
o {02 paraimeters (8] tnvalid CQrty
Design | Bource

El Console |[21 Problems | @ Javadoc | [£) Declaration | <" Search | =] Properties 2

[J] binding
General Wamme: BizBervicel0OAP
Documentation PortType: Bizlervice
EEEE Protocol: SOAP
Generate Binding Content. .
Click here

Check Overwrite existing binding information and then click Finish:

Chapter 5 Sending and receiving complex data structures

& Binding Wizard

Specify Binding Details
Specity the details of the binding that will be created

Wame |BizBerviceSOAP

Part Tvpe |1ns:ElizSewi|:e

Protocol: |SOAP

[W]Eiverwrite exizting bind ing information:

S0OLP Binding Options
() document literal

() rpe literal

(O rpe encoded

@ [Fmish [Comcel

This will generate the binding portion:

<wsdl:binding name="BizServiceSOAP" type="tns:BizService">

<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="query">
<soap:operation soapAction="http://foo.com/query" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
<wsdl:fault name="£01">
<soap:fault use="literal" name="£f01" />
</wsdl:fault>
<wsdl:fault name="£02">
<soap:fault use="literal" name="£02" />
</wsdl:fault>
</wsdl:operation>

</wsdl:binding>
Finally go into the schema index to delete the unused elements created by
Eclipse:

101

102 Chapter 5 Sending and receiving complex data structures

(12 Elements

8] tnvalid Productld : string

8] tvalid Oty - ant

8] productuery

[&] productOueryResult

[8] query fanlt They were created

[E] query faultl — when you added the
faults

Similarly, choose Window | Show View | Outline to show the outline of the
WSDL file as shown below. Right click and delete the unused messages such
as query_faultMsg and query_faultMsg1:

5% Qutling 53 =8
=

”)

== Imports

(5] Types

[Services

(_ Bindings

[#3 Port Type

(=] Messages

H-[] queryRequest
[queryRespons
= Y
[queryTnyvalid Productld
[query_faultbdzgl

B queryTnvalid Gty

+- - -

+ -

Now, copy the WSDL file to the BizClient project. Then generate the service and
client code again. The concat() in the SEI will be declared as throwing two types
of exceptions:

@WebService (targetNamespace = "http://foo.com", name = "BizService")
@XmlSeeAlso({ ObjectFactory.class })

@SOAPBinding (parameterStyle = SOAPBinding.ParameterStyle.BARE)
public interface BizService {

@WebResult (...)

@WebMethod (action = "http://foo.com/query")

public ProductQueryResult query(
@WebParam(...) ProductQueryComplexType parameters)
throws QueryInvalidQty, QueryInvalidProductId;

}
Take the QuerylnvalidProductld exception class as an example, it is defined as:

Chapter 5 Sending and receiving complex data structures 103

@WebFault (name = "invalidProductId", targetNamespace = "http://foo.com")
publig class QueryInvalidProductId extends Exception {

private java.lang.Stying invalidProductId;
The one and only part of the fault message (an XML
} element) is mapped to a field. If it was a complex XML type,
A fault message is mapped the field type would be a Java class. But here it is a single
to a Java exception class. string type, so it is mapped to the String class.

<wsdl:types>
<xsd:schema>

<xsd:element name="invalidProductId" type="xsd:string" />
<xsd:element name="invalidQty" type="xsd:int" |/>
</xsd:schema>
</wsdl:types>
<wsdl:message name="queryInvalidProductId">
<wsdl:part name="parameters" element="tns:invalildProductId" />
</wsdl:message>
<wsdl:portType name="BizService">
<wsdl:operation name="query'">
<wsdl:input message="tns:queryRequest" />
<wsdl:output message="tns:queryResponse" />
<wsdl:fault name="f01" message="tns:queryInvalidProductId" />
<wsdl:fault name="f02" message="tns:querylnvalidQty" />
</wsdl:operation>
</wsdl:portType>

Now modify your implementation code:

@WebService (endpointInterface = "com.ttdev.biz.BizService")
public class BizServiceImpl implements BizService {

@Override
public ProductQueryResult query (ProductQueryComplexType parameters)
throws QueryInvalidQty, QueryInvalidProductId ({
ProductQueryResult result = new ProductQueryResult();
List<QueryItem> queryltem = parameters.getQueryltem();
for (QueryItem item : queryItem) {
if ('item.getProductId().startsWith("p")) {
throw new QueryInvalidProductId("invalid product ID",
item.getProductId()) ;
}
if (item.getQty() <= 0) {
throw new QueryInvalidQty("invalid qty", item.getQty());
}
if (item.getQty() <= 200) {
ResultlItem resultlItem = new ResultItem();
resultItem.setProductId(item.getProductId());
resultItem.setPrice (20);
result.getResultItem() .add(resultItem);
}
}
return result;
}
}

To see if it's working, modify the BizService_BizServiceSOAP_Client class:

104 Chapter 5 Sending and receiving complex data structures

public final class BizService BizServiceSOAP Client {
public static void main(String args[]) throws Exception {

BizService Service ss = new BizService Service(wsdlURL, SERVICE NAME) ;

BizService port = ss.getBizServiceSOAP();

{

System.out.println("Invoking query...");
try {
com.ttdev.biz.ProductQueryComplexType _query parameters =
new ProductQueryComplexType () ;
QueryItem item = new QueryItem();
item.setProductId("p01l");
item.setQty(100) ;
_query parameters.getQueryltem().add(item);
item = new QueryItem();
item.setProductId("p02");
item.setQty (-200) ;
_query parameters.getQueryItem() .add (item);
item = new QueryItem();
item.setProductId("p03");
item.setQty (500) ;
_query parameters.getQueryItem().add(item) ;
com.ttdev.biz.ProductQueryResult query return = port
.query(_query_parameters);
for (ResultItem resultItem : _gquery return.getResultItem()) {
System.out.println(resultItem.getProductId() +

+ resultTtem.getPrice()); This is the Java object representing

the XML element. In this case, it is

) just an int (the quantity).

} catch (QueryInvalidQty e) {

System.out.println("Invalid qgty: " + e.getFaultInfo());
} catch (QueryInvalidProductId e) {
System.out.println("Invalid product ID: " + e.getFaultInfo());

}

! . This is the Java object representing
System.exit (0); the XML element. In this case, it is
} just a String (the product ID).

}
By the way, you should have noted that the BizService BizServiceSOAP_Client
class has been overwritten when you ran the WSDLToJava program again. It
means that in practice you shouldn't modify this class. Create your own client
class instead.

Now, start the service and then run the client. It should print the following error
message in the console:

Invoking query...
Invalid gty: -200

If you'd like, you can see the messages in TCP Monitor:

Chapter 5 Sending and receiving complex data structures 105

<?¥ml wersion='1l.0' encoding='UTF-5' 72>
<goapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.orgi/soap/envelopes/ ">
<soapenyv: Body>
<soapenviFaults
<faultcodersoapenv: Server</faultocoder
<faultstringrQueryInvalidoty</faultstrings
<detzails
<ngl:invalidoty xmlns:nsl="htop://foo.com">-200</nel invalidocy>
</ details
</soapenviFault:
</ soapenv:Body>
</soapenv:Envelopes

Referring to existing XML elements

For the moment you're defining XML elements such as <productQuery> directly
in the WSDL file. However, in practice, most likely such elements are defined by
a 3" party such as an industrial consortium or neutral association. Suppose that
they are provided in a file purchasing.xsd such as this:

106 Chapter 5 Sending and receiving complex data structures

The default namespace is the XML
The root element is schema namespace, so you don't
<schema>. need to use the xsd prefix below.

<2xml |version="1.0" encoding=/"UTF-8"2> As they are defined by a 3" party, it
<schema xmlns="http://www.w3.0rg/2001/XMLSchema" ShOMdusea(nqemn“a@et X
targetNamespace="http://bar.org/purchasing" namespace. Let's assume that it is
xmlns:tns="http://bar.org/purchasing" http://bar.com/purchasing
elementFormDefault="qualified">
<xsd:element name="productQuery" type="tns:productQueryComplexType" />
<xsd:element name="productQueryResult">

<xsd:complexType>

<xsd:sequence>
<xsd:element name="resultItem" maxOccurs="unbounded"

minOccurs="1"> Everything else
<xsd:complexType> remains
<xsd:attribute name="productId" type="xsd:string" /> unchanged.

<xsd:attribute name="price" type="xsd:int" />
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:complexType name="productQueryComplexType">
<xsd:sequence>
<xsd:element name="queryItem" maxOccurs="unbounded"
minOccurs="1">
<xsd:complexType>
<xsd:attribute name="productId" type="xsd:string" />
<xsd:attribute name="qty" type="xsd:int" />
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
<xsd:element name="invalidProductId" type="xsd:string" />
<xsd:element name="invalidQty" type="xsd:int" />
</schema>

How to refer to those XML elements in your WSDL file? First, put the
purchasing.xsd file into the same folder as the WSDL file (i.e.,
src/main/resources). Then modify the WSDL file:

Chapter 5 Sending and receiving complex data structures 107

The default namespace is the XML
The root element is schema namespace, so you don't
<schema>. need to use the xsd prefix below.

<?xml|version="1.0" encoding=/"UTF-8"?> AStheyaredeﬁned by a 3” party, it
<schema xmlns="http://www.w3.0rg/2001/XMLSchema" Shomdusea(ﬂﬁaentmrgm -
targetNamespace="http://bar.org/purchasing" namespace.Letsassqmethaht@
xmlns:tns="http://bar.org/purchasing" http://bar.com/purchasing
elementFormDefault="qualified">
<element name="productQuery" type="tns:productQueryComplexType" />
<element name="productQueryResult">
<complexType>
<sequence>
<element name="resultItem" maxOccurs="unbounded"
minOccurs="1"> __Everything else
<complexType> remains
<attribute name="productId" type="string" /> unchanged
<attribute name="price" type="int" />
</complexType>
</element>
</sequence>
</complexType>
</element>
<complexType name="productQueryComplexType">
<sequence>
<element name="queryItem" maxOccurs="unbounded"
minOccurs="1">
<complexType>
<attribute name="productId" type="string" />
<attribute name="gty" type="int" />
</complexType>
</element>
</sequence>
</complexType>
<element name="invalidProductId" type="string" />
<element name="invalidQty" type="int" />
</schema>

Modify the CodeGenerator class to specify a Java package for the
http://bar.org/purchasing namespace (not strictly required. Do it only if you don't
want the default):
public class CodeGenerator ({
public static void main(String[] args) {
WSDLToJava.main (new String[] {
"-server"
"-p", "http://foo.com=com.ttdev.biz",
"-p", "http://bar.org/purchasing=com.ttdev.biz.purchasing",
"-d", "src/main/java",
"src/main/resources/BizService.wsdl" });
System.out.println("Done!");
}

}
Delete all the files in the com.ttdev.biz package except BizServicelmpl.
Generate the code again. Then BizServicelmpl will be in error. This is because
the classes representing the XML types and elements (e.g.,
ProductQueryComplexType) are now in the com.ttdev.biz.purchasing package.
Just delete the import statements and import the classes again (e.g., by typing
Ctrl-Shift-O in Eclipse). Then the errors will be gone.

108 Chapter 5 Sending and receiving complex data structures

Copy the WSDL and XSD files to the BizClient project. Modify the
CodeGenerator class to specify the package mapping. Delete the generated file
and generate the code again. Run the BizClient and it should continue to work.

Doing it in Axis2

To do it in Axis2, copy the Axis2SimpleService and paste it as Axis2BizService,
copy the Axis2SimpleClient and paste it as Axis2BizClient. Copy the WSDL file
and XSD file from the BizService project into both of these two new projects
(and delete the existing WSDL files).

Next, modify the CodeGenerator class in the Axis2BizService project as shown
below. Note that the two package mappings are separated by a comma:

public class CodeGenerator {
public static void main(String[] args) throws Exception ({
WSDL2Code.main (new String[] {
n_ss",

"-sd",
"-S", "src/main/java",
"-R", "src/main/resources/META-INE"
"-ns2p",
"http://foo.com=com.ttdev.biz, http://bar.org/purchasing=com. ttdev.biz.purchasing",
"-uri", "src/main/resources/BizService.wsdl" });

System.out.println("Done!");

}

}
Do the same thing in the Axis2BizClient project:

public class CodeGenerator {
public static void main (String[] args) throws Exception {
WSDL2Code.main (new Stringl[] {
"-S", "src/main/java",
"-R", "src/main/resources/META-INEF"
"-ns2p",
"http://foo.com=com.ttdev.biz, http://bar.org/purchasing=com.ttdev.biz.purchasing",
"-uri", "src/main/resources/BizService.wsdl" });
System.out.println("Done!");
}

}

Delete the com.ttdev.ss package and the src/main/resources/META-INF folder
in both projects. Then run CodeGenerator in both projects. Fill in the code in the
BizServiceSkeleton class:

public class BizServiceSkeleton {
public com.ttdev.biz.purchasing.ProductQueryResult query(
com.ttdev.biz.purchasing.ProductQuery productQuery)
throws QueryInvalidQty, QueryInvalidProductId {
ProductQueryResult result = new ProductQueryResult() ;
QueryItem typeO[] queryItem = productQuery.getProductQuery ()
.getQueryItem() ;
for (QueryItem type0 item : queryItem) {
if ('item.getProductId().startsWith("p")) {
InvalidProductId faultMsg = new InvalidProductId() ;
faultMsg.setInvalidProductId (item.getProductId()) ;
QueryInvalidProductId e = new QueryInvalidProductId();
e.setFaultMessage (faultMsg) ;
throw e;
}
if (item.getQty() <= 0) {
InvalidQty faultMsg = new InvalidQty();

Chapter 5 Sending and receiving complex data structures 109

faultMsg.setInvalidQty (item.getQty()) ;
QueryInvalidQty e = new QueryInvalidQty (),
e.setFaultMessage (faultMsg) ;
throw e;
}
if (item.getQty () <= 200) {
ResultItem type0 resultItem = new ResultItem typeO();
resultItem.setProductId(item.getProductId()) ;
resultItem.setPrice(20) ;
result.addResultItem(resultItem) ;
}
}
return result;
}
}

The mapping from XML to Java as done in Axis2 is very similar to the standard
JAXB. The major difference is non-top-level anonymous XML types are mapped
to top level Java classes. In order to avoid name clashes, the WSDL2Code
program appends a suffix like _type0 to the Java class names.

Modify the pom.xml file to use a new artifact ID:

<project ...>
<modelVersion>4.0.0</modelVersion>
<groupId>com. ttdev</groupld>
<artifactId>BizService</artifactId>
<version>0.0.1-SNAPSHOT</version>

</§£éject>
Run as Maven package and copy the jar file into the Axis2 server (in the
axis2/repository/services folder) as BizService.aar.

Then, in the client project, create a BizClient class:

public class BizClient {
public static void main(String[] args) throws RemoteException ({
BizServiceStub service = new BizServiceStub (
"http://localhost:8080/axis2/services/BizService") ;
try f
ProductQuery _query parameters = new ProductQuery();
_query parameters.setProductQuery (new ProductQueryComplexType()) ;
QueryItem type0 item = new QueryItem typeO();
item.setProductId("p01l");
item.setQty (100) ;
_query parameters.getProductQuery().addQueryItem(item);
item = new QueryItem typeO();
item.setProductId("p02");
item.setQty (-200);
_query parameters.getProductQuery().addQueryItem(item);
item = new QueryItem typeO();
item.setProductId("p03");
item.setQty (500) ;
_query parameters.getProductQuery().addQueryItem(item);
ProductQueryResult query return = service
.query(_query parameters);
for (Resultltem typeO resultItem : query return.getResultItem()) {
System.out.println(resultItem.getProductId() + ": "
+ resultItem.getPrice());
}
} catch (QueryInvalidQty e) {
System.out.println("Invalid gty: "
+ e.getFaultMessage () .getInvalidQty());
} catch (QueryInvalidProductId e) {
System.out.println("Invalid product ID: "
+ e.getFaultMessage () .getInvalidProductId());

110 Chapter 5 Sending and receiving complex data structures

}
}
}

Run it and it should print "Invalid gty: -200" successfully.

Summary

You can freely use XML schema elements and XML types to express complex
data structures. The code generator will translate them into Java types.

For better performance, you should design the interfaces of your web service
operations so that more data is sent in a message.

To report an error from your operation, define a message in the WSDL file and
use it as a fault message in the operation. Then add a corresponding child
element in the SOAP binding to store it into the SOAP Fault element. The fault
message should contain one and only one part which is an XML element
describing the fault. The code generator will map a fault message to a Java
exception class and the part as a field. The operation will be mapped to a Java
method throwing that exception.

If you have existing XML elements in an XSD file that you'd like to use in a
WSDL file, you can use <import> to import them. You can specify the relative
path to the XSD file so that the WSDL parser can find it.

111

Sending binary files

112 Chapter 6 Sending binary files

What's in this chapter?

In this chapter you'll learn how to receive and return binary files in your web
service.

Providing the image of a product

Suppose that you'd like to have a web service to allow people to upload the
image (jpeg) of a product (identified by a product id). The SOAP message may
be like below. But how to represent the binary image data? The problem is that
SOAP uses XML and XML uses text to represent the data:

<Envelope>
<Body>
<uploadImage>
<productId>p0l</productId>

</uploadImage>
</Body>

</Envelope> How to send the binary image

data?

One way to do it is to encode the binary data into a text format. For example,
one could encode byte 0 as character 'A', encode byte 1 as character 'B' and
etc. One of such an encoding is the base64 encoding. Then the SOAP
message will be like:
<Envelope>
<Body>
<uploadImage>
<productId>p0l</productId>

</uploadImage>
</Body>
</Envelope>

The problem is that the base64 encoded data will be much larger than the
binary version. This wastes processing time, network bandwidth and
transmission time. In fact, if the image is huge, then many XML parsers may not
be able to handle it properly. To solve this problem, instead of always
representing an XML document as text, people state that it can be represented
as a MIME message. For example, the above XML document (SOAP envelope)
can be represented as below without changing its meaning:

Chapter 6 Sending binary files 113

This is a MIME message. It can contain
multiple parts. Here it contains 2 parts.
This MIME message represents the XML
document (the SOAP envelope).

Content-Type: Multipart/Related

--MIME boundary

Content-Type: text/xml

<Envelope>
<Body> This is the xop namespace.
<uploadImage> xop stands for XML-binary
<productId>p01</productId> optimized packaging.

</uploadImage> Refer to the actgal
</Body> data by content id.
</Envelope>

A part that contains

--MIME boundary

Content-Type: image/jpeq|

Content-ID: abc +-——— . . .
Binary data is allowed in a

...binary data here. .’.7MIME part.

--MIME boundary

the "core" of the XML
document as text.

A part that contains
binary data (the
image).

The key is that now the XML document (represented as a MIME message) can
have textual parts and binary parts. Therefore it can represent binary data

efficiently.

To implement this idea, create a new project named ImageService as usual.

Rename the WSDL file as ImageService.wsdl and modify it as:

114 Chapter 6 Sending binary files

Use a urn as the target namespace.

<?xml version="1.0" encoding="UTF-8"?2>
<wsdl:definitions xmlns:wsdl="http://schemas.xmlspap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/sogp/"
xmlns:tns="urn:ttdev.com:service/img"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" name="ImageService"
targetNamespace="urn:ttdev.com:service/img">
<wsdl:types>
<xsd:schema targetNamespace="urn:ttdev.com:service/img"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="uploadImage">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="productId" type="xsd:string" />
<xsd:element name="image" type="xsd:baseG4Binary" />
</xsd:sequence>

</xsd:complexType> It will contain binary data. It is basically to
</xsd:element> be encoded using base64. Later you will
</xsd:schema> tell the code generator to use XOP for it.

</wsdl:types>
<wsdl:message name="uploadImageRequest">
<wsdl:part name="parameters" element="tns:uploadImage" />
</wsdl:message>
<wsdl:portType name="ImageService"> The operation doesn't return anything,
<wsdl:operation name="uploadImage"> so there is no output message.
<wsdl:input message="tns:uploadImageRequest" />
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="ImageServiceSOAP" type="tns:ImageService">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="uploadImage">
<soap:operation soapAction="urn:ttdev.com:service/img/uploadImage" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="ImageService">
<wsdl:port binding="tns:ImageServiceSOAP" name="pl">
<soap:address location="http://localhost:8080/is/pl" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Although this is not required, it uses the wrapped convention. Next, update the
CodeGenerator class:

public class CodeGenerator {
public static void main(String[] args) {
WSDLToJava.main (new String[] {
"-server",
"-d", "src/main/java",
"src/main/resources/ImageService.wsdl" });
System.out.println("Done!");
}

}
Generate the code again. Check the SEI:

@WebService (targetNamespace = "urn:ttdev.com:service/img", name = "ImageService")
@XmlSeeAlso({ ObjectFactory.class })
public interface ImageService {

Chapter 6 Sending binary files 115

@Oneway
@RequestWrapper (
localName = "uploadImage",
targetNamespace = "urn:ttdev.com:service/img",
className = "com.ttdev.service.img.UploadImage")
@WebMethod (action = "urn:ttdev.com:service/img/uploadImage")
public void uploadImage (
@WebParam (
name = "productId",
targetNamespace = "") java.lang.String productId,
@WebParam (
name = "image",
targetNamespace = "") byte[] image) ;

}
Note that the binary image data is presented as a byte array. You are NOT
using XOP yet. You're just getting the service up and running. Create a
ImageServicelmpl class:

package com.ttdev.service.img;

@WebService (endpointInterface = "com.ttdev.service.img.ImageService")
public class ImageServiceImpl implements ImageService {

@Override
public void uploadImage (String productId, byte[] image) {
try {
FileOutputStream out = new FileOutputStream (productId+".jpg");
out.write (image) ;
out.close();
} catch (IOException e) {
throw new RuntimeException (e);
}
}
}

It simply saves the image data into a p01.jpg file if the product is p01. Next,
create an ImageClient product as usual. Copy any .jpg file in your computer into
the src/main/resources folder as sample.jpg. Then modify the
ImageService_P1_Client class:

public final class ImageService Pl Client {
public static void main(String args([]) throws Exception {

ImageService_ Service ss = new ImageService_ Service (wsdlURL, SERVICE_NAME) ;
ImageService port = ss.getPl();
{

System.out.println("Invoking uploadImage...");

java.lang.String _uploadImage productId = "p0l1";

FileInputStream in = new FileInputStream (

"src/main/resources/sample. jpg") ;
ByteArrayOutputStream out = new ByteArrayOutputStream() ;
byte[] buf = new byte[1024];

for (;;) {
int noBytesRead = in.read(buf);
if (noBytesRead == -1) {
break;

}
out.write(buf, 0, noBytesRead) ;

}
port.uploadImage (_uploadImage productId, out.toByteArray());
out.close() ;
in.close();
}
System.exit (0) ;
}

116 Chapter 6 Sending binary files

}
Run the service and then run the client. Refresh the ImageService project and

you should see a p01.jpg file there. Open it with a browser to verify that it is a
copy of your sample.jpg.

To verify that it is NOT using XOP, use the TCP Monitor and adjust the client:

public final class ImageService_ Pl Client {
public static void main (String args[]) throws Exception {

ImageService_Service ss = new ImageService_Service (wsdlURL, SERVICE_NAME) ;
ImageService port = ss.getPl();
{
BindingProvider bp = (BindingProvider) port;
bp.getRequestContext () .put(
BindingProvider.ENDPOINT_ ADDRESS PROPERTY,
"http://localhost:1234/is/pl") ;
System.out.println("Invoking uploadImage...");
java.lang.String _uploadImage_productId = "p0l";
FileInputStream in = new FileInputStream(
"src/main/resources/sample.jpg") ;
ByteArrayOutputStream out = new ByteArrayOutputStream();

port.uploadImage (_uploadImage_ productId, out.toByteArray()):
out.close();
in.close();
}
System.exit (0) ;
}
}

The message captured should be like below. That is, a lot of binary data
encoded as base64:

POST /is/pl HTTP/1.1

Content-Type: text/xml; charset=UTF-8

SOAPAction: "urn:ttdev.com:service/img/uploadImage"
Accept: */*

User-Agent: Apache CXF 2.2.5

Cache-Control: no-cache

Pragma: no-cache

Host: 127.0.0.1:1234

Connection: keep-alive

Transfer-Encoding: chunked

f£f9
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ns2:uploadImage xmlns:ns2="urn:ttdev.com:service/img">
<productId>p0l1</productId>

</ns2:uploadImage>
</soap:Body></soap:Envelope>0

To enable the use of XOP, modify the WSDL file in the client project:

Chapter 6 Sending binary files 117

<?xml version="1.0" encoding="UTF-8"?2>
<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="urn:ttdev.com:service/img"
xmlns:xmime="http://www.w3.0rg/2005/05/xmlmime"
xmlns:xsdF"http://www.w3.0rg/2001/XMLSchema" name="ImageService"
targetNamespace="urn:ttdev.com:service/img">
<wsdl:types>
<xsd:schema targetNamespace="urn:ttdev.com:service/img"
xmlng:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsdtielement name="uploadImage'">
<xsd:complexType>
. <xsd:sequence>
Th|§ XML MIME,nameSpace <xsd:element name="productId" type="xsd:string" />
deﬂnesXhALgﬂnbme§used <xsd:element name="image" type="xsd:base64Binary"
for representing XML in a xmime : expectedContentTypes="application/octet-stream"/>
MIME message. </xsd:sequence>

</xsd:complexType>

</xsd:element> It states that this element should be sent
</xsd:schema> as a MIME part those content type is
</wsdl:types> application/octet-stream which means a
Ce. generic (no particular meaning) byte
</wsdl:definitions> stream.

Generate the code again. Then data type of the binary data will be changed
from byte[] to DataHandler:

@WebService (targetNamespace = "urn:ttdev.com:service/img", name = "ImageService")
@XmlSeeAlso({ ObjectFactory.class })
public interface ImageService {

@Oneway
@RequestWrapper (...)
@WebMethod (action = "urn:ttdev.com:service/img/uploadImage")
public void uploadImage (
@WebParam(...) java.lang.String productId,
@WebParam(...) javax.activation.DataHandler image) ;

}
How's a DataHandler differ from a byte array? A DataHandler can provide an
InputStream on demand, which means that the program doesn't need to load all
the data into memory. In addition, a DataHandler can tell you the content type of
the data.

As the SEI has changed, you need to modify the ImageService_P1_Client class
to pass a DataHandler:

118 Chapter 6 Sending binary files

public static void main(String args[]) throws Exception {

ImageService Service ss = new ImageService Service (wsdlURL, SERVICE NAME) ;
ImageService port = ss.getPl();

{ s . L) Create a DataSource from this file. A
BindingProvider bp = (BindingProvider) port; DataSource can also provide an InputStream
bp.getRequestContext () .put (and a content type (here it will guess from the

BindingProvider.ENDPOINT_ADDRESS_PROPERTY, fig extension jpg to conclude that the
"http://localhost:1234/is/pl"); content type is image/jpeg).

System.out.println("Invoking uploadImage...");
java.lang.String _uploadImage_ productId = "pOl"; ‘
FileDataSource ds = new FileDataSource ("src/main/resources/sample.jpg");
port.uploadImage (_uploadImage_productId, new DataHandler(df));
}
System.exit (0); Let the DataHandler get the data from this DataSource. In
} addition to providing the data and the content type, a
DataHandler can also suggest a list of actions that can be
performed on that data (something like when you right click
on a file and you'll see a list of menu commands).

However, this is not enough. You need to enable this special packaging in the
client:

import javax.xml.ws.Binding;
import javax.xml.ws.soap.SOAPBinding;

public static void main(String args[]) throws Exception {

ImageService_Service ss = new ImageService_ Service (wsdlURL, SERVICE NAME) ;

ImageService port = ss.getPl();

{

BindingProvider bp = (BindingProvider) port; Get the binding from the binding provider

bp.getRequestContext () .put ((the port). Cast it to a SOAP binding as
BindingProvider.ENDPOINT ADDRESS_ PROPERTY, you're using SOAP.
"http://localhost:1234/is/pl");

Binding binding = bp.getBinding() ;

SOAPBinding soapBinding = (SOAPBinding) binding;

soapBinding.setMTOMEnabled (true) ;

System.out.println|("Invoking uploadImage...");
java.lang.String pploadImage productId = "pOl";
FileDataSource ds new FileDataSource ("src/main/resources/sample.jpg");

port.uploadImage (_uploadImage_productld, new DataHandler (ds));
}
System.exit (0);
} Enable MTOM which stands for Message
Transmission Optimization Mechanism.
It simply means sending a SOAP
message using XOP.

Run the client again. In the TCP Monitor, you should see:

Chapter 6 Sending binary files 119

POST /is/pl HTTP/1.1

Content-Type: multipart/related; type="application/xop+xml";
boundary="uuid:9223456b-e(fb-4d04-bf15-52793beald26";
start="<root.messagelcxf.apache.org>"; start-info="text/xml"
SOAPAction: "urn:ttdev.com:service/img/uploadImage"

Accept: */*

User-Agent: Apache CXF 2.2.5
Cache-Control: no-cache
Pragma: no-cache

Host: 127.0.0.1:1234
Connection: keep-alive
Transfer-Encoding: chunked

MIME message (multipart/related)

££9

--uuid:9223456b-e0£fb-4d04-bf15-52793beald26

Content-Type: application/xop+xml; charset=UTF-8; type="text/xml";
Content-Transfer-Encoding: binary

Content-ID: <root.message@cxf.apache.org>

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<ns2:uploadImage xmlns:ns2="urn:ttdev.com:service/img">
<productId>p0l</productId>
 Refer to the binary data using cid
</ns2:uploadImage> (content id).
</soap:Body>
</soap:Envelope>
--uuid:9223456b-e0fb-4d04-bf15-52793beald26
Content-Type: image/jpeg
Content-Transfer-Encoding: binary
Content-ID: <c9796a3a-ea9d-495d-ae5b-b7f854ea26bb-1@http://cxf.apache.org/>

96660 or1r0060600 66 BPhotoshop 3.008BIMBLCCDOOOHOIIIOHDIJOO8BIM
O0000000x8BIMBONO0 00000 O0008BIM
"= = = = = ® ISBIM' - = = = =

--uuid:9223456b-e0fb-4d04-bf15-52793beald26--
0
The binary data

Note that even though you haven't done anything in the service, it can already
successfully decode the SOAP message sent using MTOM. This is designed
for good compatibility: The receiver can receive all kinds of formats, while
explicit configuration determines which format to be initiated by the sender.

Enabling MTOM in the service

For the moment, it is your client that needs to send a file. If it was your web
service that needed to do that, you would need to enable MTOM in the service.
To do that, copy the WSDL file from the client into the service and generate the
code again. Then modify your implementation class to use a DataHandler:

120 Chapter 6 Sending binary files

public class ImageServiceImpl implements ImageService {

@Override
public void uploadImage (String productId, DataHandler image) {
try {
FileOutputStream out = new FileOutputStream(productId+".jpg");
image.writeTo (out) ;
out.close();
} catch (IOException e) {
throw new RuntimeException (e);
}
}

}
To initiate MTOM, modify the ImageService_P1_Server class:
public class ImageService Pl Server ({

protected ImageService Pl Server() throws Exception {
System.out.println("Starting Server");
Object implementor = new ImageServiceImpl();
String address = "http://localhost:8080/is/pl";
Endpoint endpoint = Endpoint.publish (address, implementor);
SOAPBinding soapBinding = (SOAPBinding) endpoint.getBinding() ;
soapBinding.setMTOMEnabled (true) ;

}
The way to enable MTOM is very similar to the client: you get the SOAP binding

and enable MTOM. For the client you get it from the port, for the service you get
it from the endpoint.

Doing it in Axis2
To do it in Axis2, copy the Axis2SimpleService and paste it as
Axis2lmageService, copy the Axis2SimpleClient and paste it as

Axis2lmageClient. Copy the WSDL file and XSD file from the ImageService
project into both of these two new projects (and delete the existing WSDL files).

Next, modify the CodeGenerator class in the Axis2BizService project as shown
below. Note that the two package mappings are separated by a comma:

public class CodeGenerator {
public static void main (String[] args) throws Exception {
WSDL2Code.main (new String[] {
"-ss",
"-sd",
"-uw",
"-S", "src/main/java",
"-R", "src/main/resources/META-INEF"
"-ns2p", "urn:ttdev.com:service/img=com.ttdev.is",
"-uri", "src/main/resources/ImageService.wsdl" });
System.out.println("Done!");
}

}
Do the same thing in the Axis2lmageClient project:

public class CodeGenerator {
public static void main (String[] args) throws Exception ({
WSDL2Code.main (new String[] {
"-S", "src/main/java",
"-R", "src/main/resources/META-INE"

Chapter 6 Sending binary files 121

"-ns2p", "urn:ttdev.com:service/img=com.ttdev.is",
"-uri", "src/main/resources/ImageService.wsdl" });
System.out.println("Done!");

}

}
Delete the com.ttdev.ss package and the src/main/resources/META-INF folder
in both projects. Then run CodeGenerator in both projects. Fill in the code in the
ImageServiceSkeleton class:

public class ImageServiceSkeleton {

public void uploadImage (java.lang.String productId,
javax.activation.DataHandler image) {
try {
FileOutputStream out = new FileOutputStream(productlId + ".jpg"):;
image.writeTo (out) ;
out.close() ;
} catch (IOException e) {
throw new RuntimeException (e) ;
}
}

}
To initiate MTOM from the service, modify src/main/resources/META-
INF/services.xml:

<serviceGroup>
<service name="ImageService">
<messageReceivers>
<messageReceiver mep="http://www.w3.0rg/ns/wsdl/in-only"
class="service.com.ttdev.ImageServiceMessageReceiverInOnly" />
</messageReceivers>
<parameter name="ServiceClass">service.com.ttdev.ImageServiceSkeleton
</parameter>
<parameter name="useOriginalwsdl">true</parameter>
<parameter name="modifyUserWSDLPortAddress">true</parameter>
<parameter name="enableMTOM">true</parameter>
<operation name="uploadImage" mep="http://www.w3.org/ns/wsdl/in-only"
namespace="urn:ttdev.com:service/img">
<actionMapping>urn:ttdev.com:service/img/uploadImage
</actionMapping>
</operation>
</service>
</serviceGroup>

Modify the pom.xml file to use a new artifact ID:
<project ...>
<modelVersion>4.0.0</modelVersion>
<groupId>com. ttdev</groupId>
<artifactId>ImageService</artifactId>
<version>0.0.1-SNAPSHOT</version>
</§£éject>
Run as Maven package and copy the jar file into the Axis2 server (in the
axis2/repository/services folder) as ImageService.aar.

Then, in the client project, create an ImageClient class:
package com.ttdev.is;
iﬁéort javax.activation.DataHandler;
import javax.activation.FileDataSource;

import org.apache.axis2.Constants;

public class ImageClient {
public static void main(String[] args) throws RemoteException {

122 Chapter 6 Sending binary files

ImageServiceStub service = new ImageServiceStub (
"http://localhost:1234/axis2/services/ImageService");

service._ getServiceClient () .getOptions () .setProperty(
Constants.Configuration.ENABLE MTOM, "true");

FileDataSource ds = new FileDataSource ("src/main/resources/sample.jpg");

service.uploadImage ("p0l", new DataHandler (ds));

}
}

The way to enable MTOM in Axis2 is very similar to that in CXF (which actually
is the standard JAX-WS API).

Copy the sample.jpg file into the client package in the src/main/resources folder.
Run the client and observe the message in TCP Monitor. It should be packaged
in a MIME message.

Interoperability

If you need to send binary files to others, make sure the other side supports
MTOM. For example, for .NET, MTOM is supported with WSE (Web Services
Enhancements) 3.0 or later.

Summary

XOP stores XML elements that is of the type xsd:base64Binary as MIME parts
and represents the whole XML document as a MIME message. When the XML
document is a SOAP envelope, it is called MTOM.

To receive a binary file using MTOM, if the receiver is written with CXF or Axis2,
for maximum interoperability, it can always handle incoming messages using
MTOM without any configuration.

To send a binary file using MTOM, indicate the content type in the schema and
set an option to enable MTOM in the sender.

123

Ghapter]

Invoking lengthy operations

124 Chapter 7 Invoking lengthy operations

What's in this chapter?

What if your web service involves manual processing that could take days to
finish? In this chapter you'll learn what the problems are and how to deal with

them.

Invoking a time consuming operation

Suppose that you have a client program that can invoke a web service to
perform some kind of statistics (see below). Let's assume that it will take quite
some time, say, 20 seconds to calculate the statistics. If the client insists on
waiting for the result before proceeding, then the program may appear to have

stopped responding.

Menu

2: Quit
Command: 1

1: Get statistics

The result is:
Menu

2: Quit
Command:

To solve this problem, the client program may create a new thread to invoke the
operation (see below), while the main thread will continue to take commands
from the user. When that new thread receives the result, it will display the result
into the screen "by brute force":

1: Get statistics

A long silence (e.g., 20s)
here

— Web
service

[1Thread

2: Invoke the operation
and wait for the result as
usual.

To implement this idea, create a StatService project as usual. Create a

StatService.wsdl:

Df?ng ¢ statisti 1: Create a new thread
2: Qiits atisties to get the invoke the
Command: 1 operation.

Request has been sent!

enu

1: Get statistics

2: Quit

Command: <NO INPUT YET>
Alert! Got result:

3: Display the

statistics from this

thread.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://ttdev.com/ss" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

Chapter 7 Invoking lengthy operations 125

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" name="StatService"
targetNamespace="http://ttdev.com/ss">

<wsdl:types>

<xsd:schema targetNamespace="http://ttdev.com/ss">
<xsd:element name="getStatistics" type="xsd:string">

</xsd:element>

<xsd:element name="getStatisticsResponse" type="xsd:string">

</xsd:element>
</xsd:schema>
</wsdl:types>

<wsdl:message name="getStatisticsRequest">
<wsdl:part element="tns:getStatistics" name="parameters" />

</wsdl :message>

<wsdl:message name="getStatisticsResponse">
<wsdl:part element="tns:getStatisticsResponse" name="parameters" />

</wsdl:message>

<wsdl:portType name="StatService">
<wsdl:operation name="getStatistics">
<wsdl:input message="tns:getStatisticsRequest" />
<wsdl:output message="tns:getStatisticsResponse" />

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="StatServiceSOAP" type="tns:StatService">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="getStatistics">
<soap:operation soapAction="http://ttdev.com/ss/NewOperation" />

<wsdl:input>

<soap:body use="literal" />

</wsdl:input>
<wsdl:output>

<soap:body use="literal" />

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="StatService">
<wsdl:port binding="tns:StatServiceSOAP" name="pl">
<soap:address location="http://localhost:8080/ss/pl" />

</wsdl:port>
</wsdl:service>
</wsdl:definitions>

There is nothing special about it. In order to create a new thread for the call,
modify the WSDL file as below:

<wsdl:definitions

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://ttdev.com/ss"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"

A JAXWS binding allows
you to attach Java meaning

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" to the WSDL elements. For

name="StatService" targetNamespace="http://ttdev.com/ss">

<wsdl:portType name="StatService">
<wsdl:operation name="getStatistics">

example, here you're saying
that the Java method to be
generated should be
asynchronous (new thread).

<wsdl:input message="tns:getStatisticsRequest" />
<wsdl:output message="tns:getStatisticsResponse" />

<jaxws:bindings>

<jaxws:enableAsyncMapping>true</jaxws:enableAsyncMapping>

</jaxws:bindings>

</wsdl:operation>
</wsdl:portType>

</wsdl:definitions>

You could put the binding
here to affect the whole
port type instead of just
one operation.

By the way, to enable auto-completion for the elements in this JAXWS

126 Chapter 7 Invoking lengthy operations

namespace, you can choose Windows | Preferences, then choose XML | XML
Catalog and add a user entry:

Ilj
®
%)

() Edit XML Catalog Entry

Ar

Location: [http:fjjava.sun ccom/xmlinsfjaxwsfwsdl_customizationschema_2_0 .xsg

Key Type: |Namespace Name v

Key: http:/jjava.sun.com/xml/ns/jaxws
The elements in this
namespace are
defined in this XSD
file.

Modify the CodeGenerator class:

public class CodeGenerator {
public static void main(String[] args) {
WSDLToJava.main (new String[] {
"-server",
"-d", "src/main/java",
"src/main/resources/StatService.wsdl" });
System.out.println("Done!");
}
}
Delete the com.ttdev.ss package and generate the code again. Observe that

the SEI has now two asynchronous method signatures:

@WebService (targetNamespace = "http://ttdev.com/ss", name = "StatService")
@XmlSeeAlso({ ObjectFactory.class })
@SOAPBinding (parameterStyle = SOAPBinding.ParameterStyle.BARE)

bli interf StatsS i I

pubiic intertace atService { If you call it, it will create a new thread
@WebMethod (operationName = "getStatistics") to call the Web service af‘d 'et“.m a

. . : s Response object to you immediately.

public Response<java.lang.String> getStatisticsAsync (X

: . You can poll the Response object from
@WebParam(...) java.lang.String parameters); . .
time to time.
WebMethod tionN = "getStatisti " . .
éue “etno (operation ame = 9¢ atistics”) Just like the previous method except
public Future<?> getStatisticsAsync+ N
. . that you should pass a handler to it.
@WebParam(...) java.lang.String parameters, . . o
When the result is available, it will
GWebParam(notify your handler.
name = "asyncHandler", vy :
targetNamespace = "") AsyncHandler<java.lang.String> asyncHandler);
@WebResult (...)
@WebMethod (action = "http://ttdev.com/ss/NewOperation™)
public java.lang.String getStatistics(
@WebParam(...) java.lang.$tring parameters);

This is the normal synchronous
(blocking) method.

This interface is mainly used by the client. For the service, you only need to

Chapter 7 Invoking lengthy operations 127

implement the synchronous method. So, create the StatServicelmpl class:

@WebService (endpointInterface = "com.ttdev.ss.StatService")
public class StatServiceImpl implements StatService {

@Override
public String getStatistics(String parameters) {
try {
Thread.sleep(3000);
return parameters.toUpperCase();
} catch (InterruptedException e) {
throw new RuntimeException (e);
}
}
@Override
public Response<String> getStatisticsAsync(String parameters) {
return null;
}
@Override
public Future<?> getStatisticsAsync(String parameters,
AsyncHandler<String> asyncHandler) ({
return null;
}
}
Here you're simulating a slow processing by sleeping for 3 seconds, then just

return the upper case version of the argument. To test it, create a StatClient
project as usual. Modify its CodeGenerator class:

public class CodeGenerator {
public static void main(String[] args) {
WSDLToJava.main (new String[] {
"-client",
"-d", "src/main/java",
"src/main/resources/StatService.wsdl" });
System.out.println("Done!");
}
}
Delete the com.ttdev.ss package and generate the code. Modify the

StatService_P1_Client class:
public static void main(String args[]) throws Exception {

StatService Service ss = new StatService Service (wsdlURL, SERVICE NAME) ;

StatService port = ss.getPl();
port.getStatisticsAsync("abc", new AsyncHandler<String>() {

When the new thread gets

@Ovel_:ride_ . the result, it will call this
public void handleResponse (Response<String> res) { method.
try {) The result is
System.out.println("Got result: " + res.get()); available here

} catch (Exception e) {
throw new RuntimeException(e); Mustnot quit now as the result may
} not be available yet. So, ask the user
} tT press Enter to quit.
}):
System.out.println("Press Enter to quit");
new BufferedReader (new InputStreamReader (System.in)) .readLine() ;
System.exit (0);

}
Run the service and then run the client. The output should be like below:

Press Enter to quit

128 Chapter 7 Invoking lengthy operations

<A FEW SECOND OF SILENCE>
Got result: ABC

Press Enter to terminate the program.

What if you can't modify the WSDL file?

What if the WSDL file is controlled by a 3™ party and you aren't supposed to
modify it, then how to do map the operation to an asynchronous Java method?
To simulate this situation, delete the binding from the WSDL files in both
projects. Then, in the client project, create a file named binding.xml (the name
is unimportant) in the src/main/resources folder:

Apply this "binding file" to this WSDL

file. It is a URL to the WSDL file.
Here it is a relative path.

<?xml version="1.0" encoding="UTF-8"?>

<jaxws:bindings
xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
wsdlLocation="StatService.wsdl"
node="wsdl:definitions/wsdl:portType/wsdl:operation[[@name="'getStatistics'[]">
<jlaxws:enableAsyncMapping>true</jaxws:enableAsyncMapping>

</jaxws:bindings>

Apply the bindings to

this node in the XML <wsdl:definitions> You can match the element
element tree. This : using its attribute values.
expression is like a L

path in a file system. <wsdl:portType>
Itis called a XPath.

<wsdl:operation name:"getstatistics”#

Modify the CodeGenerator class in the client project to apply this binding file:

public class CodeGenerator {
public static void main (String[] args) {
WSDLToJava.main (new String[] {
"-client"
"-d", "src/main/java",
"-b", "src/main/resources/binding.xml",
"src/main/resources/StatService.wsdl" });
System.out.println ("Done!");
}
}

Generate the code again. Note that the SEI will still have the asynchronous
methods. Fill the code into StatService P1_Client again to call the
asynchronous method.

In the service project, just generate the code again. You don't need the binding
file as the asynchronous handling is entirely done on the client side by the
service stub. It has got nothing to do with the service implementation at all. The
StatServicelmpl class should be adjusted as:

public class StatServiceImpl implements StatService ({

Chapter 7 Invoking lengthy operations 129

@Override
public String getStatistics (String parameters) {
try f
Thread.sleep (3000) ;
return parameters.toUpperCase () ;
} catch (InterruptedException e) {
throw new RuntimeException (e);
}
}
}

Run the service and then run the client. The client should continue to run in an
asynchronous manner.

Extremely lengthy processing

Currently the processing in the service only takes 3 seconds to finish. What if it
takes 3 hours or even 3 days? This is possible if it relies on human processing.
Then it will be a problem because after sending the HTTP request, the client will
expect the HTTP response to arrive "shortly" in the same TCP connection:

Request
connection
If a response isn't received in a short time (e.g., by default 30 seconds in CXF),

Response should arrive

almost immediately.
the HTTP client code in the client will think something is wrong in the server. In
order to avoid holding up the resources used by the connection, it will time out
and terminate the connection.

To solve this problem, you could use a transport such as SMTP (it is fine for the
reply email to arrive days later). However, the use of any transport for web
services other HTTP is quite uncommon and thus is not good for
interoperability.

An easier solution is to let the web service return a dummy response
immediately to acknowledge the request (see below). A few days later, when
the result is available, let the web service initiate a call back to the client.

1: Send a request.
Web
service

2: Your request has
been received.

3: Please receive the
statistics.

4: Thanks. It has been received.

It means that each side will act as both a web service and a client:

130 Chapter 7 Invoking lengthy operations

Client Server
3: Queue the job for Back
the back end. —T end }— 4: It's done.
Stat Stat 1: Send a request. Stat Stat
consumer producer producer consumer
service client 2: Your request service client
has been
received.

5: Please receive the statistics.

6: Thanks. It has been received.

To implement this idea, copy the StatService project as StatProducer. Create
two a WSDL file named StatProducer.wsdl:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://ttdev.com/sp" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" name="StatProducer"
targetNamespace="http://ttdev.com/sp">
<wsdl:types>
<xsd:schema targetNamespace="http://ttdev.com/sp">
<xsd:element name="getStatistics" type="xsd:string">
</xsd:element>
</xsd:schema>
</wsdl:types>
<wsdl:message name="getStatisticsRequest">
<wsdl:part element="tns:getStatistics" name="parameters" />
</wsdl:message>
<wsdl:portType name="StatProducer">
<wsdl:operation name="getStatistics">
<wsdl:input message="tns:getStatisticsRequest" />
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="StatProducerSOAP" type="tns:StatProducer">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="getStatistics">
<soap:operation soapAction="http://ttdev.com/sp/NewOperation" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="StatProducer">
<wsdl:port binding="tns:StatProducerSOAP" name="pl">
<soap:address location="http://localhost:8080/sp/pl" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Note that the operation has only an input message but no output message. It
means after sending the SOAP message as an HTTP request, it will expect an
(successful) HTTP response containing no SOAP message. That will serve as
the dummy acknowledgement.

Chapter 7 Invoking lengthy operations 131

Create another WSDL file named StatConsumer.wsdl in the same folder:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://ttdev.com/sc" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" name="StatConsumer"
targetNamespace="http://ttdev.com/sc">
<wsdl:types>
<xsd:schema targetNamespace="http://ttdev.com/sc">
<xsd:element name="putStatistics" type="xsd:string">
</xsd:element>
</xsd:schema>
</wsdl:types>
<wsdl:message name="putStatisticsRequest">
<wsdl:part element="tns:putStatistics" name="parameters" />
</wsdl:message>
<wsdl:portType name="StatConsumer">
<wsdl:operation name="putStatistics">
<wsdl:input message="tns:putStatisticsRequest" />
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="StatConsumerSOAP" type="tns:StatConsumer">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="putStatistics">
<soap:operation soapAction="http://ttdev.com/sc/NewOperation" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="StatConsumer">
<wsdl:port binding="tns:StatConsumerSOAP" name="pl">
<soap:address location="http://localhost:8081/sc/pl" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Again, the operation has no output message. Also note that the endpoint
address is using port 8081 for the consumer side as port 8080 has been used
by the producer side.

The CodeGenerator class should be like:

public class CodeGenerator ({
public static void main (String[] args) {
WSDLToJava.main (new String[] {
"-server",
"-d", "src/main/java",
"src/main/resources/StatProducer.wsdl" });
WSDLToJava.main (new String[] {
"-client",
"-d", "src/main/java",
"src/main/resources/StatConsumer.wsdl" });
System.out.println ("Done!");

}

}
Run the CodeGenerator class. Then create a StatProducerimpl class in the
com.ttdev.sp package:

@WebService (endpointInterface = "com.ttdev.sp.StatProducer")

public class StatProducerImpl implements StatProducer {
private Queue<String> statRequestQueue;

public StatProducerImpl (Queue<String> statRequestQueue) {
this.statRequestQueue = statRequestQueue;

132 Chapter 7 Invoking lengthy operations

}
@Override
public void getStatistics (String parameters) {
statRequestQueue.add (parameters) ;
}
}

It simply adds the request to a queue for later processing and return from the
method (so that it won't tie up the thread). As the method ends immediately
without error, a dummy successful HTTP response will be returned.

Then create a main program to launch the service and process the request
queue. So, create a Main class in the com.ttdev package:

A blocking queue is a queue that will wait
(i.e., block) if you're trying to retrieve an

k .ttdev;) .
package com ev item but the queue is empty.

import java.util.cpncurrent.BlockingQueue;
import java.util.cpncurrent.LinkedBlockingDeque;

public class Main |
private BlockingQueue<String> requestQueue;

public static void main(String[] args) {

Stats . ; Lo .
pew Statserver () .run() Let the service implementation

g}mblic StatServer () { object put the requests into this
. global queue.

requestQueue = new LinkedBlockingDeque<String>();
}
private void run() {
Object implementor = new StatProducerImpl (requestQueue);
String address = "http://localhost:8080/sp/pl";
Endpoint.publish (address, implementor);
processRequeusts () ;
}
private void processRequeusts () {
System.out.println ("Waiting for requests");
BufferedReader br = new BufferedReader (new InputStreamReader (System.in));

Wait for and process requests
after launching the producer
service.

while (true) { Try to get (and remove) the first item from
try { the queue. If there is none, wait.
String req = requestQueue.take();
System.out.println("Got a request: " + req); Let the user process the request and

System.out.println("Enter response: "); input the result. This simulates a

String result = br.readLine(); manual processing that may take days.

StatConsumer_Service ss = new StatConsumer_Service(
StatConsumer_Service.WSDL_LOCATION, new QName (

"http://ttdev.com/sc", "StatConsumer"));

StatConsumer port = ss.getPl();

port.putStatistics (result);

} catch (InterruptedException e) {

continue; ‘ Send the result to the client
} catch (IOException e) { (which hosts the consumer
continue; service).

}

The StatProducer_P1_Server class is trying to create a StatProducerimpl
without providing a queue. Either delete this class as it is not used or create a
no-argument in the StatProducerlmpl class to fix the compile error.

Copy the StatProducer project and paste it as the StatConsumer project. Then
modify the CodeGenerator class to reverse the client and server roles:

Chapter 7 Invoking lengthy operations 133

public class CodeGenerator {
public static void main(String[] args) {
WSDLToJava.main (new String[] {
"-client",
"-d", "src/main/java",
"src/main/resources/StatProducer.wsdl" });
WSDLToJava.main (new String[] {
"-server",
"-d", "src/main/java",
"src/main/resources/StatConsumer.wsdl" });
System.out.println("Done!");

}
Delete the com.ttdev.sp and com.ttdev.sc packages. Run the CodeGenerator
class. Create the StatConsumerlmpl class:

package com.ttdev.sc;

@WebService (endpointInterface = "com.ttdev.sc.StatConsumer")
public class StatConsumerImpl implements StatConsumer {

@Override
public void putStatistics (String parameters) {
System.out.println("Got response: " + parameters);

}

}
Here you simply print out the result. Next, modify the Main class as below. It
starts the consumer service and then sends a single request to the producer
service:

public class Main {
public static void main (String[] args) {

new Main().run();

}

private void run() {
Object implementor = new StatConsumerImpl () ;
String address = "http://localhost:8081/sc/pl";

Endpoint.publish (address, implementor);
sendRequeust () ;

}

private void sendRequeust () {
System.out.println("Sending a request");
StatProducer Service ss = new StatProducer Service(

StatProduceriservice.WSDLiLOCATION, new QName (
"http://ttdev.com/sp", "StatProducer"));

StatProducer port = ss.getPl();
port.getStatistics ("abc");

}

}
Now run the Main program in the StatProducer project. Then run the Main
program in the StatConsumer product. Then the producer will prompt you for
the response:

Waiting for requests

Got a request: abc
Enter response:

Enter any string such as "hello" as the response and press Enter. If you'd like,
you can wait a very long time beforehand; it won't hurt. Then the client will
receive the result and print it:

Sending a request

Got response: hello

134 Chapter 7 Invoking lengthy operations

Kill both processes in Eclipse (see below if you don't know how). This is
necessary because you aren't calling System.exit() in the Main program so they
will run indefinitely.

2: Click here to kill the

process.
irce Explorer | [Snippets | El Console &3 %" Search| &l Properties =0
i -6- -1.6.0.16/binjj Dec 21, 2009 4:04:20 PM 7 - =
1fjava-6-sun 1l |nf]a\.ra(=14)] % RO @ = Ev Fiw
® 1 Main (1) [Java Application] jusrflibfjvmfjava-6-sun-1.6.0.16/binfjava (Dec 21, 2009 4:04:20 PM) A

2 Main [Java Application] jusrflibfjvmfjava-6-sun-1.6.0.16/binfjava (Dec 21, 2009 4:04:24 PM)

1: Click here to select
the process.

Specifying the reply address

For the moment, the producer will send the result to http://localhost:8081/sc/p1
as specified in the StatConsumer.wsdl file:

<wsdl:definitions ...>

<wsdl:service name="StatConsumer">
<wsdl:port binding="tns:StatConsumerSOAP" name="pl">
<soap:address location="http://localhost:8081/sc/pl" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

This doesn't make sense as there could be many different consumers running
on different hosts on the Internet. To solve this problem, the consumer should
specify the reply address when sending the request:

Client Server

Back
1: Send a request. r end —l

Please reply to

Stat Stat http:/foo.com/xyz. Stat Stat
consumer producer producer consumer
service client 2: Your request service client
has been
received.

3: Send the result to
http://foo.com/xyz.

To implement this idea, modify the StatProducer.wsdl in both projects:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://ttdev.com/sp" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" name="StatProducer"
targetNamespace="http://ttdev.com/sp">
<wsdl:types>
<xsd:schema targetNamespace="http://ttdev.com/sp">
<xsd:element name="getStatistics">

Chapter 7 Invoking lengthy operations 135

<xsd:complexType>
<xsd:sequence>
<xsd:element name="param" type="xsd:string">
</xsd:element>
<xsd:element name="replyTo" type="xsd:string">
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</wsdl:types>
<wsdl:message name="getStatisticsRequest">
<wsdl:part element="tns:getStatistics" name="parameters" />
</wsdl:message>
<wsdl:portType name="StatProducer">
<wsdl:operation name="getStatistics">
<wsdl:input message="tns:getStatisticsRequest" />
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="StatProducerSOAP" type="tns:StatProducer">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="getStatistics">
<soap:operation soapAction="http://ttdev.com/sp/NewOperation" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="StatProducer">
<wsdl:port binding="tns:StatProducerSOAP" name="pl">
<soap:address location="http://localhost:8080/sp/pl" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Generate the code in both projects again. Modify the StatProducerlmpl class in
the producer project:

public class StatProducerImpl implements StatProducer {
private Queue<GetStatistics> statRequestQueue;

public StatProducerImpl (Queue<GetStatistics> statRequestQueue) {
this.statRequestQueue = statRequestQueue;

}

public StatProducerImpl () {

}

@Override

public void getStatistics (String param, String replyTo) ({
GetStatistics req = new GetStatistics();
req.setParam(param) ;
req.setReplyTo (replyTo) ;
statRequestQueue.add (req) ;

}

}
The GetStatistics class was a generated class to represent the <getStatistics>
element. Next, modify the Main program in the producer project to send the
result to the reply address:

public class Main {
private BlockingQueue<GetStatistics> requestQueue;

public static void main (String[] args) {
new Main().run();
}
public Main() {
requestQueue = new LinkedBlockingDeque<GetStatistics> () ;

136 Chapter 7 Invoking lengthy operations

}

private void run() {
Object implementor = new StatProducerImpl (requestQueue) ;
String address = "http://localhost:8080/sp/pl";
Endpoint.publish (address, implementor);
processRequeusts () ;

}

private void processRequeusts () {
System.out.println("Waiting for requests");
BufferedReader br = new BufferedReader (new InputStreamReader (System.in));
while (true) {

try {

GetStatistics req = requestQueue.take();

System.out.println("Got a request: " + reqg.getParam());

System.out.println("Enter response: ");

String result = br.readLine();

StatConsumer_Service SS = new StatConsumer_Service(
StatConsumer_ Service.WSDL LOCATION, new QName (

"http://ttdev.com/sc", "StatConsumer"));

StatConsumer port = ss.getPl();
BindingProvider bp = (BindingProvider) port;
bp.getRequestContext () .put(
BindingProvider .ENDPOINT ADDRESS_PROPERTY,
req.getReplyTo()) ;
port.putStatistics (result);
} catch (InterruptedException e) {
continue;
} catch (IOException e) {
continue;
}
}
}
}

In the consumer project, modify the Main program as shown below. Note that
you are deliberately using a different port (8888) from that specified in the
WSDL (8081). Of course, you're also providing the reply address in the call:

public class Main {
public static void main (String[] args) {

new Main().run();

}

private void run() {
Object implementor = new StatConsumerImpl () ;
String address = "http://localhost:8888/sc/pl";

Endpoint.publish (address, implementor);
sendRequeust () ;
}

private void sendRequeust () {
System.out.println("Sending a request");
StatProducer_Service sSsS = new StatProducer_Service(
StatProducer Service.WSDL LOCATION, new QName (
"http://ttdev.com/sp", "StatProducer"));
StatProducer port = ss.getPl();
port.getStatistics ("abc", "http://localhost:8888/sc/pl");
}

}
Now run the producer and then the consumer. The reply should still be able to
reach the consumer.

Using an asynchronous client in Axis2

To use an asynchronous client in Axis2, copy the Axis2SimpleClient and paste it

Chapter 7 Invoking lengthy operations 137

as Axis2StatClient. Copy the WSDL file from the StatClient project (NOT
StatConsumer) into the new project (and delete the existing WSDL files).

Next, modify the CodeGenerator class:

public class CodeGenerator ({
public static void main(String[] args) throws Exception ({
WSDL2Code.main (new String[] {
"-S", "src/main/java",
"-R", "src/main/resources/META-INE"
U —ps2pl—httpi/ e devreom e =
"-uri", "src/main/resources/StatService.wsdl" });
System.out.println("Done!");

}

7

}
Delete the com.ttdev.ss package and the src/main/resources/META-INF folder.
Then run CodeGenerator. Then create a StatClient class:

Create a callback

object. Let it call the CXF
public class StatClient { service.
public static void main(String[] args) throws IPException {
StatServiceStub service = new StatServiceStub|("http://localhost:8080/ss/pl");
GetStatistics req = new GetStatistics();
req.setGetStatistics ("abc") ;
StatServiceCallbackHandler callback = new StatServiceCallbackHandler() {
@Override
public void receiveResultgetStatistics (GetStatisticsResponse result) {

String r = result.getGetStatisticsResponse() ;
System.out.println("Got result:|" + r);
} The receiveXXX() method

}i will be called once the
serviceWstar?getStatistiC§(req, callback) ; result is available.
System.out]printIn["Press Enter to guit");

new BufferedReader (new InputStreamReader (System.in)) .readLine();

Adding the word "start" getStatistics() is the Pass the callback object to it.
to it will give you the synchronous
asynchronous method. method.

Note that the WSDL2Code program in Axis2 will create both the synchronous
and the asynchronous methods by default and therefore you don't need to
explicitly tell it to.

Now, run the StatService_P1_Server class in the StatService (using CXF). As
the asynchronous operation entirely happens on the client side, you don't need
to do anything on the server side. Then run the StatClient you just written
above. It should print the result in a few seconds:

Press Enter to quit
Got result: ABC

Summary

To let the client program to continue without waiting for the result, use the
asynchronous API. With a JAXWS implementation (such as CXF), you can use
a binding to tell the code generator to generate the asynchronous API. With
Axis2, it is done by default.

138 Chapter 7 Invoking lengthy operations

However, using a asynchronous API on the client is not enough if the service
processing takes a very long time because the underlying HTTP transport
connection will time out. In that case, you can split the service into a provider
side and a consumer side, then let the server initiate a callback to the consumer
once the processing is finished. Most probably the client will need to provide a
reply address so that the server knows where to send the reply to.

139

Signing and encrypting
SOAP messages

140 Chapter 8 Signing and encrypting SOAP messages

What's in this chapter?

In this chapter you'll learn how to sign and encrypt SOAP messages.

Private key and public key

Usually when you encrypt some text using a key, you need the same key to

decrypt it:
Hello, world! |
The same key
A key (say k1) (k")

kfjdih9368dhfj ‘

This is called "symmetric encryption". If you would like to send something to me
in private, then we need to agree on a key. If you need to send something
private to 100 individuals, then you'll need to negotiate with each such individual
to agree on a key (so 100 keys in total). This is troublesome.

To solve the problem, an individual may use something called a "private key"
and a "public key". First, he uses some software to generate a pair of keys: One
is the private key and the other is the public key. There is an interesting
relationship between these two keys: If you use the private key to encrypt
something, then it can only be decrypted using the public key (using the private
key won't work). The reverse is also true: If you use the public key to encrypt
something, then it can only be decrypted using the private key:

Chapter 8 Signing and encrypting SOAP messages 141

k1-priv | k1-pub

Hello, world!
k1-priv @ k1_pUb
e -
kfjdih9368dhfj l
Hello, world!
k1-pub @ k1-priv
o, -
kfjdih9368dhfj l

After generating the key pair, he will keep the private key really private (won't tell
anyone), but he will tell everyone his public key. Can other people find out the
private key from the public key? It is extremely difficult, so there is no worry
about it. Now, suppose that you'd like to send something confidential to an
individual Paul (see the diagram below), you can use his public key to encrypt it.
Even though other people know his public key, they can't decrypt it (as it is
encrypted using the public key, only the private key can decrypt it). Only Paul
knows the private key and so only he can decrypt it:

Paul's key pair

k1-priv | k1-pub

Hello, world! Hello, world!

k1-priv
Decrypt -

k1-pub
_

kfjdih9368dh]

This kind of encryption is called "asymmetric encryption".

142 Chapter 8 Signing and encrypting SOAP messages

Digital signature

Suppose that the message you send to Paul is not confidential. However, Paul
really needs to be sure that it is really from you. How to do that? You need to
prove to Paul that the creator of the message knows your private key. If he
does, then he must be you (remember, nobody else is supposed to know your
private key). To prove that, you can use your private key to encrypt the
message, then send it to Paul. Paul can try to decrypt it using your public key. If
it works, then the creator of the message must know your private key and must
be you.

However, this is not a good solution, because if the message is long, the
encrypted message may double in size and the encryption takes a lot of time.
To solve this problem, you can feed the message to a "one way hash function"
(see the diagram below). No matter how long the input is, the output from the
one way hash function is always the same small size (e.g., 128 bits). In addition,
if two input messages are different (maybe just a single bit is different), then the
output will be completely different. Therefore, the output message can be
considered a small-sized snapshot of the input message. It is therefore called
the "message digest" of the original message:

“A” is changed to “B”

‘A very very long message... ‘ ‘B very very long message... ‘
@@ One way hash
Fixed small kfjdih9368dhfj The output will [873kjhfh3487
size be completely
different

Another feature of the one way hash function is that it is very fast to calculate
the digest of a given message, but it is extremely difficult to calculate a
message given a digest. Otherwise people would find different messages for a
given digest and it is no longer a good snapshot for the message:

Chapter 8 Signing and encrypting SOAP messages 143

‘A very very long message... ‘ ﬁome message ‘
Fast and Extremely
easy @@ difficult One way hash
kfjdih9368dhfj kfjdih9368dhfj

Now, to prove to Paul that you know your private key, you can use your private
key to encrypt the message digest (because the digest is small, the result is
also small and the encryption process will be fast), then send both the message
and the message digest to Paul. He can try to decrypt the digest using your
public key. Then he can calculate the digest from the message and compare
the two. If the two match, then the person producing the encrypted digest must

be you:
Hello, world! | l
One way hash
@ay s 2o
123456
Same?
Your key pair 123@ 123456

k2-priv | k2-pub

o k2-pub
m,@wm @D.i

111222 »Hello, worldl

The encrypted digest is called the "digital signature". The whole process of
calculating the digest and then encrypting it is called "signing the message".

Signing and encrypting

What if you'd like to sign the message, while keeping the message available to
Paul only? Just sign it as usual (see the diagram below) and then encrypt the
message and the digest using Paul's public key. When Paul receives it, he uses
his private key to decrypt it and then go on to verify the signature as usual:

144 Chapter 8 Signing and encrypting SOAP messages

Your key pair Paul's key pair

k2-pub Hello, world!'— k1-pub
One way hash

123456
Same?
123@ 123456
. k2-pub
111222
Hello, world! [+— Hello, world!
11222 | 111222

. k1-priv

Certificate and CA

This seems to work very well. However, when you need to say send a
confidential message to Paul, you'll need his public key. But how can you find
out his public key? You can call him on the phone to ask him. But how can you
be sure that the person on the phone is really Paul? If he is a hacker, he will tell
you his public key. When you send the message to Paul using the hacker's
public key, the hacker will be able to decrypt it using his private key.

If you need to communicate with many different individuals, this will get even
more troublesome. To solve the problem, Paul may go to a government
authority, show his ID card and etc and tell the authority his public key. Then the
authority will generate an electronic message (like an email) stating Paul's
public key. Finally, it signs that message using its own private key:

Name: Paul
Public key: 666888
Signature

Chapter 8 Signing and encrypting SOAP messages 145

Such a signed message is called a "certificate". That authority is called a
"certificate authority (CA)". Then Paul can put his certificate on his personal web
site, email it to you directly or put it onto some 3™ party public web site. From
where you get the certificate is unimportant. What is important is that if you can
verify the signature of that CA and you trust what the CA says, then you can
trust that public key in the certificate. In order to verify the signature, you will
need the public key of that CA. What?! You're back to the origin of the problem.
However, you only need to find out a single public key for a single entity (the
CA), not a public key for everyone you need to communicate with. How to obtain
that public key? Usually it is already configured in your browser or you can
download it from a trusted web site, newspaper or other sources that you trust.

A CA doesn't really need to be a government authority. It can be well known
commercial organizations such as VeriSign.

It means that in order to use asymmetric encryption and digital signature,
people need private keys, public keys, a CA and certificates. All these elements
combined together is called a “public key infrastructure (PKI)” because it
provides a platform for us to use public keys.

Distinguished name

If you review the certificate:

Name: Paul
Public key: 666888
Signature

you will see that it is not that useful because there are probably millions of
people named Paul in the world. Therefore, in a real certificate, usually the
country, city and the company of that individual are also included like:

ou means organizational

unit. Here, the sales

department or a division.

dc means domain

cn means component. That is,
common a part of a DNS Another domain
name. domain name. component

| | [

Name| cn=Paul McNel, ou=sales, de=microsoft, dc=com |
Public key: 666888

Signature

The whole thing is called
a “distinguished name
(DNY'

Now if you're looking for the public key of Paul McNeil who works at IBM, you
know that the certificate above should NOT be used.

146 Chapter 8 Signing and encrypting SOAP messages

Performance issue with asymmetric encryption

Suppose that you'd like to send an encrypted message to Paul. You can use
Paul's public key to do that. However, in practice few people would do it this
way, because asymmetric encryption is very slow. In contrast, symmetric
encryption is a lot faster. To solve this problem, you can generate a random
symmetric key, use it to encrypt the message, then use Paul's public key to
encrypt that symmetric key and send it to Paul along with the encrypted
message. Paul can use his private key to get back the symmetric key and then
use it to decrypt the message:

Random key k3 ello, world! Paul's key pair

- @ @

Hello, world! @7

k1-priv
I Encrypt Decrypt -~

paabEb.. | ———~gaabbb. |

yZ

Keeping key pair and certificates in Java

In order to use PKI, typically you should have a private key for yourself (see the
diagram below), a certificate for yourself so that you can send to others, a
certificate for each person that you need to send something confidential to (e.g.,
Paul and Mary) and the public keys of the CA's that you trust. For the public key
of the CA, you don't directly store its public key. Instead, you store its certificate
which contains its public key. But who issued that certificate to it? It was issued
by itself (signed by its own private key):

Chapter 8 Signing and encrypting SOAP messages

Owner:
Public
Issuer:

147

CN=John,OU=...,DC=...
key: kl-pub
CN=CAl,0QU=...,DC=...

Signed by k-ca-priv

Owner:
Public
Issuer:

CN=CA,OU=...,DC=...
key: k-ca-pub
CN=CA,OU=...,DC=...

Private key Certificate
For yourself ~ | k1-priv
Fortheca — VA
For Paul N/A
For Mary N/A

Signed by k-ca-priv

Owner:
Public
Issuer:

CN=Paul,OU=...,DC=...
key: k2-pub
CN=CA,OU=...,DC=...

Signed by k-ca-priv

Owner:
Public
Issuer:

CN=Mary,OU=...,DC=...
key: k3-pub
CN=CRA,OU=...,DC=...

‘Signed by k-ca-priv

Such a table is called a keystore in Java (see the diagram below). A keystore is
stored in a file. In addition, each entry in the table has a name called the alias of
the entry. This way you can, e.g., tell the software to sign a particular message
using the private key in the “john” entry (yourself), or encrypt the message using
the public key in “paul” entry. Without the alias you will have to use the DN to
refer to an entry:

keystore
Alias Private key | Certificate
john k1-priv .
CA N/A -
paul N/A "
mary N/A ——>

Generating a key pair

In order to generate a key pair, you can use the keytool program in JDK. For
example, if your JDK is in c:\Program Files\Java\jdk, then you can find
keytool.exe in the bin sub-folder (i.e., c:\\Program Files\Java\jdk\bin). For
convenience, let's add c:\Program Files\Java\jdk\bin to the PATH:

148 Chapter 8 Signing and encrypting SOAP messages

AWINDOWE\system 3 2'cmd exe

C:x»set PATH=:xPATHz;%JAVA_HOMEX “bin

CiNom
Note that this PATH setting affects this command prompt only. If later you use a
new command prompt, you'll need to set the PATH again. Next, create a folder
named keys in your home folder to hold the keys and change into there.

Now, generate a key pair for your web service client:

Owner: cn=cl,dc=bar,dc=com
Public key: kl-pub
Issuer: cn=cl,dc=bar,dc=com

The certificate
will be signed

k1-priv ———by k1-priv (self-
signed)
keys/client.ks
Alias Private key Certifica[te The path to the keystore. A
‘ keystore is just a file. Here
ci k1-priv only the filename (client.ks) is

specified, so assume it's in
the current folder
(<home>/keys). As it doesn't
exist yet, it will be created by

keytool.
The name (alias)
Generate a key pair, i.e., of the entry
add an entry to the
keystore

<home>\keys>keytool -genkey -alias cl -keystore client.ks
——_ —dname cn=cl,dc=bar,dc=com
Specify the DN. _xeyalg RSA -sigalg SHALlwithRSA

The key generation algorithm. Commonly ~ The signature algorithm. Here, hash the message using

it is either DSA or RSA. Java supports SHAT1 first and then encrypt it using the RSA private key.
both but some of the libraries you use If you don't specify it here, keytool will use MD5withRSA.
later only support RSA, so use it here. But MD5 is known to be insecure nowadays, so don't

use MD5 anymore.

Let's run it:

Chapter 8 Signing and encrypting SOAP messages 149

keys\> keytool -genkey -alias cl -keystore client.ks -keyalg RSA

—dname cn=cl,dc=bar,dc=com

-sigalg SHAlwithRSA
Enter keystore password:
Re-enter new password:
Enter key password for <cl>

(RETURN if same as Keystore password) :

Re-enter new password:

What is the purpose of it? You can consider that keytool

will append this password to the content of the keystore
You need to provide an entry password to protect and then generate a hash and store it into the keystore.
the entry for ¢1. You can consider that keytool will If someone modifies the keystore without this password,
use this password to encrypt c1's private key. This he won't be able to update the hash. The next time you

way other people won't be able to read c1's private run keytool on this keystore, it will note the mismatch
key. ‘ and warn you not to use this keystore anymore.

Let's enter "c1-pass" as the entry
password. Let's enter "client-ks-pass" as the
keystore password.

To verify that the entry has been added, you can list the entries:

keys\> keytool -list -keystore client.ks
Enter keystore password:

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

cl, Dec 21, 2009, PrivateKeyEntry,
Certificate fingerprint (MD5): D4:19:99:83:D9:EC:CC:79:11:9E:6E:8A:57:35:E7:FB

Note that it asks for the keystore password so that it can verify the hash. If you'd
like to see more details in the entries, use the -v option:

keys\> keytool -list -v -keystore client.ks
Enter keystore password:

Keystore type: JKS
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: cl
Creation date: Dec 21, 2009
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=cl, DC=bar, DC=com
Issuer: CN=cl, DC=bar, DC=com
Serial number: 4b2£f53d3
Valid from: Mon Dec 21 18:54:11 HKT 2009 until: Sun Mar 21 18:54:11 HKT 2010
Certificate fingerprints:
MD5: D4:19:99:83:D9:EC:CC:79:11:9E:6E:8A:57:35:E7:FB
SHAl: D9:51:F8:68:11:08:FB:C7:D1:4B:7F:42:23:46:DD:8B:13:39:F6:00
Signature algorithm name: SHAlwithRSA
Version: 3

B R R R T R T R R R
hkkkhkhhkhhhhhhhhhhhhhhkkhkhkhkhkhkhkhkkhkkhkkk**

You can see that both the Owner and the Issuer are set to the DN of c1. It
shows that it is indeed a self-signed certificate. Having a self-signed certificate

150 Chapter 8 Signing and encrypting SOAP messages

is not useful. You need to ask a CA to sign it. To do that, generate a certificate
request first:

Generate a certificate request

for the entry named "c1": j

keys\>keytool -certreq -alias cl -keystore client.ks -file cl.csr

Put the certificate request into
this file

Run it:

keys\> keytool -certreq -alias cl -keystore client.ks -file cl.csr
Enter keystore password:
Enter key password for <cl>

Now it has put the certificate request into the file c1.csr in the keys folder. You
need to send to a CA. In real life, you should send it to VeriSign or some well
known CA to get a certificate (of course a payment is required). Here you'll
setup your own CA.

Setting up a CA

Go to http://www.openssl.org/related/binaries.html to download the Windows
version of OpenSSL. Suppose the file is Win320penSSL-v0.9.8a.exe. Login as
the Administrator and run it. Follow the instruction to complete the installation.
Suppose that it has been installed into a folder named OpenSSL. To make it
easier to run, add OpenSSL/bin to the PATH.

Next, create a folder named CA in your home folder to host the files of the CA.
Then create a private key for the CA itself:

Some openssl commands need to save a random seed
information to a file ("random file"). You need to tell it
the path to that file. Here, just tell it to use a file named
"rand" in the current folder.

c:\>cd CA

c:\CA>set RANDFILE=rand

c:\CA>openssl req -new —-keyout cakey.pem -out careq.pem

Work on a request Put the private key Put the certificate

Create a new private keymto this file request into this file

and a certificate request

Run it and it will prompt you for the DN of the CA and a password to encrypt the
private key (e.g., you may use "ca-pass"):

Chapter 8 Signing and encrypting SOAP messages 151

CA\> openssl req -new -keyout cakey.pem -out careq.pem

Generating a 1024 bit RSA private key

............. e+t

........................... +H++++

writing new private key to 'cakey.pem'

Enter PEM pass phrase:

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Test CA
Organizational Unit Name (eg, section) []:

Common Name (eg, YOUR name) []:CA

Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:

An optional company name []:

In this example, the DC has been set to cn=CA,o=Test CA,c=US, in which o
stands for organization and c stands for country. Next, generate a self-signed
certificate for it:

Tell it actually the input is not a
certificate, but a certificate

request.
Self-sign a certificate The resulting self-signed certificate
Work on an (x509) ysing this private key. will be valid from now until 3650
certificate days (10 years) later

CA\>openssl x509‘—signkey cakey.pem‘—req‘—days 3650‘—in careqg.pem -out cacert.pem
-extfile c:\OpenSSL\bin\openssl.cnf -extensions v3_ca ‘

The input file (the The output file
Copy some "extension" settings from the certificate (the self-signed

openssl.cnf file in its v3_ca section. What request) certificate)
you want is something like:

Owner:
Issuer:
Extension 1 (Constraint): CA
Extension 2 (...)

Run it and enter "ca-pass" as the password for the CA key:

CA\> openssl x509 -signkey cakey.pem -req -days 3650 -in careqg.pem -out cacert.pem
-extfile c:\OpenSSL\bin\openssl.cnf -extensions v3 ca

Signature ok

subject=/C=US/ST=Some-State/O=Test CA/CN=CA

Getting Private key

Enter pass phrase for cakey.pem:

Now you're about to use this CA to sign the certificate request from John
(john.csr). However, before that, you need to note that when a CA issues a new

152 Chapter 8 Signing and encrypting SOAP messages

certificate, it will put a unique serial number into that certificate. So you need to
tell OpenSSL what is the next serial number to use. To do that:
Store the string "02" into a file serial.txt. The file will be

created. This way OpenSSL will use 02 as the next serial
number. Ther it will set it to 03 automatically.

CA\>#cho 02 > serial.txt‘

Note that the "0" is necessary. Using "2" will NOT work
because OpenSSL expects a hexadecimal number that
contains an even number of digits.

To sign c1's certificate request:

Sign a certificate using this Actually the input is a
CA certificate. For example, certificate request,
it can find the DN of the CA not a certificate.
here.

Sttill working with x509 The private key of the The serial #is

certificater. CAis in this file in this fil‘e.

CA\>openssl x509‘—CA cacert.ped kCAkey cakey.pem‘kCAserial serial.txt‘kreq\
-in ..\keys\cl.csr -out ..\keys\cl.cer -days 1095

The input file (certificate The output file (certificate The certificate will be
request for c1) for c1) valid for 1095 days (3
years).

Run it and enter "ca-pass" as the password for the CA key:

CA\> openssl x509 -CA cacert.pem -CAkey cakey.pem -CAserial serial.txt -req
-in ../keys/cl.csr -out ../keys/cl.cer -days 1095

Signature ok

subject=/DC=com/DC=bar/CN=cl

Getting CA Private Key

Enter pass phrase for cakey.pem:

Importing the certificate into the keystore

Now you have got the certificate in c1.cer, you can import it into the keystore.
However, before doing that, you must first import the certificate of the CA itself
into your keystore as a trusted CA certificate, otherwise it will refuse to import
John's certificate. To do that:

Chapter 8 Signing and encrypting SOAP messages

Change back to c:\keys

Import a certificate
into the keystore.

CA\>cd ..\keys

keys\>keytool -import -alias testCA -file

Run it:

keys\> keytool -import -alias testCA -file
Enter keystore password:
Owner: CN=CA, O=Test CA,
Issuer: CN=CA, O=Test CA,

Create a certificate entry named

"testCA". You can use any

name that you like and it won't

make any difference.

The CA's certificate is in this file. In real world,
when you receive your certificate from the CA

..\CA\cacert.pem -keystore client.ks

(e.g., VeriSign), it will also give you its own
certificate. Or you can probably download it

from its web site.

ST=Some-State, C=US
ST=Some-State, C=US

Serial number: c896adcad015985e

Valid from: Mon Dec 21 19:48:29 HKT 2009 until:
Certificate fingerprints:

MD5: BB:15:7D:0A:C4:5C:D7:58:C3:43:40:E0:FC:E3:87:E6

SHAl: 47:7B:86:AF:52:A1:57:CD:83:03:AA:45:4A:B2:19:38:C1:2E:B8:5E

Signature algorithm name: SHAlwithRSA

Version: 3
Extensions:

#1: ObjectId: 2.5.29
SubjectKeyIdentifier
KeyIdentifier [
0000: 23 F4 96 17 01
0010: 03 47 FC 3B

]

]

#2: ObjectId: 2.5.29
BasicConstraints: [
CA:true
PathLen:2147483647
]

.14 Criticality=false

[

A4 54 84

.19 Criticality=false

#3: ObjectId: 2.5.29.35 Criticality=false

AuthorityKeyIdentifier

KeyIdentifier [

0000: 23 F4 96 17 01 A4 54 84

0010: 03 47 FC 3B
]

[CN=CA, O=Test CA, ST=Some-State, C=US]

SerialNumber: [
]

Trust this certificate?

c896adca d015985e]

[no]: yes

Certificate was added to keystore
Note that it asked you to trust this certificate or not. This is a very important
decision. If you trust this certificate as a CA certificate, you will trust all
certificates issued by it. Next, add John's certificate to the keystore to replace
his self-signed certificate. This is also done using the -import option:

FE B3 D8 C6 84 83 C8 65

FE B3 D8 C6 84 83 C8 65

Thu Dec 19 19:48:29 HKT 2019

153

../CA/cacert.pem -keystore client.ks

154 Chapter 8 Signing and encrypting SOAP messages

When keytool finds an existing entry with the
named "c1" in the keystore, it knows you're
trying to replace a certificate issued by a CA
for the existing self-signed one.

keys\>keytool -import -alias cl -file cl.cer -keystore client.ks

The certificate is in this file.

Run it

keys\> keytool -import -alias cl -file cl.cer -keystore client.ks
Enter keystore password:

Enter key password for <cl>

Certificate reply was installed in keystore

To verify, you can list the entries in the keystore:

Chapter 8 Signing and encrypting SOAP messages

keys\>keytool -list -v -keystore client.ks

Keystore type: JKS There are 2 entries in the

Keystore provider: SUN keystore

Your keystore contains

Alias name: testca Ernry1
Creation date: Dec 21, 2009 It is a trusted certificate entry,

Bntry type: trustedCertEntry i.e., a trusted CA certificate.
Owner: CN=CA, O=Test CA, ST=Some-State, C=US
Issuer: CN=CA, O=Test CA, ST=Some-State, C=US
Serial number: c896adcad015985e
Valid from: Mon Dec 21 19:48:29 HKT 2009 until: Thu Dec 19 19:48:29 HKT 2019
Certificate fingerprints:
MD5: BB:15:7D:0A:C4:5C:D7:58:C3:43:40:E0:FC:E3:87:E6
SHAl: 47:7B:86:AF:52:A1:57:CD:83:03:AA:45:4A:B2:19:38:C1:2E:B8:5E
Signature algorithm name: SHAlwithRSA
Version: 3

ok ok ok ok ok ok kK Kk kK kKKK K Kk Kk k ok Kk ok k ok ok ok ok ok ok ok ok ok kK K

ok ok ok ok ok ok kK ok Kk kK K Kk Kk Kk k ok k kK ok ok k ok ok ok ok ok ok ok ok ok ok K K

ltis a key entry, i.e., a |t means that there The first certificate is c1's certificate.

private key along with ~ are two certificates From the "Issuer” field you can see it is
a certificate. in the entry. issued by the test CA, so the next
‘ | certificate is that of the test CA.

Alias name: cl
Creation date:|Dec 21, 200
Entry type: PrivateKeyEntr
Certificate chain length:
Certificate[1]:
Pwner: CN=cl, DC=bar, DC=com
Mssuer: [CN=CA, O=Test CA, ST=Some-State, C=US |
Berial number: 3
alid from: Mon Dec 21 19:49:00 HKT 2009 until: Thu Dec 20 19:49:00 HKT 2012
Certificate fingerprints:

MD5: ED:0B:4A:D8:DD:0C:1C:E5:AF:06:8E:C8:F2:E7:C4:9C

SHAl: DF:C5:4D:C0:5B:A4:8E:FD:00:EF:5E:AE:85:06:0F:20:91:B2:C8:E5

Signature algorithm name: SHAlwithRSA

Version: 1
Certificate[2]: Y
Dwner: [CN=CA, O=Test CA, ST=Some-State, C=US |
Issuer: CN=CA, O=Test CA, ST=Some-State, C=US
Berial number: c896adcad015985e
alid from: Mon Dec 21 19:48:29 HKT 2009 until: Thu Dec 19 19:48:29 HKT 2019
Certificate fingerprints:

MD5: BB:15:7D:0A:C4:5C:D7:58:C3:43:40:E0:FC:E3:87:E6

SHAl: 47:7B:86:AF:52:A1:57:CD:83:03:AA:45:4A:B2:19:38:C1:2E:B8:5E

Signature algorithm name: SHAlwithRSA

Entry 2

The‘ second certificate is
the certificate of the test
CA.

ok ok ok ok ok ok Kk Kk Kk kK kK KKk Kk k kK k Kk ok k ok ok ok ok ok ok ok ok ok kK K

ok ok ok ok ok ok kK ok Kk kK K Kk Kk Kk k ok k kK ok ok k ok ok ok ok ok ok ok ok ok ok K K

155

A certificate chain is also called a "certificate path". If the certificate of your test
CA was issued by yet another CA, then the certificate path would contain the

certificate of that other CA as the last certificate.

156 Chapter 8 Signing and encrypting SOAP messages

SecureService

src
Just like the Axis server which
has a repository, your Axis client

can also have a repository.
tfmodules P ry

Lg,repository

Rename the WSDL to SecureService.wsdl and replace the word "Secure" for
"Wrapped" in it. Update the build.xml file:

Signing SOAP messages

Now, let create a client that signs the SOAP messages. Copy the
WrappedService and WrappedClient projects and paste them SecureService
and SecureClient respectively. Rename the WSDL file in the service project as
SecureService.wsdl and replace the word "Secure" for the word "Wrapped":

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://ttdev.com/ss" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" name="SecureService"
targetNamespace="http://ttdev.com/ss">
<wsdl:types>
<xsd:schema targetNamespace="http://ttdev.com/ss">
<xsd:element name="concat">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="sl" type="xsd:string" />
<xsd:element name="s2" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="concatResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="r" type="xsd:string">
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</wsdl:types>
<wsdl:message name="concatRequest">
<wsdl:part element="tns:concat" name="parameters" />
</wsdl:message>
<wsdl:message name="concatResponse">
<wsdl:part element="tns:concatResponse" name="parameters" />
</wsdl:message>
<wsdl:portType name="SecureService'">
<wsdl:operation name="concat">
<wsdl:input message="tns:concatRequest" />
<wsdl:output message="tns:concatResponse" />
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="SecureServiceSOAP" type="tns:SecureService">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="concat">
<soap:operation soapAction="http://ttdev.com/ss/NewOperation" />

Chapter 8 Signing and encrypting SOAP messages 157

<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="SecureService">
<wsdl:port binding="tns:SecureServiceSOAP" name="pl">
<soap:address location="http://localhost:8080/ss/pl" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Then further modify it as:

158 Chapter 8 Signing and encrypting SOAP messages

It belongs to the web service policy namespace.

<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://ttdev.com/ss"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702"

———xmlns:wsp="http://www.w3.0rg/2006/07/ws-policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss~-

wssecurity-utility-1.0.xsd"
name="SecureService"
targetNamespace="http://ttdev.com/ss">

It belongs to the security policy namespace.

<wsp|:Policy wsu:Id="ml">——— This is a "policy". A policy specifies non-functional
<sp:SignedParts>— requirements of the web service (e.g., security, quality of
<sp:Body /> service). The syntax of specifying a policy is governed
</sp:SignedParts> by the WS-Policy standard.

</wsp:Policy>

<wsdl:types> This is a "policy assertion". It requires certain parts of

the SOAP message be signed.

</wsdl:types> The parts should be signed are listed here.
<wsdl:message name="doncatRequest"> Here, only the <Body> of the SOAP

. message should be signed.
</wsdl:message>

<wsdl:message name="doncatResponse"> As the <PolicyReference> element
. belongs to a foreign namespace (wsp),
</wsdl:message> there is no guarantee that the program
<wsdl:portType name="SecureServige"> processing the WSDL file (e.g.,
<wsdl:operation name="concat"> WSDLToJava) understands it. This

<wsdl:input message="tns:concatRequest" /> aﬁﬂbMerequkesthatme[xogram
<wsdl:output message="tns:cgncatResponse" /> understand it, otherwise it should abort
</wsdl:operation> the processing.
</wsdl:portType>
<wsdl:binding name="SecureServiceSOAP" type="tns:SecyreService">
44{::Ef?ap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"| />
<wsdl:operation name="concat">
<wsp:PolicyReference URI="#pl" wsdl:required="true" />

<soap:operation .../> L Apply the policy "p1" to the SOAP binding of the
<wsdl:input> s " concat operation. It means the <Body> of all the
<soap:body use="literal" /> \neseages for the concat operation must be
</wsdl:input> signed as long as they're using SOAP over
<wsdl:output> HTTP. Without this the policy would be sitting

<soap:body use="literal™ /> ihere idle and would have no effect.
</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="SecureService">
<wsdl:port binding="tns:SecureServiceSOAP" name="pl">

<soap:address location="http://localhost:8080/ss/pl" />

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

If you had multiple operations in the port type and they all required
signed messages, you would move the <PolicyReference> to there
so that it would apply to the SOAP binding of all the operations in
that port type.

Saying that the <Body> should be signed is not enough. You still need to specify
that asymmetric encryption should be used and what signature algorithms are
supported and etc.:

Chapter 8 Signing and encrypting SOAP messages 159

This policy assertion states that asymmetric
encryption should be used.

Why have an extra <Policy> element? It is
used to AND the three child security
<wsdl:definitions }.. assertions below. That is, they must be
name="SecureServijice" satisfied simultaneously
targetNamespace="http://ttdev.com/ss">
<wsp:Policy wsu:[Id="pl">
[<sp:AsymmetricBinding>
<wsp:Policy>
<sp:InitiatorToken> | Whatkind of token (certificate here) should
be used by the initiator (i.e., the client)?

</sp:InitiatorToken>
<sp:RecipientToken>

What kind of token (certificate here) should
be used by the recipient (i.e., the service)?

</sp:RecipientToken>
<sp:AlgorithmSuite>

What kind of algorithm should be used?

</sp:AlgorithmSuite>
</wsp:Policy>
L </sp:AsymmetricBinding>
— <sp:SignedParts>

<sp:Body />
L </sp:SignedParts>
</wsp:Policy>

</wsdl:definitions>

Similarly, this <AsymmetricBinding> assertion
and the <SignedParts> assertion are AND'ed
together by the enclosing <Policy>.

You need to further specify the token types and the algorithm suite:

160 Chapter 8 Signing and encrypting SOAP messages

It modifies the meaning <Policy> to
mean meeting any one of the child
assertions is enou?h.

<wsp:Policy>
[<wsp:ExactlyOne>

<sp:X509Token .../>
<foo:FooToken .../>
<bar:BarToken .../>

Why use a <Policy> here? You could </wsp:ExactlyOne>

use it to require any one of the supported </wsp:Policy>

token formats suchas: ——————

<sp:AsymmetrigBinding>
<wsp:Policy
<sp:InitiptorToken> It should use an X509 token, which means an
<wsp:Policy> l certificate. X509 is the official name.
<sp:X509Token

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-

securitypolicy/200702/IncludeToken/AlwaysToRecipient
<wsp:Policy>
<sp:WssX509V3Toke: The client should

10 />
</wsp:Policy> X509 certificates have different always include its
</sp:X509Token> versions and presentations. Here token (certificate) in
</wsp:Policy> use v3 and the XML presentation LN message to the
</sp:InitiatorToken> as specified in the web service web service.
<sp:RecipientToken> security (WSS) X509 token profile
<wsp:Policy> 1.0.
<sp:X509Token
sp:IncludeToken="http://docs.ocasis-open.org/ws-sx/ws-
securitypolicy/200702/IncludeToken/Never"> "
<wsp:Policy> Also use X509 v3 certificate for
<sp:WssX509V3Tokenl0 /> the web service.
</wsp:Policy>
</sp:X509Token> The service should never send its certificate
</wsp:Policy> to the client. Instead, send enough
</sp:RecipientToken> information to the client so that the client can
<sp:AlgorithmSuite> retrieve it. How? You'll see later.
<wsp:Policy>
<sp:TripleDesRsal5 />
</wsp:Policy>
</sp:AlgorithmSuite> Use 3DES for encryption and RSA 1.5

</wsp:Policy> algorithm for digital signatures.
</sp:AsymmetricBinding>

You could list other aspects of the algorithm suite here.
Finally, you still need to specify how to actually include the certificates in the

messages (e.g., include them directly or just include their unique IDs). These
options are specified by the Web Service Security (WSS) standard v1.0:

Chapter 8 Signing and encrypting SOAP messages 161

<wsdl:definitions ...
name="SecureService"
targetNamespace="http://ttdev.com/ss">
<wsp:Policy wsu:Id="pl">
<sp:AsymmetricBinding>

</sp:AsymmetricBinding>

<sp:Wss10> Supports WSS 1.0. Both sides must be able deal with

<wsp:Policy> tokens (certificates) directly
<sp:MustSupportRefEmbeddedToken /> included in the messages
<sp:MustSupportRefIssuerSeriiigfj;ggggi
</wsp:Policy> Both sides must be able to use the
</sp:Wssl0> issuer DN and serial number to look
<sp:SignedParts> up the certificate.

<sp:Body />
</sp:SignedParts>
</wsp:Policy>

</wsdl:definitions>

Copy the WSDL to the client project. Update the CodeGenerator class in both
projects. Delete the com.ttdev.ss package in both projects. Then generate the
code in both projects. Create the SecureServicelmpl class:

@WebService (endpointInterface = "com.ttdev.ss.SecureService")
public class SecureServiceImpl implements SecureService {

@Override
public String concat (String sl, String s2) {
return sl + s2;
}
}

In both projects, add the following dependencies in pom.xml:
<project ...>
;aépendencies>

<dependency>
<groupId>org.apache.rampart</groupId>
<artifactId>rampart-policy</artifactId>
<version>l.4</version>

</dependency>

<dependency>
<groupId>org.apache.rampart</groupId>
<artifactId>rampart-core</artifactId>
<version>1l.4</version>

</dependency>

</dependencies>
</project>

This Rampart package implements the WSS standard. Next, in the client
project, modify the SecureService P1_Client class to provide information
needed by Rampart to perform the signing (e.g., the keystore alias to use):

162 Chapter 8 Signing and encrypting SOAP messages

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import org.apache.cxf.ws.security.SecurityConstants; The glias of the entry in the
import org.apache.ws.security.WSPasswordCallback; keystore. Use its private key

to sign the message.

public static void main(String args[]) throws Exception {

SecureService Service ss = new SecureService Service|(wsdlURL, SERVICE NAME) ;
SecureService port = ss.getPl();

BindingProvider bp = (BindingProvider) port;

Map<String, Object> context = bp.getRequestContext()|

context.put (SecurityConstants.SIGNATURE_USERNAME, "cl");

context.put (SecurityConstants.CALLBACK HANDLER, new CallbackHandler() {

QOverride
public void handle (Callback[] callbacks) throws IOException,

UnsupportedCallbackException {
for (int i = 0; i < callbacks.length; i++) {
WSPasswordCallback pwcb = (WSPasswordCallback) (callbacks[i];
String id = pwcb.getIdentifier();

if (id.equals("cl"})¢

pwcb.setPassword("cl-pass") ; ‘

| Rampart will need the
password for the "c1" entry

} Need the to sign the message. It will
} password for call this callback handler to
OK, tell you the password. "c1"? retrieve the password.

}
b
context .put (SecurityConstants.SIGNATURE_PROPERTIES, "crypto.properties");
{

System.out.println("Invoking concat..."); Rampart needs to more information

java.lang.String concat sl = ""; such as the location of the keystore
java.lang.String concat s2 = ""; and etc. This kind of information will
java.lang. Str}ng _concat__return = ...; differ from site to site, so it is
System.out.printlin(...); assumed to be in a properties file

} created by the operation team.

System.exit (0);

This is a classpath. So you'll create it
in src/main/resources.

Create the crypto.properties file in src/main/resources:

Rampart uses a cryptographic provider to perform
signing, encryption and etc. You specify the class of
the provider to use this. Here you're telling it to use
the Merlin provider which comes with rampart and

uses the JDK to perform these tasks. A Java keystore supports different

formats. JKS is the default.

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlinl.keystore.type=JKS
org.apache.ws.security.crypto.merlinl.file=c:/Documents and Settings/kent/keys/client.ks
org.apache.ws.security.crypto.merlin.keystore.password=client-ks-pass

Th i ‘ for the Merli The path to the keystore
ese properties are for the Merlin The keystore password

provider only. It has the concept of
keystore (a Java concept) and etc.

Fill in the actual arguments for the concat() call and redirect it to the TCP
Monitor so that you can observe the message:

public static void main(String args[]) throws Exception ({

Chapter 8 Signing and encrypting SOAP messages 163

SecureService_Service ss = new SecureService_ Service (wsdlURL, SERVICE_NAME) ;
SecureService port = ss.getPl();

BindingProvider bp = (BindingProvider) port;

Map<String, Object> context = bp.getRequestContext();

context.put (SecurityConstants.SIGNATURE USERNAME, "cl");
context.put(SecurityConstants.CALLBACK_HANDLER, new CallbackHandler () {

@Override
public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {
for (int i = 0; i < callbacks.length; i++) {
WSPasswordCallback pwcb = (WSPasswordCallback) callbacks[i];
String id = pwcb.getlIdentifier();
if (id.equals("cl")) {
pwcb.setPassword("cl-pass") ;
}

}

1)
context.put (SecurityConstants.SIGNATURE PROPERTIES, "crypto.properties");

context.put (BindingProvider .ENDPOINT ADDRESS_ PROPERTY,
"http://localhost:1234/ss/pl") ;
{

System.out.println("Invoking concat...");

java.lang.String concat sl = "abe";

java.lang.String _concat_s2 = "123";

java.lang.String concat return = port.concat(_concat sl, concat s2);
System.out.println("concat.result=" + _concat__return);

}
System.exit (0);
}
Launch TCP Monitor and let it listen on 1234. Run the service (even though it
isn't prepared to the signed message yet). Run the client and you will see an
error in the console. This is fine as the web service is not yet prepared to handle
the digital signature. What is interesting is in the request message as shown in
the TCP Monitor:

164 Chapter 8 Signing and encrypting SOAP messages

A <Security> element is added.
Itis a header entry. Everything
about security is included here.

The "mustUnderstand" attribute is set to 1, meaning that the
receiver (the service) must handle this header, otherwise it
must return a SOAP fault (which is the case here).

<soap:Envelope xmlns:soap="hlttp://schemas.xmlsoap.org/soap/envelope/">

<soap:Header> . L .
<wsse:Security The token (certificate) is directly A <Signature> element
xmlns:wsse="..." included here. represents a d|g|ta|l
soap:mustUnderstand="1"> signature. You don't need

<wsse:BinarySecurityToken toquy understand its
smlnsiwsse=r..." details. If later you encrypt

xmlns:wsu=

+| the message, there will be

EncodingType="...200401-wss-soap-message-security-1.0#Base64Binary
ValueType="...0asis-200401-wss-x509-token-profile-1.0#X509v3" an <EncryptedData>
wsu:Id="CertId-88466A8D526A7838FF12614728119781"> element as its S|b||ng

MIIB5zCCAVACAQMw. ..D4=
</wsse:BinarySecurityToken>
[<ds:Signature xmlIns:ds="http://www.w3.0rg/2000/09/xmIdsig#"
Id="Signature-1">
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.0rg/2001/1(/xml-exc-cl4n$" />

<ds:SignatureMethod Algorithm="...xmldgig#rsa-shal" />
<ds:Reference [UR 1d-9367927">
<ds:Transforms>
<ds:Transform Algorithm="http://wWww.w3.0rg/2001/10/xml-exc-cl4n#" />
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"™ />
<ds:DigestValue>10s/bnulcSoyQgIJ21wKaKGVgFQ=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignatureValue>GbA6kZQ3PAw65xWcI4TE/ rbjwe. . . .Jm4VudgALTU=</ds:SignatureValue>
<ds:KeyInfo Id="KeyId-88466A8D526A7838FF12614728119882">

<wsse:SecurityTokenReference The signature was created
xmlns:wsse="..."

Ymins:weus". . " using this token (certificate).

wsu:Id="STRIdA-88466A8P526A7838FF12614728119913">

<wsse:Reference
xmlns:wsse="...
URI="#CertId-88466A8D526A7838FF12614728119781"
ValueType="...0asi$-200401-wss-x509-token-profile-1.0#X509v3" />

</wsse:SecurityTokenReference> The signature is signing over this element,

</ds:KeyInfo>
</ds:Signature> i.e., the <Body> element.

</wsse:Security>
</soap:Header>
<soap:Body

xmlns:wsu="... . .
wsu:Id="T1d-9367927" >a— The <Body> element is basically

<ns2:concat xmlns:ns2="http://ttdev.com/ss"> unchanged.The onw excepﬁonis
<sl>abe</sl> that an id has been added so that

<s2>123</s2> the signature can refer to it.
</ns2:concat>

</soap:Body>

</soap:Envelope>

Supporting digital signatures in the web service

In the service project, modify the SecureService_ P1_Server class as shown
below:

Chapter 8 Signing and encrypting SOAP messages 165

Create the end point without
publishing it yet.

public class SecureService_ Pl Server ({

protected SecureService Pl _Server() fthrows Exception {
System.out.println("Starting Server"); The properties are like the request
Object implementor = new SecureServiceImpl(); context in the client.

String address = "http://localhost:8080/ss/pl";

Endpoint endpoint = Endpoint.create (implementor) ;

Map<String, Object> properties = endpoint.getProperties() ;

properties.put (SecurityConstants.SIGNATURE_USERNAME, "sl1");

properties.put (SecurityConstants.CALLBACK HANDLER,
new CallbackHandler () {

You'll create a keystore alias
named "s1" for it later.

QOverride
public void handle(Callback[] callbacks)
throws IOException, UnsupportedCallbackException {
for (int i = 0; i < callbacks.length; i++) {
WSPasswordCallback pwcb = (WSPasswordCallback) callbacks[i];
String id = pwcb.getIdentifier();
if (id.equals("sl1l")) {
pwcb. setPassword ("sl-pass") ;

}

} Provide the password for the "s1"

try.
) entry.

b
properties.put (SecurityConstants.SIGNATURE PROPERTIES, "crypto.properties");

endpoint.publish (address) ;
} You'll create this properties

) file later.

Create the crypto.properites in src/main/resources:

org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Me
rlin

org.apache.ws.security.crypto.merlin.keystore.type=JKS
org.apache.ws.security.crypto.merlin.file=c:/Documents and
Settings/kent/keys/service.ks
org.apache.ws.security.crypto.merlin.keystore.password=service-ks-pass

Next, you will create the keystore for the service (service.ks) and create the "s1"
entry. So, open a command prompt, change into the "keys" folder and then:

keys\>keytool -genkey -alias sl -keystore service.ks -dname cn=sl,dc=foo,dc=com
-keyalg RSA -sigalg SHAlwithRSA
Enter keystore password:
Re-enter new password:
Enter key password for <sl>
(RETURN if same as keystore password) :
Re-enter new password:

Use "service-ks-pass" as the keystore password and "s1-pass" as the entry
password for "s1". Then, generate a certificate request for it:

keys\>keytool -certreq -alias sl -keystore service.ks -file sl.csr
Enter keystore password:
Enter key password for <sl>

Use your test CA to create a certificate for it (remember that "ca-pass” is the
password for the CA key):

keys\>cd ..\CA

CA\>openssl x509 -CA cacert.pem -CAkey cakey.pem -CAserial serial.txt -reqg

166 Chapter 8 Signing and encrypting SOAP messages

-in ../keys/sl.csr -out ../keys/sl.cer -days 1095
Signature ok

subject=/DC=com/DC=foo/CN=s1

Getting CA Private Key

Enter pass phrase for cakey.pem:

Import the certificate of the CA:
CA\>cd ..\keys

keys\>keytool -import -alias testCA -keystore service.ks -file ../CA/cacert.pem
Enter keystore password:
Owner: CN=CA, O=Test CA, ST=Some-State, C=US
Issuer: CN=CA, O=Test CA, ST=Some-State, C=US
Serial number: c896adcad015985e
Valid from: Mon Dec 21 19:48:29 HKT 2009 until: Thu Dec 19 19:48:29 HKT 2019
Certificate fingerprints:
MD5: BB:15:7D:0A:C4:5C:D7:58:C3:43:40:E0:FC:E3:87:E6
SHAl: 47:7B:86:AF:52:A1:57:CD:83:03:AA:45:4A:B2:19:38:C1:2E:B8:5E
Signature algorithm name: SHAlwithRSA
Version: 3

f;&st this certificate? [no]: yes
Certificate was added to keystore

Import the certificate for the service into the keystore:
keys\>keytool -import -alias sl -keystore service.ks -file sl.cer
Enter keystore password:

Enter key password for <sl>
Certificate reply was installed in keystore

Do you need to import c1's certificate? No. As the client will include it in the
message, you don't need it in the keystore. On the other hand, do you need to
import s1's certificate into the keystore for the client? Yes. This is because the
web service will not send its certificate to the client, but just the issuer's DN and
serial number of the certificate. So the client needs this certificate in its
keystore. So, import it (recall that the client keystore password is "client-ks-
pass"):
keys\>keytool -import -alias sl -keystore client.ks -file sl.cer

Enter keystore password:
Certificate was added to keystore

Now, a very important step: For Rampart to take effect, it must have access to
the policy information (in the WSDL file). However, for the moment, only the
service stub (SecureService Service) knows where the WSDL file is, but
neither the SEI (SecureService) nor the implementation does:
@WebServiceClient (
name = "SecureService",
wsdlLocation = "file:src/main/resources/SecureService.wsdl",

targetNamespace = "http://ttdev.com/ss"
public class SecureService_Service extends Service {

}

@WebService (
targetNamespace = "http://ttdev.com/ss"
name = "SecureService"

@XmlSeeAlso ({ObjectFactory.class})
public interface SecureService {

}

@WebService (endpointInterface="com.ttdev.ss.SecureService"
public class SecureServiceImpl implements SecureService {

Chapter 8 Signing and encrypting SOAP messages 167

@Override
public String concat (String sl, String s2) {
return sl + s2;

}

}
To fix the problem, either modify the SEI or the implementation class to add the
information. As the the SEl is generated, it's better to modify the implementation
class:

Specify the QName of the service. Why? If you don't,
CXF will assume that it is the same as the class name
(SecureServicelmpl) but there is no such service defined
in the WSDL file. In the past it was fine because you
didn't provide a WSDL file for it to check against.

<Kwsdl:definitions>

</wsdl:binding>
<wsdl:service name="SecureService">
<wsdl:port name="pl" ...>
<soap:address .../>
</wsdl:port>

Specify the location of the </wsdl:service>

WSDL file. </wsdl:definitions>
@WebService (
endpointInterface="com.ttdev.ss.SecureService",
wsdlLocation = "file:src/main/resources/SecureService.wsdl",
[:targetNamespace = "http://ttdev.com/ss",
serviceName = "SecureService")

public class SecureServiceImpl implements SecureService {

@Override
public String concat(String sl, String s2) {
return sl + s2;
}
}

Now, run the service and then the client. This time it will work. If you check the
SOAP response message in TCP Monitor, you'll see:

168 Chapter 8 Signing and encrypting SOAP messages

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<wsse:Security
xmlns:wsse="...
soap:mustUnderstand="1">
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
Id="Signature-1">
<ds:SignedInfo>
<ds:CanonicalizationMethod
Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#" />
<ds:SignatureMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#rsa-shal" />
<ds:Reference URI="#Id-22746539">
<ds:Transforms>
<ds:Transform Algorithm="http://www.w3.0rg/2001/10/xml-exc-cl4n#" />
</ds:Transforms>
<ds:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal™ />
<ds:DigestValue>XhWkOXyz2+OhnIeFFx4VHQTGeqg=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>
<ds:SignaturevValue>
bU2C...all/czvA=
</ds:SignatureValue>
<ds:KeyInfo Id="KeyId-B2DEEA4DF54BD8D8F712615434819612">
<wsse:SecurityTokenReference
xmlns:wsse="..."
xmlns:wsu="..."
wsu:Id="STRId-B2DEEA4DF54BD8D8F7]2615434819613">
Kds:X509Data>
<ds:X509IssuerSerial>
<ds :X509IssuerName>CN=CA,O=Test
CA,ST=Some-State,C=US</ds:X509IssuerName>
<ds:X509SerialNumber>4</ds:X509SerialNumber>
</ds:X509IssuerSerial>
K/ds:X509Data>
</wsse:SecurityTokenReference>
</ds:KeyInfo>
</ds:Signature>
</wsse:Security>
</soap:Header>
<soap:Body
xmlns:wsu="...
wsu:Id="Id-22746539">
<ns2:concatResponse xmlns:ns2="http://ttdev.com/ss">
<r>abcl23</r>
</ns2:concatResponse>
</soap:Body>
</soap:Envelope>

" There is no <BinarySecurityToken> here. It
means the s1 certificate is not sent.

Use the issuer DN and certificate serial
number (4 here) to identify the certificate.
It is up to the client to look it up.

That is, it is telling the service that the certificate used to sign the message is
issued by CN=CA,O=Test CA,ST=Some-State,C=US and the serial number of
the certificate is 4. It is hoping that the client can use this information to locate
the certificate and then use the public key in it to verify the signature. For this to
work, the client may scan all the certificates in the keystore to try to find it. It
means you must import s1's certificate into the keystore on the client.

Encrypting SOAP messages

At the moment the messages are signed, but they aren't encrypted and thus
people on the Internet can see them. If the information is confidential, you
should encrypt it. To do that, modify the policy in the WSDL files in both
projects:

Chapter 8 Signing and encrypting SOAP messages 169

<?xml version="1.0" encoding="UTF-8"7?>
<wsdl:definitions ...>
<wsp:Policy wsu:Id="pl">
<sp:AsymmetricBinding>

</sp:AsymmetricBinding>
<sp:Wssl0>

</sp:Wssl0>
<sp:SignedParts>
<sp:Body />
</sp:SignedParts>
<sp:EncryptedParts>

<sp:Body /> — The <Body> element of the SOAP message
</sp:EncryptedParts> should be encrypted. This assertion is AND'ed
</wsp:Policy> together with the others, so both signing and

. encryption must be done.
</wsdl:definitions>

You're about to generate the code again, but this will overwrite your code in
SecureService P1_Server and SecureService P1_Client. So, it's better to
move the code into a your own classes. Move the server code into a
SecureServer class:

public class SecureServer {

public static void main(String[] args) {
System.out.println("Starting Server");
Object implementor = new SecureServiceImpl () ;
String address = "http://localhost:8080/ss/pl";
Endpoint endpoint = Endpoint.create (implementor);
Map<String, Object> properties = endpoint.getProperties();
properties.put (SecurityConstants.SIGNATURE_USERNAME, "sl1");
properties.put (SecurityConstants.CALLBACK HANDLER,

new CallbackHandler () {

@Override
public void handle (Callback[] callbacks
throws IOException, UnsupportedCallbackException {
for (int 1 = 0; i < callbacks.length; i++) {

WSPasswordCallback pwcb = (WSPasswordCallback) callbacks[i];
String id = pwcb.getIdentifier();
if (id.equals("sl1")) {

pwcb.setPassword("sl-pass") ;
}
}

}
1)
properties.put (SecurityConstants.SIGNATURE PROPERTIES, "crypto.properties");
endpoint.publish (address) ;
}
}

Move the client code into a new SecureClient class:

public class SecureClient {

public static void main(String[] args) {

SecureService Service ss = new SecureService Service(
SecureService_Service.WSDL_LOCATION,
SecureService Service.SERVICE);

SecureService port = ss.getPl();

BindingProvider bp = (BindingProvider) port;

Map<String, Object> context = bp.getRequestContext();

170

context.put (SecurityConstants.SIGNATURE_USERNAME,
context.put (SecurityConstants.CALLBACK HANDLER, new

@Override

public void handle(Callback[] callbacks)
UnsupportedCallbackException {

for (int 1 0; i < callbacks.length;
WSPasswordCallback pwcb
String id pwcb.getIdentifier();
if (id.equals("cl")) {
pwcb.setPassword("cl-pass");

}

i++) |

}
1)
context.put (SecurityConstants.SIGNATURE PROPERTIES,

(WSPasswordCallback)

Chapter 8 Signing and encrypting SOAP messages

"ol ;

CallbackHandler () {

throws IOException,

callbacks([i];

"crypto.properties");

context.put (BindingProvider .ENDPOINT ADDRESS_PROPERTY,

"http://localhost:1234/ss/pl");

System.out.println ("Invoking concat...");
java.lang.String _concat_sl = "abc";
java.lang.String _concat_s2 = "123";

java.lang.String _concat_ return

port.concat (_concat_sl, _concat s2);

System.out.println("concat.result=" + _concat__return);

}

}
Generate the code again in both projects. Modify the SecureClient class:

public class SecureClient ({
public static void main(String[] args) {

SecureService Service ss new SecureService Service(
SecureService_Service.WSDL_LOCATION,
SecureService Service.SERVICE}+

SecureService port = ss.getPl();

Use this keystore alias to perform
encryption. Here, get the certificate
for the alias “s1” from the keystore
and use the public key there to
encrypt the message. Note that you

BindingProvider bp = (BindingProvider) port; don't need the password to get the
Map<String, Object> context = bp.gletRequestContext (); publickey.

context.put (SecurityConstants.SIGNATURE USERNAME, "cl1");
context.put(SecurityConstants.ENCRYPT USERNAME, "sl1");

context.put(SecurityConstants.CALLBACE;HANDLER, new CallbackHandler () {

@Override
public void handle (Callback[] callbacks)
UnsupportedCallbackException {
for (int i = 0; 1 < callbacks.length; i++) {
WSPasswordCallback pwcb (WSPasswordCallback)
String id pwcb.getIdentifier();
if (id.equals("cl")) {
pwcb.setPassword ("cl-pass");

throws IOException,

callbacks[i];

Need to specify the keystore location and etc.
for encryption purpose. Here, use the same

! thing for signing.

1)

context .put (SecurityConstants.SIGNATURE_ PROPERTIES, "crypto.properties");

context.put (SecurityConstants.ENCRYPT PROPERTIES, "crypto.properties");

context.put (BindingProvider.ENDPOINT_ ADDRESS_ PROPERTY,
"http://localhost:1234/ss/pl");

System.out.println("Invoking concat...");
java.lang.String _concat_sl = "abc";
java.lang.String _concat_s2 = "123";

java.lang.String _concat__return port.concat (_concat_sl, _concat_s2);
System.out.println("concat.result=" + _concat__return);

Make similar changes to the SecureServer class:

Chapter 8 Signing and encrypting SOAP messages 171

public class SecureServer {

public static void main(String[] args) {
System.out.println("Starting Server");
Object implementor = new SecureServiceImpl();
String address = "http://localhost:8080/ss/pl";
Endpoint endpoint = Endpoint.create (implementor);
Map<String, Object> properties = endpoint.getProperties() ;
properties.put (SecurityConstants.SIGNATURE USERNAME, "s1");
properties.put (SecurityConstants.ENCRYPT USERNAME, "cl");
properties.put (SecurityConstants.CALLBACK HANDLER,

new CallbackHandler () {

@Override
public void handle (Callback[] callbacks
throws IOException, UnsupportedCallbackException {
for (int 1 = 0; i < callbacks.length; i++) {

WSPasswordCallback pwcb = (WSPasswordCallback) callbacks[i];
String id = pwcb.getIdentifier();
if (id.equals("sl1")) {

pwcb.setPassword ("sl-pass") ;
}
}

}
1)
properties.put (SecurityConstants.SIGNATURE PROPERTIES, "crypto.properties");
properties.put (SecurityConstants.ENCRYPT PROPERTIES, "crypto.properties");
endpoint.publish (address) ;
}

}
However, there is a problem here. As you're encrypting the response message
using c1's public key, how can it find out c1's public key? You'll need to put c1's
certificate in the keystore for the web service. In addition, this web service can
only talk to a single client c1 (see the diagram below). If there is another client
c2, it can encrypt the request using s1's public key, but s1 will encrypt the
response using the public key of c1 (NOT ¢2), making c2 fail to decrypt it:

1: Encrypt the request using s1's

@ public key.
2: Encrypt the response using

c1's public key.

3: Encrypt the request using s1's

@ public key.
4: Encrypt the response using

c1's public key. Problem: c2
can't decrypt it!

To solve this problem, Rampart supports a special way of operation. If ¢1 both
signs and encrypts the request, it will sign it using its own private key (see the
diagram below). If it also includes its certificate in the request, then Rampart on
the server side can be instructed to look up this certificate in the request and
use it to encrypt the response. Therefore, it will use c1's certificate to encrypt
the response. If c2 sends it a request, it will encrypt the response using c2's
certificate:

172 Chapter 8 Signing and encrypting SOAP messages

c1 cert 2: Get this certificate
and use it to encrypt

the response.

1: Sign the request using c1's private key

and encrypt it using s1's public key.
@ 3: Encrypt the response using c1's public @

key.

c2 cert

4: Sign the request using c2's private key and

@ encrypt it using s1's public key.
6: Encrypt the response using c2's

public key.

5: Get this certificate
and use it to encrypt
the response.

To enable this operation, put a special value "useReqSigCert" as the encryption
username:

It stands for "use request signing
certificate". That is, use the
public class SecureServer { certificate that signed the request
public static void main(String[] args) { message
System.out.println("Starting Server");
Object implementor = new SecureServicelImpl ();
String address = "http://localhost:8080/ss/pl";
Endpoint endpoint = Endpoint.create(implementor) ;
Map<String, Object> properties = endpoint.getProperties();
properties.put (SecurityConstants.SIGNATURE USERNAME, "s1");
properties.put (SecurityConstants.ENCRYPT USERNAME, "useRegSigCert");

Now run the server and the client and they should continue to work. To verify
that the messages are indeed encrypted, check them out in the TCP Monitor:

Chapter 8 Signing and encrypting SOAP messages 173

All encryption and signing information
is included in the <Security> header.

<soap:Envelope xmlps:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xenc="http://www.w3.0rg/2001/04/xmlenc#">
<soap:Header>

<wsse:Security . .
mlns wssemh. .. " This represents the encrypted symmetric key.

soap:mustUnderstgnd="1"> How the symmetrlc
<xenc:EncryptedKey xmlns:xenc="http://www.w3.0rg/2001/04/xmlenc#" key was encrypted
——— Id="EncKeyId-9BOF450EB80863260412615466509075"> ‘
<xenc:EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-1_5" />
<ds:KeyInfo xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"> |
<wsse:SecurityTokenReference

xnlns iwgse=t ... "> | Information about the
<ds:X509Data> .
<ds:X509IssuerSerial> prlvate key that was US?d
<ds:X509IssuerName>CN=CA, O=Test to encrypt this symmetric
CA,ST=Some-State, C=US</ds:X509IssuerName> key_ Here it refers to s1's
<ds:X509SerialNumber>4</ds:X509SerialNumber> certificate using the

</ds:X509IssuerSerial> . .
</ds:X509Data> issuer DN and serial

</wsse:SecurityTokenReference> number.
</ds:KeyInfo> .
<xonc:Cipherbatas The encrypted symmetric key
<xenc:CipherValue>PvaShUU. ..cpL4gIc=</xenc:CipherValue>
</xenc:CipherData> "
<xenc:ReerenceLlst> The certificate (C1'S) and
<xenc:DataReference URI="#EncDataId-2" /> signature as before.
</xenc:ReferenceList>
</xenc:EncryptedKey> ‘
<wsse:BinarySecurityToken
ValueType="...0asis-200401-wss-x509-token-profile-1.0#X509v3"
wsu:Id="CertId-9BOF450EB80863260412615466499911">MIIB52CCAVAC. . .TDWFD4=
</wsse:BinarySecurityToken>
<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#" Id="Signature-1">

</ds:Signature>
</wsse:Security>

</soap:Header>

<soap:Body

xmlns:wsu="...

wsu:Id="I1d-16874657">

<xenc:EncryptedData xmlns:xenc="http://www.w3.0rg/2001/04/xmlenc#"

Id="EncDataId-2" Type="http://www.w3.0rg/2001/04/xmlenc#Content">How was the content of

<xenc:Encr 3 cd yptionMethod ™ the <Body> enc| ted?
Algorithm="http://www.w3.0rg/2001/04/xmlenc#tripledes-cbc" /> Y yp :

<ds:KeyInfo xmlns:ds="http://www.w3.0r¢/2000/09/xmldsig#"> It used 3DES.
<wsse:SecurityTokenReference xmlns:ysse="...">
<wsse:Reference The symmetric key used to encrypt the data

xmlns:wsse="..."

URI="#EncKeyId-9B0F450EB80863260412615466509075" />
</wsse:SecurityTokenReference>
</ds:KeyInfo> ’7The encrypted content of the <Body>
<xenc:CipherData>
<xenc:CipherValue>tsfEY+S9tf...yk5H</xenc:CiphervValue>
</xenc:CipherData>
</xenc:EncryptedData>
</soap:Body> ‘

</soap:Envelope> The content of the <Body> has been encrypted.

Security issues when performing both signing and
encrypting

When you're performing both signing and encryption, there are security issues.
For example, if you sign the <Body> and then encrypt it, then the resulting
message will be like:

174 Chapter 8 Signing and encrypting SOAP messages

<Header>
<Security>
<EncryptedKey>...</EncryptedKey>
<Signature>
<ds:SignedInfo>
<ds:CanonicalizationMethod .../>
<ds:SignatureMethod .../>

<ds:Reference URI="#Id-26622782">

<ds:DigestMethod .../>
<ds:DigestValue>JOO/ATRze2p/BUBwlqlZJ8xX9v4=</ds:DigestValue>
</ds:Reference>
</ds:SignedInfo>

The digest of the content of the

</Signature>
/Sig <Body> element

</Security>
</Header>
<Body>

encrypted data...
</Body>

The problem is that, if you run the client multiple times, the digest will be the
same. This is the way it should be. Given some particular plain text, anyone can
calculate the digest and it should be the same. This means that a hacker could
calculate the digest of some common plain text to build a lookup table like:

Plain text

<nsl:concat xmlns:nsl="http://ttdev.com/ss">

<sl>xyz</sl> — » khg8fryfs37ufaeG
<s2>111</s2>

</nsl:concat>

<nsl:concat xmlns:nsl="http://ttdev.com/ss">

<sl>xyz</sl> ——» HTsfjdiDFfhk
<s2>abc</s2>

</nsl:concat>

Then he can capture your message, get the digest and use the lookup table
above to recover the plain text, even though you've encrypted the content of the
<Body> element. It means the digest is actually leaking the plain text.

You may wonder if the hacker can do the same thing using the encrypted
content of the <Body> element?

Chapter 8 Signing and encrypting SOAP messages 175

<soapenv:Body ...>
<xenc:EncryptedData Id="EncDatald-26622782" ...>
<xenc:EncryptionMethod .../>
<ds:KeyInfo ...>

</ds:KeyInfo>
<xenc:CipherData>
<xenc:Ciphlf5erValue>
dKeF1lWLDgSV. . .
</xenc:CipherValue>
</xenc:CipherData>
</xenc:EncryptedData>
</soapenv:Body>

The encrypted content of the
<Body> element

If you run the client multiple times, you'll see that the encrypted content of the
<Body> element will change every time. This is a basic requirement of
encryption algorithms to prevent such a lookup attack (called "dictionary
attack").

Now the question is how to prevent the digest from leaking information? There
are three alternative solutions.

The first solution is to perform encryption first and then sign on the encrypted
<Body> content. As the encrypted content changes every time, the digest will
change every time. However, this is not a very good solution as digital
signatures should be performed on what is seen by the users (i.e., plain text, not
encrypted text). For the case on hand, as it is the client (not user) signing it, it
may be good enough.

The second solution is to sign and then encrypt and finally also encrypt the
signature.

The third solution is to include a random element (usually called "nonce" or
"salt") into the plain text so that the digest changes every time. For example,
you could add a third element to the request:

<nsl:concat xmlns:nsl="http://ttdev.com/ss">
<sl>xyz</sl>
<s2>111</s2>
<salt>kguy8FDsfDFAfa389r</salt>
</nsl:concat>

This is the most flexible solution but it means a lot of extra work on you.
Anyway, in order to implement the first solution (encrypt and then sign), modify
the policy in both projects:
<wsp:Policy wsu:Id="pl">
<sp:AsymmetricBinding>

<wsp:Policy>
<sp:InitiatorToken>

</sp:InitiatorToken>
<sp:RecipientToken>

</sp:RecipientToken>
<sp:AlgorithmSuite>

</sp:AlgorithmSuite>
<sp:EncryptBeforeSigning/>

176 Chapter 8 Signing and encrypting SOAP messages

</wsp:Policy>
</sp:AsymmetricBinding>
</Qéé:Policy>
To implement the second solution, modify the policy:
<wsp:Policy wsu:Id="pl">
<sp:AsymmetricBinding> Don't need this any more

LD o e
PR eEypPTtoSeT

o .
¥ TS

</sp:AsymmetricBinding>
<sp:WsslO0>

</sp:Wssl0>

<sp:SignedParts> It is like <EncryptedParts> but it is not using
<sp:Body /> SOAP structures such as <Body> to refer the

</sp:SignedParts> message. Instead, it uses something called

<sp:EncryptedParts> XPath to refer to elements in the XML

<sp:Body /> document.
</sp:EncryptedParts>
<sp:EncryptedElements>

</sp:EncryptedElements>

) Then select those whose element
</wsp:Policy>

name (ignoring the namespace) is
Look for any descendant of XML "Signature”.

root element (<Envelope> here)

<soapenv:Envelope ...>
<soapenv:Header>
<wsse:Security ...>
<xenc:EncryptedKey ...>...</xenc:EncryptedKey>
<ds:Signature ...>

</ds:Signature>
</wsse:Security>
</soapenv:Header>
</soapenv:Envelope>

Sending login information

Suppose that the web service will perform the requested operation only for
selected users only. To do that, you can configure your client to send the user
name and password to the web service. Such information is called a Username
Token. To require a Username token in the request message, modify the policy:

Chapter 8 Signing and encrypting SOAP messages 177

<wsp:Policy wsu:Id="pl">
<sp:AsymmetricBinding>

</sp:AsymmetricBinding>
<sp:Wssl0>

</sp:Wssl0>

<sp:SignedParts> A Username Token is not like the certificate token
- which is required for signing or encryption.

</sp:SignedParts> Therefore it is just a supporting token. Here, you

<sp:EncryptedParts> also require that it be signed to make sure that it has

... not been tampered with.
</sp:EncryptedParts>

<sp:SignedSupportingTokens> There can be other types of supporting tokens.

<wsp:Policy> Username token is just one possible type.
<sp:UsernameToken

sp:IncludeToken="http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702/IncludeToken/AlwaysToRecipient" />
</wsp:Policy>
</sp:SignedSupportingTokens>
</wsp:Policy> Always include it in the request message.

To specify the user name, modify the SecureClient class:

public class SecureClient {
public static void main(String[] args) {
SecureService Service ss = new SecureService_ Service(
SecureService Service.WSDL LOCATION,
SecureService Service.SERVICE) ;
SecureService port = ss.getPl();
BindingProvider bp = (BindingProvider) port;
Map<String, Object> context = bp.getRequestContext();
context.put (SecurityConstants.USERNAME, "Paul");
context.put (SecurityConstants.SIGNATURE USERNAME, "cl");
context.put(SecurityConstants.ENCRYPTiUSERNAME, "sl");
context.put (SecurityConstants.CALLBACK HANDLER, new CallbackHandler () {

}
}

So Rampart has the user name, but how does it know the password? It can use
the password callback. So modify that class further:

178 Chapter 8 Signing and encrypting SOAP messages

public static void main(String[] args) {

SecureService_Service ss = new SecureService Service(
SecureService Service.WSDL LOCATION,
SecureService_Service.SERVICE) ;

SecureService port = ss.getPl();

BindingProvider bp = (BindingProvider) port;

Map<String, Object> context = bp.getRequestContext();

context.put (SecurityConstants.USERNAME, "Paul");

context.put (SecurityConstants.SIGNATURE USERNAME, "cl1");

context.put (SecurityConstants.ENCRYPT USERNAME, "s1");

context.put (SecurityConstants.CALLBACK HANDLER, new CallbackHandler () {

@Override
public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {
for (int i = 0; i < callbacks.length; i++) {
WSPasswordCallback pwcb = (WSPasswordCallback) callbacks[i];
String id = pwcb.getIdentifier();
switch (pwcb.getUsage()) {

case WSPasswordCallback.DECRYPT: —— When Rampart needs to sign or
case WSPasswordCallback.SIGNATURE: { decrypt..
if (id.equals("cl")) {
pwch.setPassword("cl-pass");
} When Rampart needs to send a Username
break; token...
}

case WSPasswordCallback.USERNAME TOKEN: {
if (id.equals("Paul")) {
pwcb. setPassword ("paul-pass") ;

t)>reak ; Tell Rampart the password for
} Paul. In a real application, you
} may prompt the user
} (presumably Paul) for his
} password.

How can the web service verify the password? Again, Rampart replies on the
password callback to get the correct password for comparison. So, modify the
SecureServer class:

public class SecureServer ({

public static void main(String[] args) {
System.out.println("Starting Server");
Object implementor = new SecureServiceImpl();
String address = "http://localhost:8080/ss/pl";
Endpoint endpoint = Endpoint.create (implementor);
Map<String, Object> properties = endpoint.getProperties() ;
properties.put (SecurityConstants.SIGNATURE USERNAME, "sl1");
properties.put (SecurityConstants.ENCRYPT_USERNAME, "useRegSigCert");
properties.put (SecurityConstants.CALLBACK HANDLER,

new CallbackHandler () {

@Override
public void handle(Callback[] callbacks
throws IOException, UnsupportedCallbackException {
for (int 1 = 0; 1 < callbacks.length; i++) {
WSPasswordCallback pwcb = (WSPasswordCallback) callbacks[i];

Chapter 8 Signing and encrypting SOAP messages 179

String id = pwcb.getIdentifier();
switch (pwcb.getUsage()) {
case WSPasswordCallback.DECRYPT:
case WSPasswordCallback.SIGNATURE:
if (id.equals("sl1")) {
pwcb.setPassword ("sl-pass");
}
break;
case WSPasswordCallback.USERNAME TOKEN:
if (id.equals("Paul")) {
pwcb.setPassword ("paul-pass") ;
}
break;

In a real service you'll probably look up the user and the password from a
database or LDAP, instead of hard coding it in the source code.

Now run the server and then the client. You should see the Username token in
the TCP Monitor:

180 Chapter 8 Signing and encrypting SOAP messages

<soapenv:Envelope ...>
<soapenv:Header>
<wsse:Security ...>
<xenc:EncryptedKey Id="EncKeyId-29857804">

The Username token

o Paul is the user
</xenc:EncryptedKey>

name
<wsse:UsernameToken
xmlns:wsu="..." . .
wsu:Id="UsernameToken-6659511"> For security, the password is
<wsse:Username>Paul</wsse|: Username> not sent as clear text but as a

<wsse:Password

Type="http://docs.oasis-open.org/wss/

2004/01/0asis-200401-wss-username-token-profile-1.0#PasswordDigest">

6GW32nj7XJ0sTyIjDZrcQWn3X0E=

</wsse:Password>

<wsse :Nonce>/D2oMduF226uzRd4Rs3Bkw==</wsse :Nonce>
<wsu:Created>2007-12-15T06:16:55.765Z</wsu:Created>

</wsse:UsernameToken>

digest. ‘

<ds:Signature xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
Id="Signature-25421790"> L
<ds:SignedTnfo> The token is signed.
<ds:Reference URI="#UsernameToken-6659511">
Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />
<ds:DigestValue>) . o
Ht4ubB6JdHcLyaJUxYiwdnsQv3j0= To fight against dictionary attack, a nonce

</ds:DigestValue> and a time stamp are included when
</ds:Reference> calculating the digest:
< 2 S1 .
/ds:Signedinfo> password + nonce + time ‘
</ds:Signature> stamp
</wsse:Security> JVL
</soapenv:Envelope> |n addition, the web service can remember

the nonces seen in a short recent period. If
the same nonce is used again, it is a replay
attack.

If you don't want others to even see the user name of "c1", you can encrypt the
Username token. All that is required is to change <SignedSupportingTokens> to
<SignedEncryptedSupportingTokens> in the policy.

What if different users have different permissions? You can retrieve the user
name in your own code and decide what permissions he has. To do that, you
need to understand the data structure created by Rampart after processing the
request message. There could be multiple Rampart handlers running. Each will
store its result into an element of a Vector (see the diagram below). Each
Rampart handler instance may perform multiple actions, e.g., verify its
signature, verify a Username token or decrypt a message. Therefore, for each
action it will create a WSSecurityEngineResult to represent the result of that
action. So, each handler creates a vector-like structure to store all such results.
This is the WSHandlerResult. For example, in the diagram, the first action is
SIGN, which means verifying a signature, the result contains the certificate used
and etc. The second action is UT, which means verifying a Username token,
the result contains the user name:

Chapter 8 Signing and encrypting SOAP messages 181

Vector

The result created
by a Rampart
handler.

WSHandlerResult i .
(basically a Vector) The result for the WSSecurityEngineResult

.«
1% action [Action: SIGN
DN: CN=john...

The result for the W SSecurityEngineResult
[2% action | Rction: UT
User name: Paul

The result created
by another Rampart
handler.

WSHandlerResult
(basically a Vector)

L

Now, to retrieve the user name in the implementation object, modify
SecureServicelmpl.java:

182 Chapter 8 Signing and encrypting SOAP messages

import java.security.Principal;

import java.util.Vector;

import javax.annotation.Resource;

import javax.xml.ws.WebServiceContext;

import javax.xml.ws.handler.MessageContext;

import org.apache.ws.security.WSConstants;

import org.apache.ws.security.WSSecurityEngineResult;
import org.apache.ws.security.handler.WSHandlerConstants;

import org.apache.ws.security.handler.WSHandlerResult;
When CXF sees this

@WebService (...) annotation, it will inject the
public class SecureServiceImpl implements SecureService| { contextintoit.

@Resource

WebServiceContext context; The web service

) context provides
@Override ‘) information regarding
public String concat(String sl, String s2) { this web service.
checkUser () ;

return sl + s2;
} The message context provides

information regarding this request ~ Get the results for a all

@SuppressWarnings ("unchecked") message. Rampart handlers.

private void checkUser () { L
MessageContext msgContext = context.getMessageContext() ;
Vector<WSHandlerResult> handlersResults = (Vector<WSHandlerResult>) [msgContext

.get (WSHandlerConstants.RECV_RESULTS) ;
for (WSHandlerResult handlerResult : handlersResults) {
Vector<WSSecurityEngineResult> actionsResults = handlerResult.getResults() ;
for (WSSecurityEngineResult actionResult : actionsResults) {

int action = ((Integer) actionResult
.get (WSSecurityEngineResult.TAG_ACTION)) .intValue() ; Get the action
if (action == WSConstants.UT) { results for a
Principal p = (Principal) actionResult single
.get (WSSecurityEngineResult.TAG_PRINCIPAL) ; Rampart
if (p !'= null) { handler.

System.out.println("Checking " + p.getName());
return; |// return if the user has the|required permission

}
} For testing, iust print out Get the user principal. A Principal ~ Get the action and
} the nameg’J P object represents a user id. It only check if itis UT
} has a “name” field. (verify a Username
throw new RuntimeException ("Unable to find a user"); token).

}

Now run the service and then the client. You should see the output in the
console:

Checking Paul

Installing Rampart into Axis2

In order to use Rampart with Axis2, you need to install Rampart into Axis2. So,
go to http://ws.apache.org/axis2/modules to download it. Suppose that it is
rampart-1.4.zip. Unzip it into a folder, say, rampart. Rampart needs another
library xalan 2.7.0. If you're using JDK 5 or earlier, you probably has only an old
version. So, in that case, download xalan-2.7.0.jar from
http://www.apache.org/dist/java-repository/xalan/jars and put it into rampart/lib.

Chapter 8 Signing and encrypting SOAP messages 183

To install Rampart into Axis2, copy all the files shown below:

A .mar file is a module
archive. It represents a

rampart Z?dgb(apMQM)m axis
ISZ.
moﬁfles L repository
t, o tservices
modules
lib Fomar
i222.3ar

The Rampart module needs
these jar files.

Creating a secure client in Axis2

Copy the Axis2WrappedClient and paste it as Axis2SecureClient. Copy the
WSDL file from the SecureClient project into it (and delete the existing WSDL
file). Add the Rampart dependencies to the pom.xml file.

Next, modify the CodeGenerator class to use the right WSDL file. Modify it to
use an older version of WS Policy and WS Security Policy:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://ttdev.com/ss" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
xmlns:wsu="http://docs.ocasis-open.org/wss/2004/01/0asis-200401-wss-wssecurity-
utility-1.0.xsd"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" name="SecureService"
targetNamespace="http://ttdev.com/ss">
<wsp:Policy wsu:Id="pl">
<sp:AsymmetricBinding>
<wsp:Policy>
<sp:InitiatorToken>
<wsp:Policy>
<sp:X509Token
sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/
securitypolicy/IncludeToken/AlwaysToRecipient">
<wsp:Policy>
<sp:WssX509V3TokenlO />
</wsp:Policy>
</sp:X509Token>
</wsp:Policy>
</sp:InitiatorToken>
<sp:RecipientToken>
<wsp:Policy>
<sp:X509Token
sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/
securitypolicy/IncludeToken/Never">
<wsp:Policy>
<sp:WssX509V3Tokenl0O />
</wsp:Policy>

184 Chapter 8 Signing and encrypting SOAP messages

</sp:X509Token>
</wsp:Policy>
</sp:RecipientToken>
<sp:AlgorithmSuite>
<wsp:Policy>
<sp:TripleDesRsal5 />
</wsp:Policy>
</sp:AlgorithmSuite>
</wsp:Policy>
</sp:AsymmetricBinding>
<sp:Wssl0>
<wsp:Policy>
<sp:MustSupportRefEmbeddedToken />
<sp:MustSupportRefIssuerSerial />
</wsp:Policy>
</sp:Wssl0>
<sp:SignedParts>
<sp:Body />
</sp:SignedParts>
<sp:EncryptedParts>
<sp:Body />
</sp:EncryptedParts>
<sp:EncryptedElements>
<sp:XPath>
//*[local-name ()="'Signature']
</sp:XPath>
</sp:EncryptedElements>
<sp:SignedSupportingTokens>
<wsp:Policy>
<sp:UsernameToken
sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/
securitypolicy/IncludeToken/AlwaysToRecipient" />
</wsp:Policy>
</sp:SignedSupportingTokens>
</wsp:Policy>
<wsdl:types>
<xsd:schema targetNamespace="http://ttdev.com/ss">
<xsd:element name="concat">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="sl" type="xsd:string" />
<xsd:element name="s2" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="concatResponse">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="r" type="xsd:string">
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</wsdl:types>
<wsdl:message name="concatRequest">
<wsdl:part element="tns:concat" name="parameters" />
</wsdl:message>
<wsdl:message name="concatResponse">
<wsdl:part element="tns:concatResponse" name="parameters" />
</wsdl:message>
<wsdl:portType name="SecureService">
<wsdl:operation name="concat">
<wsdl:input message="tns:concatRequest" />
<wsdl:output message="tns:concatResponse" />
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="SecureServiceSOAP" type="tns:SecureService">

Chapter 8 Signing and encrypting SOAP messages 185

<wsp:PolicyReference URI="#pl" wsdl:required="true" />
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="concat">
<soap:operation soapAction="http://ttdev.com/ss/NewOperation" />
<wsdl:input>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="SecureService">
<wsdl:port binding="tns:SecureServiceSOAP" name="pl">
<soap:address location="http://localhost:8080/ss/pl" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

BUG ALERT: In Axis2 1.5.1 and Rampart 1.4 there is a bug preventing the
Username Token from working with signing/encryption. So, you may need to
comment out the <SignedSupportingTokens> from the policy.

Delete the com.ttdev.ss package and the src/main/resources/META-INF folder.
Then run the CodeGenerator class.

To make Rampart available to your client, copy rampart.mar into your client
project in such a folder structure:

SecureClient
src
repository Just like the Axis2 server which
has a repository, your Axis2
modules client can also have a repository.

rampart.mar

In the client project, create a SecureClient class:

186 Chapter 8 Signing and encrypting SOAP messages

Having rampart available is not enough, Tell the Axis2 client to load configurations

package com.ttdev.ss; You must"engage" it, which means from the "repository" folder in the current
... enable it. folder (project root). Here it will find the
import org.apache.axiom.om.OMElement; module archive for Rampart

import org.apache.axiom.om.impl.builder.StAXOMBuilder;
import org.apache.axis2.client.Options;
import org.apache.axis2.context.ConfigurationContext;

import org.apache.axis2.context.ConfigurationContextFactory;

import org.apache.neethi.Policy; Load the rampart-config.xml file
import org.apache.neethi.PolicyEngine; and get its root element. You'll
import org.apache.rampart.RampartMegsageData; create this file next to provide

)) information such as the signing
public class SecureClient { alias.

public static void main(String[] args) |throws FileNotFoundException,
XMLStreamException, RemoteExceptiqn {
ConfigurationContext context = [ConfigurationContextFactory
.createConfigurationContextFromFileSystem("repository") ;
SecureServiceStub stub = new SelcureServiceStub (context,
"http://localhost:1234/axis2/services/SecureService") ;
stub. getServiceClient () .engageModule ("rampart");
StAXOMBuilder builder = new StAXOMBuilder (
"src/main/resources/rampart-config.xml") ;
OMElement configElement = builder.getDocumentElement () ;
Policy rampartConfig = PolicyEngine.getPolicy(configElement) ;
stub. getServiceClient ().getAxisService().getPolicySubject ().
attachPolifcy (rampartConfig) ;
String resultf = stub.concat ("xyz", "111");
System.out.println (result); Convert the <Policy>
XML element into a
Policy Java object.

! Internally the service stub Get the service description
1 uses a service client to and then add the policy
invoke the service. object to it.

Create the rampart-config.xml in the src/main/resources folder:

Chapter 8 Signing and encrypting SOAP messages

The rampart configuration happens
to be also in the form of a policy.

<?xml version="1.0" encoding="UTF-8"7?>
<wsp:Policy xmlns:wsp="http://schemas.xmlspap.org/ws/2004/09/policy"

xmlns="http://ws.apache.org/rampart/policy">

<RampartConfig>

<user>Paul</user>

<userCertAlias>cl</userCertAlias>

<encryptionUser>sl</encryptionUser>

<passwordCallbackClass>

_</passwordCallbackClass>

Security provider and keystore

information for signing

keystore information for

Security provider and
encryption

<signatureCrypto>
<crypto provider="org.apache.ws.security.components.crypto.Merlin">
.security.crypto.merlin.keystore.type">

<property name="org.apache.ws
JKS

</property>

<property name="org.apache.ws
../../keys/client.ks

</property>

<property name="org.apache.ws
client-ks-pass

</property>

</crypto>

</signatureCrypto>
:ZencryptionCrypto>

<crypto provider="org.apache.ws.

<property name="org.apache.ws
JKS

</property>

<property name="org.apache.ws
../../keys/client.ks

</property>

<property name="org.apache.ws
client-ks-pass

</property>

</crypto>
</encryptionCrypto>

</RampartConfig>
</wsp:Policy>

Create the PasswordCallbackHandler class in the com.ttdev.ss package:

package com.ttdev.ss;

import
import
import
import

public

@Override

public void handle (Callbackl[]

UnsupportedCallbackException {

for

(int 1 = 0;

String id = pwcb.getIdentifer();

switch

(pwcb.getUsage ()) {

case WSPasswordCallback.DECRYPT:
case WSPasswordCallback.SIGNATURE: {

}

case WSPasswordCallback.USERNAME TOKEN:

if (id.equals("cl")) {
pwcb.setPassword ("cl-pass") ;
}

break;

All the other elements here are in
the rampart namespace

The user name for the UsernameToken

I The aliases of the keystore entries for
signing and encryption respectively.

com.ttdev.ss.PasswordCallbackHandler ——Rampart will create an instance

of this class and ask it for the
password.

.security.crypto.merlin.file">

187

.security.crypto.merlin.keystore.password">

security.components.crypto.Merlin">

.security.crypto.merlin.keystore.type">

.security.crypto.merlin.file">

.security.crypto.merlin.keystore.password">

javax.security.auth.callback.Callback;
javax.security.auth.callback.CallbackHandler;
javax.security.auth.callback.UnsupportedCallbackException;
org.apache.ws.security.WSPasswordCallback;

callbacks)

i < callbacks.length;

WSPasswordCallback pwcb = (WSPasswordCallback)

class PasswordCallbackHandler implements CallbackHandler {

throws IOException,

{
callbacks[i];

188 Chapter 8 Signing and encrypting SOAP messages

if (id.equals("Paul")) {
pwcb.setPassword ("paul-pass") ;

}

break;

Creating a secure service in Axis2

Copy the Axis2WrappedService and paste it as Axis2SecureService. Copy the
WSDL file from the SecureService project into it (and delete the existing WSDL
file). Add the Rampart dependencies to the pom.xml file.

Next, modify the CodeGenerator class to use the right WSDL file. Delete the
com.ttdev.ss package and the src/main/resources/META-INF folder. Then run
the CodeGenerator class. Fill in the code in the SecureServiceSkeleton class:

package com.ttdev.ss;

import java.security.Principal;

import java.util.Vector;

import org.apache.axis2.context.MessageContext;

import org.apache.ws.security.WSConstants;

import org.apache.ws.security.WSSecurityEngineResult;
import org.apache.ws.security.handler.WSHandlerConstants;
import org.apache.ws.security.handler.WSHandlerResult;

public class SecureServiceSkeleton {
public java.lang.String concat(java.lang.String sl, java.lang.String s2) {
checkUser () ;
return sl + s2;

}

@SuppressWarnings ("unchecked")

private void checkUser () {
MessageContext msgContext = MessageContext.getCurrentMessageContext () ;
Vector<WSHandlerResult> handlersResults = (Vector<WSHandlerResult>) msgContext

.getProperty (WSHandlerConstants.RECV_RESULTS) ;
for (WSHandlerResult handlerResult : handlersResults) {
Vector<WSSecurityEngineResult> actionsResults = handlerResult
.getResults () ;
for (WSSecurityEngineResult actionResult : actionsResults) {
int action = ((Integer) actionResult
.get (WSSecurityEngineResult.TAG_ACTION)) .intValue () ;
if (action == WSConstants.UT) {
Principal p = (Principal) actionResult
.get (WSSecurityEngineResult.TAG PRINCIPAL) ;
if (p != null) {
System.out.println ("Checking " + p.getName());
return; // return if the user has the required permission
}
}
}
}
throw new RuntimeException ("Unable to find a user");
}
}

It is very similar to the CXF version except that the MessageContext class is
NOT the one defined in JAXWS; it is a class provided by Axis2.

Chapter 8 Signing and encrypting SOAP messages

189

To engage the Rampart module, modify the src/main/resources/META-

INF/services.xml file:

<serviceGroup>
<service name="SecureService">

<messageReceivers>

<messageReceiver mep="http://www.w3.0rg/ns/wsdl/in-out"
class="com.ttdev.ss.SecureServiceMessageReceiverInOut" />

</messageReceivers>

<parameter name="ServiceClass">com.ttdev.ss.SecureServiceSkeleton

</parameter>

<parameter name="useOriginalwsdl">true</parameter>

<parameter name="modifyUserWSDLPortAddress">true</parameter>

<operation name="concat" mep="http://www.w3.org/ns/wsdl/in-out"
namespace="http://ttdev.com/ss">
<actionMapping>http://ttdev.com/ss/NewOperation
</actionMapping>
<outputActionMapping>

http://ttdev.com/ss/SecureService/concatResponse

</outputActionMapping>

</operation>

<module ref="rampart" />

</service>
</serviceGroup>

To make the policy available to it, copy the policy from the WSDL into the
services.xml file. Make sure you copy the definitions for the wsp, wsu and sp

prefixes into the <Policy> element:

<serviceGroup>
<service name="SecureService">

<messageReceivers>

<messageReceiver mep="http://www.w3.org/ns/wsdl/in-out"
class="com.ttdev.ss.SecureServiceMessageReceiverInOut" />

</messageReceivers>

<parameter name="ServiceClass">com.ttdev.ss.SecureServiceSkeleton

</parameter>

<parameter name="useOriginalwsdl">true</parameter>

<parameter name="modifyUserWSDLPortAddress">true</parameter>

<operation name="concat" mep="http://www.w3.0rg/ns/wsdl/in-out"
namespace="http://ttdev.com/ss">
<actionMapping>http://ttdev.com/ss/NewOperation
</actionMapping>
<outputActionMapping>

http://ttdev.com/ss/SecureService/concatResponse

</outputActionMapping>

</operation>

<module ref="rampart" />

<wsp:Policy
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-200401-wss-

wssecurity-utility-1.0.xsd"
wsu:Id="pl">
<sp:AsymmetricBinding>

</sp:AsymmetricBinding>
<sp:Wssl0>
<wsp:Policy>
<sp:MustSupportRefEmbeddedToken />
<sp:MustSupportRefIssuerSerial />
</wsp:Policy>
</sp:Wssl0>
<sp:SignedParts>
<sp:Body />
</sp:SignedParts>
<sp:EncryptedParts>

190 Chapter 8 Signing and encrypting SOAP messages

<sp:Body />
</sp:EncryptedParts>
<sp:EncryptedElements>

<sp:XPath>

//*[local-name () ='Signature']

</sp:XPath>
</sp:EncryptedElements>
<sp:SignedSupportingTokens>

</sp:SignedSupportingTokens>
</wsp:Policy>
</service>
</serviceGroup>

To make the configuration available to Rampart, add it as a policy assertion
inside the <Policy> element:

<serviceGroup>
<service name="SecureService">

<messageReceivers>

<messageReceiver mep="http://www.w3.0rg/ns/wsdl/in-out"
class="com.ttdev.ss.SecureServiceMessageReceiverInOut" />

</messageReceivers>

<parameter name="ServiceClass">com.ttdev.ss.SecureServiceSkeleton

</parameter>

<parameter name="useOriginalwsdl">true</parameter>

<parameter name="modifyUserWSDLPortAddress">true</parameter>

<operation name="concat" mep="http://www.w3.org/ns/wsdl/in-out"
namespace="http://ttdev.com/ss">
<actionMapping>http://ttdev.com/ss/NewOperation
</actionMapping>
<outputActionMapping>

http://ttdev.com/ss/SecureService/concatResponse

</outputActionMapping>

</operation>

<module ref="rampart" />

<wsp:Policy
wsu:Id="pl">
<sp:AsymmetricBinding>

</sp:AsymmetricBinding>
<sp:Wssl0>
<wsp:Policy>
<sp:MustSupportRefEmbeddedToken />
<sp:MustSupportRefIssuerSerial />
</wsp:Policy>
</sp:Wssl0>
<sp:SignedParts>
<sp:Body />
</sp:SignedParts>
<sp:EncryptedParts>
<sp:Body />
</sp:EncryptedParts>
<sp:EncryptedElements>
<sp:XPath>
//*[local-name ()='Signature']
</sp:XPath>
</sp:EncryptedElements>
<sp:SignedSupportingTokens>

</sp:SignedSupportingTokens>

<RampartConfig xmlns="http://ws.apache.org/rampart/policy">
<userCertAlias>sl</userCertAlias>
<encryptionUser>useReqSigCert</encryptionUser>
<passwordCallbackClass>

com. ttdev.ss.PasswordCallbackHandler

</passwordCallbackClass>
<signatureCrypto>

Chapter 8 Signing and encrypting SOAP messages 191

<crypto provider="org.apache.ws.security.components.crypto.Merlin">
<property name="org.apache.ws.security.crypto.merlin.keystore.type'">
JKS
</property>
<property name="org.apache.ws.security.crypto.merlin.file">
c:/Documents and Settings/kent/keys/service.ks
</property>
<property
name="org.apache.ws.security.crypto.merlin.keystore.password">
service-ks-pass
</property>
</crypto>
</signatureCrypto>
<encryptionCrypto>
<crypto provider="org.apache.ws.security.components.crypto.Merlin">
<property name="org.apache.ws.security.crypto.merlin.keystore.type'">
JKS
</property>
<property name="org.apache.ws.security.crypto.merlin.file">
c:/Documents and Settings/kent/keys/service.ks
</property>
<property
name="org.apache.ws.security.crypto.merlin.keystore.password">
service-ks-pass
</property>
</crypto>
</encryptionCrypto>
</RampartConfig>
</wsp:Policy>
</service>
</serviceGroup>

Create the PasswordCallbackHandler class in the com.ttdev.ss package:

package com.ttdev.ss;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.callback.UnsupportedCallbackException;
import org.apache.ws.security.WSPasswordCallback;

public class PasswordCallbackHandler implements CallbackHandler ({
@Override
public void handle (Callback[] callbacks) throws IOException,
UnsupportedCallbackException {
for (int 1 = 0; 1 < callbacks.length; i++) {
WSPasswordCallback pwcb = (WSPasswordCallback) callbacks[i];
String id = pwcb.getIdentifer();
switch (pwcb.getUsage()) {
case WSPasswordCallback.DECRYPT:
case WSPasswordCallback.SIGNATURE:
if (id.equals("sl1")) {
pwcb.setPassword ("sl-pass") ;
}
break;
case WSPasswordCallback.USERNAME TOKEN:
if (id.equals("Paul")) {
pwcb.setPassword ("paul-pass") ;
}
break;

}
}

}
Set the artifact ID to SecureService in pom.xml and then run it as Maven
package. Deploy it into Axis2 as service.

192 Chapter 8 Signing and encrypting SOAP messages

However, Axis2 needs a couple of jar files in order to do the work: copy the
following files into to the axis2/lib folder:

* <home>/.m2/repository/backport-util-concurrent/backport-util-
concurrent/3.1/backport-util-concurrent-3.1.jar

» <home>/.m2/repository/bouncycastle/bcprov-jdk13/132/bcprov-jdk13-132.jar

Then restart the Axis2 server. Finally, run the TCP Monitor, let it listen on port
1234 and run the client. It should work.

Summary

WS-Policy allows you to specify non-functional requirements such as security
on web services.

For a policy to influence the runtime behavior, the client and the service need
access to it at runtime. For CXF, the service stub will refer to the WSDL file by
path to access the policies. For the service, you need to do the same thing
(specify the path to the WSDL file) with @WebService attached to your
implementation class. For Axis2, the policies will be "compiled" into the service
stub for the client. For the service, you need to copy them into the services.xml
file.

To sign or encrypt a message, specify in the policy the configuration settings
such as algorithms to use, whether to include the certificate (token) and how
(direct include or issuer DN plus serial number and etc.). You also specify which
parts should be signed and which parts should be encrypted.

Rampart implements the WS-Security standard and can be used to satisfy
security requirements expressed in policies. It gets information from the policy.
In addition, you also need to provide further configurations by passing them as
properties or as an extra policy. Such configurations include the user name
alias, password callback class, what cryptographic provider to use (e.g., JDK),
the location of the keystore and the keystore password.

When performing both signing and encrypting, to fight against dictionary
attacks, you should encrypt the signature, encrypt before signing or include a
nonce into the digest.

To send authentication information, you can use a Username token. This is also
specified in a policy. Your password callback class should provide the
password. The Username token should be signed and probably also be
encrypted. You can retrieve the user name in your web service to perform
authorization.

193

Creating scalable web
services with REST

194 Chapter 9 Creating scalable web services with REST

What's in this chapter?

In this chapter you'll learn how to create web services that can handle a huge
number of requests by adopting the REST architecture.

Scalability difficulty with SOAP

Suppose that you'd like to create a web service like what's offered by Amazon
to allow clients to query information of books. Definitely this can be done with
SOAP over HTTP:

POST /books HTTP/1.1

<KEnvelope>
<Body>
<bookQuery isbn="1234-5678-9"/>
</Body>
K/Envelope>

Server

HTTP/1.1 200 OK

<Envelope>
<Body>
<book>
<isbn>1234-5678-9</isbn>
<title>Java programming</title>
</book>
</Body>
</Envelope>

However, if there are a huge number of such clients or a huge number of such
requests, a single server may be unable to handle it. So, you may add more
servers (see below). But where do they get the book information from? They
have to get it from a single database. This incurs two problems: First, even if
you could set up a database cluster, the scalability is limited. Second, the web
service servers probably need to stay close to the database and thus can't be
located near the clients:

Chapter 9 Creating scalable web services with REST 195

The servers are co-
located in the data
center.

Server 1

Client 1 The database cluster
is hardly scalable.

Huge number of
Client 2 requests

. —_——»
Client 3

Client 10,000

RCEL

Server N

This is not a very scalable solution. Instead, note that this query operation is a
read-only operation, then why hit the database at all? It is possible to set up
cache proxies as shown below. Then, if a client in Europe queries for the book
1234, the proxy in Europe only needs to contact the main server only once to
get the data. For subsequent queries on the same book from other European
clients, it can return the result to the clients without contacting the main server
at all and therefore the proxies will have shifted the load away from the main
server. In addition, as the proxy and the clients are all in Europe, the response
will be very fast:

Proxy

(For Proxy Proxy
Europe) (For Asia) (For US)
1: Query for
book 1234.
3: Query fol 4: Here
book 1234. you go.
Client Client 2: For the first time only,
(Europe) | | (Europe) query for book 1234. _ | Server | —»

To scale it even further, you could even, say, set up a child proxy for each
country in Europe, forming a hierarchy of proxies:

196 Chapter 9 Creating scalable web services with REST

FZI;__O(;(ry Proxy Proxy
Europe) (For Asia) (For US)
Proxy Proxy
(UK) (France) _ | Server | —
Client Client
(France) (France)

This is a highly scalable architecture. Of course, a proxy shouldn't cache the
information forever as sometimes the book's information is updated. But let's
handle this issue later.

For now, consider how to set up such a proxy? The proxy needs to check if the
HTTP request is a SOAP message and then check if it is the <bookQuery>
operation. If so, extract the isbn attribute from the <bookQuery> element and
use it as the key to look up its cache. It means that this proxy is completely
tailor-made for this particular web service. If you had 100 operations, you would
need to develop 100 proxy programs. This is a serious problem. You need a
generic proxy that works for all operations.

Using a generic proxy

In order to use a generic proxy, all web service operations must state if they are
read-only or not in a standard way (see below). In addition, they must indicate
their target objects (the book in the example) being operated on in a standard
way so that the proxy can look up the result with the target as the key:

Chapter 9 Creating scalable web services with REST 197

1: Perform a READ on this
target.

2: Look up the cache using
Proxy foo.com/books/1234 as the
key.

Target Content

Method: READ foo.com/books/1234 |...
Target: foo.com/books/1234 bar.com/products/p1

Method: READ
Target: bar.com/products/pl

ethod: WRITE
Target: bar.com/products/pl 3: Perform a WRITE
.. on this target. 4: Don't bother with

the cache. Go straight
to the main server.

If you look carefully at the requests, they look exactly like standard HTTP
requests:

Method: READ
Target: foo.com/books/1234

GET /books/1234
Host: foo.com

GET /products/pl
Host: bar.com

Method: WRITE
Target: bar.com/products/pl

PUT /products/pl
Host: bar.com

ethod: READ
Target: bar.com/products/pl |:>

Therefore, as long as you represent web service operations as standard HTTP
requests, standard HTTP proxies can be used to cache the results of read-only
operations (GET requests) and thus achieving extreme scalability. This is not a
co-incident: HTTP was designed to be highly scalable in day one.

What about the response? As you aren't using SOAP, you don't need the
<Envelope>, but you still would like it to remain language neutral, so you may
probably continue to use XML (see below). Of course, XML is just one of the
possible representations of the book, not the book itself. For example, you could
represent it as HTML or even image showing the cover of the book.

GET /books/1234
Host: foo.com

HTTP/1.1 200 OK

<book>
<isbn>1234-5678-9</isbn>
<title>Java programming</title>

</book>

This style/architecture of network computing system is called REST

198 Chapter 9 Creating scalable web services with REST

(REpresentative State Transfer): the representation state (e.g., an XML
document) of a target, or rather, a resource in the official terms (e.g., the book)
is transferred from one host to another (e.g., server to proxy to client). A web
service using this style is called a RESTful web service.

Creating a RESTful web service

Let's implement this book query operation in a RESTful web service. Copy the
SimpleService project and paste it as BookService. Delete the WSDL file as it is
not required for a RESTful web service. Instead, create an XSD file named
BookService.xsd (the name is unimportant) in its place:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://ttdev.com/bs"
xmlns:tns="http://ttdev.com/bs" elementFormDefault="qualified">
<element name="book">
<complexType>
<sequence>
<element name="isbn" type="string"></element>
<element name="title" type="string"></element>
</sequence>
</complexType>
</element>
</schema>

You can create it visually or just input the text by hand. This XSD file defines the
schema for the <book> element used as the response. Next, modify the
CodeGenerator class:

XJC stands for XML-Java compiler. It
generates Java classes corresponding
to XML elements or types.
Put the generated .java files

package com.ttdev; into this folder.

import cpm.sun.tools.xjc.XJCFacade;

public cllass CodeGenerator {
publi¢ static void main(String[] args) throws Throwable {
XJCFacade.main (new Stringl[] {
"-d", "src/main/java"
"src/main/resources/BookService.xsd" });

The path to the XSD file to be read
by the compiler.

Delete the com.ttdev.ss package. Run the CodeGenerator class. You should
see messages like below in the console:

parsing a schema...

compiling a schema...

com/ttdev/bs/Book.java

com/ttdev/bs/ObjectFactory.java
com/ttdev/bs/package-info.java

Refresh the project and you should see those new files in the com.ttdev.bs
package. Next, proceed to create a class named BookResource in that
package:

Chapter 9 Creating scalable web services with REST 199

— |GET /books/1234
Host: foo.com

1: CXF will try to match
the path against template

2: CXF will use the HTTP ﬁ's‘gnf;”lg tc';?lre”d'g?.t;:&d'

cma?ﬁhlzdot?jg:;jotzslIn':l'?éhOd to parameter”. It will obtain
P the value of "1234".

method, it will create a new

instance of BookResource r

before calling the method.

package com|ttdev.bs;

import javax.ws.rs.GET; 3: Inject the value of the isbn
import javak.ws.rs.Path; path parameter ("1234").
import javak.ws.rs.PathParam;

@Path ("bookh/{isbn}")

public class BookResource ({
- QGET

A\
public Book getDetails (@PathParam("isbn") String isbn) {
if (isbn.equals("1234")) {
Book book = new Book();
book.setIsbn ("1234");
book.setTitle ("Java Programming");
return book;

}
return null; 4: The Book object returned
} belongs to the Book class
} generated from the XML
schema.

Note that the annotations used such as @Path and @GET are all defined in the
javax.ws.rs package. They are standardized in the JAX-RS (Java API for XML
for RESTful web services) specification.

Create a BookServer class in the com.ttdev.bs package to publish the book
resource:

200 Chapter 9 Creating scalable web services with REST

This factory can create JAX-

package com.ttdev.bs; RS server objects.

import org.apache.cxf.jaxrs.JAXRSServerFactoryBean;

public class BookServer {
public static void main(String[] args) throws |InterruptedException {
JAXRSServerFactoryBean sf = new JAXRSServerFactoryBean();
sf.setResourceClasses (BookResource.class)+
sf.setAddress ("http://localhost:8080/bs") ;
sf.create();
System.out.println("Started"); Tell it the resource classes
Thread.sleep(5 * 60 * 1000); available.
System.out.println ("ended") ;
System.exit (0); .
} ;r:}lé: g:f ?giir?:fhtg Combining the base address
} Create and launch the and the resource path, you

server. “”Visj" addrrvesrs for the get the full URL for that
ole server. resource.

L
@ﬂ http://localhost:8080/bs/books/1234
—»

@Path ("books/{isbn}")
public class BookResource {

}

Note that the way to publish JAX-RS resources in a console application is not
standardized (you'll learn how to do it in a web container using a standard
method). The method above is specific to Apache CXF.

To test it quicklyy, go to the browser to try to access
http://localhost:8080/bs/books/1234. You should get the <book> element
returned.

To test it with a client, copy the BookService project and paste it as a
BookClient project. Delete the BookResource and BookServer classes as the
client isn't supposed to have access to them. Run the CodeGenerator to
generate the classes representing the XML elements.

Next, create a BookClient class in the com.ttdev.bs package:
package com.ttdev.bs;
import org.apache.cxf.jaxrs.client.WebClient;

public class BookClient {
public static void main(String[] args) throws InterruptedException {
WebClient client = WebClient.create ("http://localhost:8080/bs");
client.path ("books/1234");
Book book = client.get (Book.class);
System.out.println (bgok.getTitle());
}

Create a web client and use this
URL as the base URL.

} Append books/1234 to
Send a GET request. Parse the base URL and get
the response as a <book> http://localhost:8080/bs/
element to get back a Book books/1234.
object.

Run the server and the client. The client should print the book title "Java

Chapter 9 Creating scalable web services with REST 201

Programming" successfully.

Enabling caching by a proxy

Suppose that you will update your book information only once every day at
10:00am (see below). If a proxy performs a GET on book 1234 at 11:00am, the
server can tell it that the information will remain valid for the next 23 hours. In
that period, if a client asks the proxy for book 1234 in that period, the proxy can
simply return the cached information without asking the server again:

Here you go. It will
remain valid/refresh

GET book 1234. for this period:

Y } I > Time
11:00

10:00 10:00 10:00

To implement this idea, modify the BookResource class:

202 Chapter 9 Creating scalable web services with REST

import javax.ws.rs.core.CacheControl;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.Response.ResponseBuilder;

@Path ("books/{isbn}")
public class BookResource {

@GET
public Response getDetails (€@PathParam("isbn") String isbn) {
if (isbn.equals ("1234")) { Create an HTTP response builder that will create
For how long Book book = new Book () ; response with the OK status code (200). In
the response Dbook.setIsbn ("1234"); addition, convert the book object into XML and
will remain book.setTitle ("Java Programming"); use it as the body (content) of the response.
;:ii:(tj)rgidns) ResponseBuilder builder = Response.ok (book) ; Calculate the time when
: GregorianCalendar now = new GregorianCalendar(); the next update should
GregorianCalendar nextUpdate = getNextUpdateTime (now) ;— occur (10:00am today if
int maxAge = (int) ((nextUpdate.getTimeInMillis() - now the currenthouris <10
.getTimeInMillis()) / 1000L); or 10:00am tomorrow

CacheControl cacheControl = new CacheControl() ; otherwise).

cacheControl. setMaxAge (maxAge) ;
builder.cacheControl (cacheControl) ;
builder.expires (nextUpdate.getTime()) ;

return builder.build() ; Only HTTP 1.1 proxies understand
} ‘ the Cache-Control header. For HTTP

. . 1.0 proxies, set the expiry date and
return null; Build the response. timepusing the Expiresphrgader.

Set the Cache-Control header in the
response.

}

private GregorianCalendar getNextUpdateTime (GregorianCalendar now) {
GregorianCalendar nextUpdate = new GregorianCalendar() ;
nextUpdate.setTime (now.getTime()) ;
nextUpdate.set (Calendar.HOUR OF DAY, 10);
nextUpdate.set (Calendar .MINUTE, 0);
nextUpdate.set (Calendar.SECOND, O0);
nextUpdate.set (Calendar .MILLISECOND, O0);
if (now.get(Calendar.HOUR OF DAY) >= 10) {
nextUpdate.add (Calendar.DAY OF YEAR, 1);
}

return nextUpdate;
}

Run the server. To view the headers generated, use telnet as shown below:

> telnet localhost 8080
Trying 127.0.0.1...
Connected to localhost.
Escape character is '~]'.
GET /bs/books/1234 HTTP/1.1
Host: localhost

Accept: text/xzml

HTTP/1.1 200 OK

Content-Type: text/xml

Cache-Control: no-transform;max-age=65027
Expires: Sat, 26 Dec 2009 02:00:00 GMT
Date: Fri, 25 Dec 2009 07:56:12 GMT
Content-Length: 144

Server: Jetty(6.1.21)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?><book
xmlns="http://ttdev.com/bs"><isbn>1234</isbn><title>Java
Programming</title></book>

Why the expiry date and time has been set 2:00 of 10:00? This is because the
time zone on my computer is GMT+8. So the local 10:00 is 2:00 in GMT.

Chapter 9 Creating scalable web services with REST 203

Validating the cached response after expiry

What happens when it has passed 10:00am tomorrow (see below)? If the proxy
needs to GET the book 1234 again, as the cached response has expired, does
it need to ask the server again? Yes. But has the book definitely be updated?
Maybe or maybe not. So, a better way is that the proxy should tell the version of
its copy to the server for checking. If the version in the server is the same, the
server can tell the proxy to continue to use its existing copy and extend its
expiry date:

It hasn't changed.
Keep your copy and it

il remain valid f
GET book 1234“ Here yougo. GET pook 1234{ (this e, vanaer

his period:
My version is
[|

I 1\1 00 I * Time
10:00 10.00 10:00

Check the version on

the server side. In this B,OOk

case, they match, 1§bn: 1234
meaning the book title:

hasn't been changed. version: 10

If the book has the version aren't the same (see below), the server can then
send the new copy, with the new version number and new expiry date:

isbn: 1234
title:

Here is a new copy. It version: 13

will remain valid for
this period:
GET book 1234“ Here yougo. GET book 1234“ P

My version is
10.

s | e
10:00 ° 10:00 10:00

Check the version on

the server side. In this B,OOk

case, they don't 1§bn: 1234
match, meaning the title:

book has been wersion: 13

changed.

This process is called "cache validation" and the GET operation with a version
number is called a "conditional GET". The benefit of a conditional GET is that
the state of the book may not need to be transferred if the versions match. This
saves computing resources on the server and the bandwidth.

To implement this idea, let's keep a last-modified timestamp for each book as
the version. As a first attempt, you may try to modify the Book class:

@XmlAccessorType (XmlAccessType.FIELD)

@XmlType (name = "", propOrder = { "isbn", "title" })
@XmlRootElement (name = "book")

public class Book {

204 Chapter 9 Creating scalable web services with REST

@XmlElement (required = true)
protected String isbn;
@XmlElement (required = true)
protected String title;

private Date lastModified;

}
The problem is that this class was generated from the XML schema. If the
schema changes, you will generate it again and overwrite your changes. As this
Book class is only used to transfer the state of the book to the client, technically
it belongs to the I/O layer. Therefore, it's better to rename it as BookState
(without adding a timestamp to it). Then create a Book class to represent the
book in the business domain layer.

However, as this Book class was generated by the from the XML schema,
renaming it manually is no good and won't stick. A better way is to tell the XJC
tool to always map the <Book> element to the BookState class. To do that,
create a bindings.xml file (the name is unimportant) in the src/main/resources
folder:

A JAXB binding is used to further

specify Java meaning to the XML
elements to override the default

mapping. You're specifying Java meaning
to stuff in this XSD file.

<?xml version="1.0" encoding="UTF-8"?> Attach Java meaning to which XML

<jaxb:bindings element? Starts from <schema>,
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb" then go into an <element> whose
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" name attribute is "book”:

schemaLocation="BookService.xsd"
jaxb:version="2.0">
<jaxb:bindings node="/xsd:schema/xsd:element [@name="book']">
<jaxb:class
name="BookState">
</jaxb:class>
</jaxb:bindings
</jaxb:bindings>

You must define the namespace
for the XPath to match.

This is the key part: Map the z;igimzerSLOn— 1.0" encodihg="UTF-8"?>
<book> element to BookState
class. xmlns="http://www.w3.0rg/2001/XMLSchema" ...>
<element name="book">
<complexType>
<sequence>
<element name="isbn" type="string"></element>
<element name="title" type="string"></element>
</sequence>
</complexType>
</element>
</schema>

To enable auto-completion, you can choose Window | Preferences, choose
XML | XML Catalog and add a new user entry:

Chapter 9 Creating scalable web services with REST

9
Dj

y ®

() Edit XML Catalog Entry ——— () (=) X

Location: [http:Hjava.sun.comfxmIfnsfjaxbfbindingschema_l_o.xsd] -

Key Type: MNamespace Name v

Key: http:fjjava.sun.comfxmlinsfjaxb

Tell the code generator to use this bindings.xml file:

public class CodeGenerator ({

public

static void main(String[] args) throws Throwable {

XJCFacade.main (new String[] {

}
}

"-b", "src/main/resources/bindings.xml",
"-d", "src/main/java",
"src/main/resources/BookService.xsd" });

205

Run it again it should generate a BookState class. Then proceed to define your
own Book class (in the domain layer):

package com.ttdev.bs;

import java.util.Date;

public class Book {
private String isbn;
private String title;
private Date lastModified;

public

this.
this.
this.

}
public

Book (String isbn, String title) {
isbn = isbn;

title = title;

lastModified = new Date();

String getIsbn() {

return isbn;

}
public

String getTitle() {

return title;

}
public

Date getLastModified() {

return lastModified;

}
public

this.

}
public

this.

}
public

this.

void setIsbn (String isbn) {
isbn = isbn;

void setTitle(String title) {
title = title;

void setLastModified(Date lastModified) {
lastModified = lastModified;

206 Chapter 9 Creating scalable web services with REST

}
}

Create a BookDB class to represent a database of books:

package com.ttdev.bs;

public class BookDB {
private Book bookl234;

public BookDB () {
bookl1l234 = new Book("1234", "Java Programming");
}
public Book getBook1234 () {
return bookl1234;
}

public static BookDB instance = new BookDB() ;

}
Modify the BookResource class to use the BookDB and convert a Book to a
BookState:

@Path ("books/{isbn}")
public class BookResource {
QGET
public Response getDetails (@PathParam("isbn") String isbn) {
BookDB bookDB = BookDB.instance;
if (isbn.equals("1234")) {
Book book = bookDB.getBookl234 () ;
BookState st = getBookState (book) ;
ResponseBuilder builder = Response.ok(st);

GregorianCalendar now = new GregorianCalendar();

GregorianCalendar nextUpdate = getNextUpdateTime (now) ;

int maxAge = (int) ((nextUpdate.getTimeInMillis() - now
.getTimeInMillis()) / 1000L);

CacheControl cacheControl = new CacheControl () ;

cacheControl.setMaxAge (maxAge) ;
builder.cacheControl (cacheControl) ;
builder.expires (nextUpdate.getTime()) ;
return builder.build();
}
return null;
}
public static BookState getBookState (Book book) {
BookState st = new BookState();
st.setIsbn (book.getIsbn()) ;
st.setTitle (book.getTitle()) ;
return st;
}
private GregorianCalendar getNextUpdateTime (GregorianCalendar now) {
GregorianCalendar nextUpdate new GregorianCalendar();
nextUpdate.setTime (now.getTime ()) ;
nextUpdate.set (Calendar.HOUR_OF DAY, 10);
nextUpdate.set (Calendar .MINUTE, 0);
nextUpdate.set (Calendar.SECOND, 0);
nextUpdate.set (Calendar .MILLISECOND, O0);
if (now.get (Calendar.HOUR OF DAY) >= 10) {
nextUpdate.add(Calendar.DAY OF YEAR, 1);
}

return nextUpdate;

}

}
Modify the BookResource class further to handle conditional GETs:

Chapter 9 Creating scalable web services with REST

207

Context can be used to inject some contextual

objects into an argument.

Here, you use it to

inject the current HTTP request.

import javax.ws.rs.core.Context;
import javax.ws.rs.core.Request;

@Path ("books/{isbn}")
public class BookResource {
@GET
public Response getDetails (@Context Request request,
@PathParam("isbn") String isbn) {
BookDB bookDB BookDB.instance;
if (isbn.equals("1234")) {
Book book bookDB.getBook1234 () ;
ResponseBuilder builder
book.getLastModified()) ;

This is the key part: You provide the
current last-modified timestamp of
the book to check against that in the
request. If they match, CXF will
create a response builder that says
"Keep your current copy" with an
empty body. If they don't match, it
will return null to indicate that you
need to build a new response
yourself.

request.evaluatePreconditions (

Even if the proxy gets to keep its local copy,

The timestamps don't

if (builder !'= null) {

setExpiry (builder) ; you should still tell it the next expiry date
} else { and time.

BookState st = getBookState (book);

builder = Response.ok(st);

builder.lastModified (book.getLastModified()) ;

setExpiry (builder) ;
}

return builder.build();
Make sure to send the last-

modified timestamp so that it
can quote it later.

}
return null;
}
private void setExpiry(ResponseBuilder builder) {
GregorianCalendar now = new GregorianCalendar();
GregorianCalendar nextUpdate
int maxAge (int) ((nextUpdate.getTimeInMillis (
.getTimeInMillis()) / 1000L);
CacheControl cacheControl new CacheControl();
cacheControl.setMaxAge (maxAge) ;
builder.cacheControl (cacheControl) ;
builder.expires (nextUpdate.getTime ()) ;

}

However, there is still a slight glitch: When HTTP
timestamp as the version, it has precision to the

match. Need to send
a new copy.

getNextUpdateTime (now) ;
- now

uses the last-modified
second only but the

java.util.Date class in Java has precision to the millisecond. It means when the
proxy quotes the truncated timestamp to the server, they won't match due to the
milliseconds. To fix the problem, you must truncate the timestamp from the

Book before using it:

public class BookResource
@GET
public Response getDetails (@Context Request request,
@PathParam("isbn") String isbn) {
BookDB bookDB BookDB.instance;
if (isbn.equals("1234")) {
Book book bookDB.getBook1234 () ;
ResponseBuilder builder
if (builder != null) {
setExpiry (builder) ;
} else {
BookState st getBookState (book) ;
builder Response.ok(st) ;

{

request.evaluatePreconditions (getVersion (book)) ;

208 Chapter 9 Creating scalable web services with REST

builder.lastModified (getVersion (book)) ;
setExpiry(builder);
}
return builder.build();
}
return null;
}
private Date getVersion (Book book) {
Date lastModified = book.getLastModified() ;
GregorianCalendar calendar = new GregorianCalendar() ;
calendar.setTime (lastModified) ;
calendar.set (Calendar .MILLISECOND, O0) ;
return calendar.getTime() ;

}
To test it, you need a way to modify the book. So, do it in the BookServer class:

public class BookServer {
public static void main(String[] args) throws InterruptedException,
IOException {
JAXRSServerFactoryBean sf = new JAXRSServerFactoryBean();
sf.setResourceClasses (BookResource.class) ;
sf.setAddress ("http://localhost:8080/bs") ;
sf.create();
System.out.println ("Started");
BufferedReader br = new BufferedReader (new InputStreamReader (System.in));
for (;;) {
System.out.println("Enter command: u--update. g--quit");
String cmd = br.readLine() ;
if (cmd.equals("u")) {
BookDB.instance.getBook1234 () .setLastModified (new Date()) ;
} else if (cmd.equals("q")) {
System.exit (0) ;
}
}
}
}

Now, run the server, use telnet to GET the book (see below). You should get
the last-modified timestamp as the version:

GET /bs/books/1234 HTTP/1.1
Host: localhost
Accept: text/xzml

HTTP/1.1 200 OK

Content-Type: text/xml

Last-Modified: Sat, 26 Dec 2009 04:07:09 GMT
Cache-Control: no-transform;max-age=78770
Expires: Sun, 27 Dec 2009 02:00:00 GMT

Date: Sat, 26 Dec 2009 04:07:09 GMT
Content-Length: 144

Server: Jetty(6.1.21)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?><book
xmlns="http://ttdev.com/bs"><isbn>1234</isbn><title>Java
Programming</title></book>
Next, use telnet to perform a conditional GET. As the book hasn't been
modified, it should tell you to keep using the local copy, with a new expiry date
and time but no body content:

GET /bs/books/1234 HTTP/1.1

Host: localhost

Accept: text/xml

If-Modified-Since: Sat, 26 Dec 2009 04:07:09 GMT

Chapter 9 Creating scalable web services with REST 209

HTTP/1.1 304 Not Modified

Content-Type: text/xml

Cache-Control: no-transform;max-age=78748
Expires: Sun, 27 Dec 2009 02:00:00 GMT
Date: Sat, 26 Dec 2009 04:07:31 GMT
Server: Jetty(6.1.21)

Next, in the console enter "u" to update the book. Use telnet to perform a
conditional GET again. This way, it should send you a new copy with a new
timestamp (version) and a new expiry date and time:

GET /bs/books/1234 HTTP/1.1

Host: localhost

Accept: text/xml

If-Modified-Since: Sat, 26 Dec 2009 04:07:09 GMT

HTTP/1.1 200 OK

Content-Type: text/xml

Last-Modified: Sat, 26 Dec 2009 04:09:48 GMT
Cache-Control: no-transform;max-age=78571
Expires: Sun, 27 Dec 2009 02:00:00 GMT

Date: Sat, 26 Dec 2009 04:10:28 GMT
Content-Length: 144

Server: Jetty(6.1.21)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?><book
xmlns="http://ttdev.com/bs"><isbn>1234</isbn><title>Java
Programming</title></book>

Using other kinds of versions

You don't have to use a timestamp as the version. For example, you could use
a long integer as the version number. To do that, modify the Book class:

public class Book {
private String isbn;
private String title;
private Date lastModified;
private long version;

public Book(String isbn, String title) {
this.isbn = isbn;
this.title = title;
this.lastModified = new Date();
this.version = 0;

}

public long getVersion() {
return version;

}

public String getIsbn() {
return isbn;

}

public String getTitle() {
return title;

}

public Date getLastModified() {
return lastModified;

}

public void setIsbn(String isbn) {
this.isbn = isbn;
version++;

}

public void setTitle(String title) {
this.title = title;
version++;

210 Chapter 9 Creating scalable web services with REST

}
public void setLastModified(Date lastModified) {
this.lastModified = lastModified;
version++;
}
}

Here you're using both a long version number and a timestamp. You could
simply use one of them. However, HTTP 1.0 clients will only understand a
timestamp, so when you're in the process of transitioning from HTTP 1.0 to 1.1,
you may use both.

Modify the BookResource class to use the long version number:

import javax.ws.rs.core.EntityTag;

@Path ("books/{isbn}")
public class BookResource {

@GET
public Response getDetails (€Context Request request, The generic version is called an
@PathParam("isbn") String isbn) { "entity tag" or "ETag". For HTTP,
BookDB bookDB = BookDB.instance; itis only a string. The meaning is
if (isbn.equals("1234")) { up to you to interpret.

Book book = bookDB.getBookl1l234();

EntityTag entityTag = new EntityTag(Long.toString(book.getVersion()))

ResponseBuilder builder = request.evaluatePreconditions (

getVersion (book), entityTag);

if (puiIder = null) { Here you're providing both a ETag and a
setExpiry (builder); timestamp. It will return a response builder

} else { (304 Not Motified) only if all the versions in the
BookState st = getBookState (book) ; request match the values you provide.
builder = Response.ok(st);
builder.lastModified(getVersion (book)) ; if | ETaa b
builder.tag(Long. toString (book.getVersion())) ; Al A ;”you‘l%n ut
setExpiry ’bullder) ; call it like

} Hand out the ETag, request.evaluatePreconditi
return builder.build(); 2ong withthe tity T
. ; timestamp. ons(entityTag).

}

return null;

}

Run the server and use telnet to test it again:

GET /bs/books/1234 HTTP/1.1
Host: localhost
Accept: text/xml

HTTP/1.1 200 OK

Content-Type: text/xml

Last-Modified: Sat, 26 Dec 2009 04:40:43 GMT
ETag: 0

Cache-Control: no-transform;max-age=76756
Expires: Sun, 27 Dec 2009 02:00:00 GMT

Date: Sat, 26 Dec 2009 04:40:43 GMT
Content-Length: 144

Server: Jetty(6.1.21)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?><book
xmlns="http://ttdev.com/bs"><isbn>1234</isbn><title>Java
Programming</title></book>

Quote the same timestamp and ETag and it should tell not "Not Modified":

Chapter 9 Creating scalable web services with REST 211

GET /bs/books/1234 HTTP/1.1

Host: localhost

Accept: text/xml

If-Modified-Since: Sat, 26 Dec 2009 04:40:43 GMT
If-None-Match: 0

HTTP/1.1 304 Not Modified

Content-Type: text/xml

Cache-Control: no-transform;max-age=74378
Expires: Sun, 27 Dec 2009 02:00:00 GMT
Date: Sat, 26 Dec 2009 05:20:21 GMT
Server: Jetty(6.1.21)

Update the book with the "u" command. Then trying it again will result in a new
copy with a new timestamp and a new ETag:

GET /bs/books/1234 HTTP/1.1

Host: localhost

Accept: text/xml

If-Modified-Since: Sat, 26 Dec 2009 04:40:43 GMT
If-None-Match: 0

HTTP/1.1 200 OK

Content-Type: text/xml

Cache-Control: no-transform;max-age=74298
Expires: Sun, 27 Dec 2009 02:00:00 GMT

Date: Sat, 26 Dec 2009 05:21:41 GMT
Last-Modified: Sat, 26 Dec 2009 05:21:32 GMT
ETag: 1

Content-Length: 144

Server: Jetty(6.1.21)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?><book
xmlns="http://ttdev.com/bs"><isbn>1234</isbn><title>Java
Programming</title></book>

BUG ALERT: CXF 2.2.5 is not checking the If-None-Match header at all. The
above worked due to the timestamp only.

What if books can be updated at any time?

If books can be updated at any time, you may decide that it is still OK for clients
(and proxies) to use the response for, say, one hour or 10 minutes or whatever.
Of course, then a client may be seeing outdated result.

If this is unacceptable, that is, you need the clients to always see the updated
result, you may set max-age to 0 and set the Expires header to a timestamp in
the past. This way, the proxy will need to validate the cached response every
time it wants to use it.

In summary, you should always set the version (ETag or timestamp). You may
then decide the max-age according to your business needs.

Performing an update

Now you have implemented the read operation (HTTP GET method), how to
update a book? For example, you can use an HTTP PUT method like:

212 Chapter 9 Creating scalable web services with REST

Update book 1234.

!—‘—\

PUT /books/1234 HTTP/1.1

<book>
<isbn>1234</isbn>
<title>C# programming</title>

s The new content is specified
</book> in the body.

Note that it is not the POST method which means "add", not "update". To
implement this idea, modify the BookResource class:

PUT /books/1234 HTTP/1.1

Kbook>
<isbn>1234</isbn>
<title>C# programming</title>

/book>

This method will handle PUT

i j . . . ; requests. .
import javax.ws.rs.PUT q CXF notes that there is only

" . " one argument that has no
@path ("books/ {isbn}") annotation, so it will try to

public class BookResource { convert the body into Java
and inject it into here.

QPUT
public Response update (@PathParam("isbn") String isbn, BookState st) {
ResponseBuilder builder;
BookDB bookDB = BookDB.instance;
if (isbn.equals("1234")) { i
Book book = bookDB.getBook1234 () ; This will return the status
book.setIsbn(st.getIsbn()); :g??ﬂigg;fﬂﬂg:?tﬂ
book.setTitle(st.getTitle()); content is returned.
book.setLastModified (new Date()) ;
builder = Response.noContent() ;
} else {
builder = Response.status(Status.NOT FOUND) ;
}

return builder.build() ;

The book the request is trying to
} update doesn't exist, so tell it that it
was not found (status code 404).

To test it, you can't use a browser as most browsers only implement GET and
POST, but not PUT. So, you need to modify the BookClient class. Before that,
copy the bindings.xml file and CodeGenerator class to it. Run the
CodeGenerator class. Delete the existing Book class. Modify the BookClient
class to use the BookState class:
public class BookClient {
public static void main (String[] args) throws InterruptedException ({

WebClient client = WebClient.create ("http://localhost:8080/bs");

client.path("books/1234");

BookState book = client.get (BookState.class);

System.out.println (book.getTitle());
}

}
Next, further modify it to test the update operation:

public class BookClient {

Chapter 9 Creating scalable web services with REST

public static void main (String[] args) throws InterruptedException {
WebClient client = WebClient.create ("http://localhost:8080/bs");
client.path("books/1234");
BookState book = client.get (BookState.class);
System.out.println (book.getTitle()) ;
book.setTitle ("C# Programming") ;
client.put (book) ;
book = client.get (BookState.class);
System.out.println(book.getTitle());

}

}
Run the server and then run the client. The client should print:

Java Programming
C# Programming

213

If you'd like, you can use TCP Monitor to view the messages. Let it listen on port

1234 as usual and then modify the client:

public class BookClient {
public static void main (String[] args) throws InterruptedException {
WebClient client = WebClient.create ("http://localhost:1234/bs");
client.path ("books/1234");
BookState book = client.get (BookState.class);
System.out.println (book.getTitle()) ;
book.setTitle ("C# Programming");
client.put (book) ;
book = client.get (BookState.class);
System.out.println (book.getTitle()) ;

Implementing add

To add a book, you should use the POST method. But POST to where? POST

to the collections of books as identified by the /books URL:

POST /books HTTP/1.1
<book>

</book>

To do that, create a BooksResource class (note that it is plural. Not

BookResource):

214 Chapter 9 Creating scalable web services with REST

import java.net.URI;
import java.net.URISyntaxException;
import javax.ws.rs.POST;

You'll create this method next.

@Path ("books")
public class BooksResourceg {
@POST

Return a 201 (Created) status code.
You must provide the URL to the
new object. It will be sent to the client
using a Location header.

public Response add(@Coptext Request request, BookState st) {

BookDB.instance.addBook (new Book (st.getIsbn(), st.getTitle()));
try |
ResponseBuilder builder = Response.created(new URI (

"http://localhost:8080/bs/books/" + st.getIsbn()));

return builder.build();
} catch (URISyntaxException e) {
throw new RuntimeException (e);

}

}

Implement the addBook() method in the BookDB class:

public class BookDB {

; fo Decle b 1ed 4
jce==acs Boor—1200KT 7

private Map<String, Book> books;

public BookDB() {
books = new HashMap<String, Book>();

Book bookl234 = new Book("1234", "Java Programming") ;

addBook (book1234) ;
}
public Book getBookl1234 () {
return books.get("1234");
}
public void addBook (Book book) {
books.put (book.getIsbn(), book) ;
}
public static BookDB instance = new BookDB();
}

Add the resource class to the server and delete the code to modify a book:

public class BookServer {

public static void main (String[] args) throws InterruptedException,

IOException {
JAXRSServerFactoryBean sf

new JAXRSServerFactoryBean();

sf.setResourceClasses (BooksResource.class, BookResource.class);

sf.setAddress ("http://localhost:8080/bs") ;
sf.create();
System.out.println ("Started") ;

}

}
Modify the client to test it:

Chapter 9 Creating scalable web services with REST

public class BookClient {
public static void main(String[] args) throws InterruptedException {
WebClient client = WebClient.create ("http://localhost:8080/bs");
BookState st = new BookState();
st.setIsbn("5678") ;

Reset to the base URL. If you don't do that, the path
below (books/5678) will be appended to the existing

215

st.setTitle("Design Patterns"); URL (http://localhost:8080/bs/books) and will end up as

client.path("books") ; http://localhost:8080/bs/books/books/5678.
client.post(st);
client.back (true) ;
client.path ("books/5678") ;

BookState book = client.get (BookState.class);
System.out.prijntln (book.getTitle());

} If you specify false, it will back up just one level
instead of going to the base URL. In this case, it
will go from http://localhost:8080/bs/books back
to http://localhost:8080/bs. That will also work.

As you are trying to retrieve a book other than book 1234, you need to enhance

the GET method:

@Path ("books/{isbn}")
public class BookResource {
QGET
public Response getDetails (@Context Request request,
@PathParam("isbn") String isbn) {
BookDB bookDB = BookDB.instance;
if (bookDB.contains(isbn)) {
Book book = bookDB.getBook (isbn) ;
EntityTag entityTag = new EntityTag(Long
.toString (book.getVersion()));

ResponseBuilder builder = request.evaluatePreconditions (
getVersion (book), entityTag);
if (builder != null) {
setExpiry (builder) ;
} else {

BookState st = getBookState (book) ;
builder = Response.ok(st);
builder.lastModified (getVersion (book)) ;
builder.tag(Long.toString (book.getVersion()));
setExpiry (builder) ;
}
return builder.build();
} else {
return Response.status(Status.NOT_FOUND) .build() ;
}
}

}
Define the contains() and getBook() methods:

public class BookDB {
private Map<String, Book> books;

public BookDB () {
books = new HashMap<String, Book>();
Book book1234 = new Book("1234", "Java Programming");
addBook (book1234) ;
}
public Book getBook1234() {
return books.get ("1234");
}
public void addBook (Book book) {
books.put (book.getIsbn(), book);

216 Chapter 9 Creating scalable web services with REST

}
public boolean contains(String isbn) {
return books.containsKey (isbn) ;

}
public Book getBook (String isbn) {
return books.get(isbn) ;

}

public static BookDB instance = new BookDB();
}
Even though it is working, hard-coding the URL in the source code is no good

as you just don't know in advance in which host(s) the service will be deployed
to:

@Path ("books")

public class BooksResource {

@POST

public Response add(@Context Request request, BookState st) {
BookDB.instance.addBook (new Book(st.getIsbn(), st.getTitle()));
try {

ResponseBuilder builder = Response.created(new URI (
"http://localhost:8080/bs/books/" + st.getIsbn()));
return builder.build();
} catch (URISyntaxException e) {
throw new RuntimeException (e);

}

}
To solve this problem, JAX-RS provides a class to help you create URLs:

import javax.ws.rs.core.UriBuilder; Create a "URI builder". You can use it to build a

import javax.ws.rs.core.UriInfo; URI. Here, you set the initial URI to the base
URI (http://localhost:8080/bs).

@path ("books") Inject information regarding the URI.
public class BooksResource {

@POST
public Response add(@Context Request reqyest, @Context UriInfo urilnfo,
BookState st) {
BookDB.instance.addBook (new Book(st.getIsbn(), st.getTitle()));
UriBuilder uriBuilder = urilInfo.getBaseUriBuilder();
uriBuilder.path (BookResource.class) ;
ResponseBuilder builder |= Response.created(uriBuilder.build(st.getIsbn()));
return builder.build();

} X X N Fill the value (e.g., 5678)
Look into this resource class to find into the first path

the path and append it to the URI so parameter:
far. So, you'll get
http://localhost:8080/bs/book/{isbn}.

@Path ("book/{isbn}")
public class BookResource {

}

View the response in TCP Monitor and the Location header should be set
properly:

HTTP/1.1 201 Created

Content-Type: text/xml

Location: http://localhost:8080/bs/books/5678
Date: Sat, 26 Dec 2009 09:54:13 GMT
Content-Length: 0

Server: Jetty(6.1.21)

Chapter 9 Creating scalable web services with REST 217

Implementing delete
To implement delete, use the HTTP DELETE method:

@Path ("books/{isbn}")
public class BookResource {
@DELETE
public Response delete (QPathParam("isbn") String isbn) {
ResponseBuilder builder;
BookDB bookDB = BookDB.instance;
if (bookDB.contains(isbn)) {
bookDB.delete (isbn) ;
builder = Response.noContent() ;
} else {
builder = Response.status(Status.NOT_FOUND) ;
}
return builder.build() ;
}
}

Implement the delete():

public class BookDB {
private Map<String, Book> books;

public BookDB () {
books = new HashMap<String, Book>();
Book book1234 = new Book("1234", "Java Programming");
addBook (book1234) ;

}

public Book getBook1234 () {
return books.get ("1234");

}

public void addBook (Book book) {
books.put (book.getIsbn (), book);

}

public boolean contains (String isbn) {
return books.containsKey (isbn) ;

}

public Book getBook(String isbn) {
return books.get (isbn);

}

public void delete(String isbn) {
books . remove (isbn) ;

}

public static BookDB instance = new BookDB();

}
Modify the client to test it:

public class BookClient {
public static void main (String[] args) throws InterruptedException {
WebClient client = WebClient.create ("http://localhost:8080/bs");
client.path ("books/1234") ;
client.delete() ;
Response response = client.get();
System.out.println(response.getStatus()) ;
}
}

Run the server and then the client. The client should print 404 as the status
code. Note that CXF will also print an exception to warn you that something is
wrong. That is fine and harmless.

218 Chapter 9 Creating scalable web services with REST

Listing the reviews on a book

Suppose that a book may have zero or more reviews given by readers. In order
to retrieve the reviews, what URL should you use? You may try
http://localhost:8080/bs/reviews but it is not saying which book is concerned.

A next attempt may be http://localhost:8080/bs/reviews?book=1234. This works.
However, some older proxies were configured by default to not cache
containing query parameters because in the past a lot of dynamically generated
HTTP responses did not include Cache-Control headers, so the proxy
developers decided to ignore them completely.

Another alternative is http://localhost:8080/bs/books/1234/reviews, which can be
interpret as getting to the books, get the book 1234, get its reviews. This looks
nice because there is a parent-child relationship.

What should the response be like? It could be:

<reviews>
<review>
<by>John Doe</by>
<text>I like this book...</text>
</review>
<review>
<by>...</by>
<text>...</text>
</review>
</reviews>

To implement this idea, modify the XSD file:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://ttdev.com/bs"
xmlns:tns="http://ttdev.com/bs" elementFormDefault="qualified">
<element name="book">
<complexType>
<sequence>
<element name="isbn" type="string"></element>
<element name="title" type="string"></element>
</sequence>
</complexType>
</element>
<element name="reviews">
<complexType>
<sequence>
<element ref="tns:review" minOccurs="0" maxOccurs="unbounded">
</element>
</sequence>
</complexType>
</element>
<element name="review">
<complexType>
<sequence>
<element name="by" type="string"></element>
<element name="text" type="string"></element>
</sequence>
</complexType>
</element>
</schema>

Modify the bindings.xml file to map <reviews> and <review> to Java classes

Chapter 9 Creating scalable web services with REST 219

named ReviewsState and ReviewState respectively:

<?xml version="1.0" encoding="UTF-8"?>

<jaxb:bindings
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
schemaLocation="BookService.xsd"
jaxb:version="2.0">
<jaxb:bindings node="/xsd:schema/xsd:element [@name="book']">

<jaxb:class name="BookState"></jaxb:class>

</jaxb

:bindings>

<jaxb:bindings node="/xsd:schema/xsd:element[@name='reviews']">
<jaxb:class name="ReviewsState"></jaxb:class>

</jaxb

:bindings>

<jaxb:bindings node="/xsd:schema/xsd:element[@name='review']">
<jaxb:class name="ReviewState"></jaxb:class>

</jaxb

:bindings>

</jaxb:bindings>

Run the

CodeGenerator class to generate the code. Then, modify the

BookResource class:

public class BookResource {

‘ > <:>‘4”books/{isbn)/reviews

appended to the @Path specified by the

@Path ("books/{isbn}") TThe @Path specified by the method is

It's a GET request:

}

QPath ("reviews" class to get the full path for the method.
@GET
public Response getReviews (@PathParam("isbn") String isbn) {
BookDB bookDB = BookDB.instance;
if (bookDB.contains (isbn)) {
Book book = bookDB.getBook (isbn) ; You'll create this method next.
ReviewsState result = new ReviewsState();
for (Review r : book.getReviews{})}—{
ReviewState st = new ReviewState() ;
st.setBy(r.getBy())
st.setText (r.getText()); Don't forget to set the expiry

result.getReview () .add (st) ; headers in order for it to be
cached.

}

ResponseBuilder builder = Response.ok (result) ;
setExpiry (builder) ;
return builder.build() ;

} else {
return Response.status (Status.NOT_FOUND) .build() ;

}

Create the getReviews() method in the Book class:

public c
privat
privat
privat
privat

lass Book {

e String isbn;

e String title;

e Date lastModified;
e long version;

private List<Review> reviews;

public

Book (String isbn, String title) {

this.isbn = isbn;

this.title = title;

this.lastModified = new Date();
this.version = 0;

this.reviews = new ArrayList<Review>();

220 Chapter 9 Creating scalable web services with REST

public List<Review> getReviews () {
return reviews;
}
}

Create the Review class:

public class Review {
private String by;
private String text;

public Review(String by, String text) {
this.by = by;
this.text = text;

}

public String getBy () {
return by;

}

public void setBy(String by) {
this.by = by;

}

public String getText () {
return text;

}

public void setText (String text) {
this.text = text;

}

}

Modify the BookDB class to hard code some reviews:

public class BookDB {
private Map<String, Book> books;

public BookDB () {
books = new HashMap<String, Book>();
Book book1234 = new Book("1234", "Java Programming");
List<Review> reviews = bookl234.getReviews() ;
reviews.add (new Review("John", "Great book!")) ;
reviews.add (new Review("Judy", "Excellent!"));
addBook (book1234) ;

}

}
Run the server and try to access http://localhost:8080/bs/books/1234/reviews.
You should get:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<reviews xmlns="http://ttdev.com/bs">
<review>
<by>John</by>
<text>Great book!</text>
</review>
<review>
<by>Judy</by>
<text>Excellent!</text>
</review>
</reviews>

Even though it is working, currently it is the book resource handling the request

for the reviews. This is not ideal. Instead, you should have a reviews resource
handling the request.

Chapter 9 Creating scalable web services with REST 221

Book resource Reviews resource

|

The question is how to write the Reviews resource. Let's try as shown below.
You can see that this will duplicate the logic of locating a book already done in
the BookResource class.

EPath ("pooks/ {isbn/review")

public class ReviewsResource {
QGET
public Response getReviewsd@PathParam("iSbn") String isbnb {
BookDB bookDB = BookDB.instance; A
if (bookDB.contains (isbn)) {

Book book = bookDB.getBook (isbn) ;
A

pET /books/1234 ‘ I ——

‘GET /books/1234 /reviews ‘—

} else {

}
}
}

@Path ("lbooks/{isbn}")

public class BookResource {
QGET
public Response getDetails (@C¥ntext Request request,
@PathParam("isbn") String isbnb {
BookDB bookDB = BookDB.instance;
if (bookDB.contains (isbn)) {
Book book = bookDB.getBook (isbn) ;

) else
}

}
}

To avoid duplicating the logic, you should use the BookResource to locate the
book and then ask it to give you a ReviewsResource. For example, see the
diagram below, for a path like /books/1234/xyz, CXF first locates and creates
the book resource. Then it finds that foo() method has a matching path (/books/
{isbn}/xyz) and a matching HTTP method, so it calls that foo() method and get
the response. If the path is /books/1234/reviews, as before, CXF first locates
and creates the book resource. Then it finds that the bar() method has
matching path (/books/{isbn}/reviews) but it doesn't indicate the HTTP method.
This is telling CXF that this method will create a child resource. So, it calls that
bar() method to get another resource (a book reviews resource). Then it traces
into that resource and look for a method annotated with @GET. In this case it
will find the baz() method. So it calls that baz() method and get the response:

222 Chapter 9 Creating scalable web services with REST

GET /books/1234/xyz

1: Matching the path and the
HTTP method. Call it and get
the response.

Book resource

@Path ("books/{isbn}")
public class BookResource {
» @Path ("xyz")

@GET

public Response foo(...) {

GET /books/1234/reviews

}
» @Path ("reviews")

2: Matching the path but no public ReviewsResource bar(...) {
HTTP method is specified for
the method. Call it and get
another resource.

}

}
3: Create and return a child
resource.
4: Trace into that resource and GPatt
call the method with a matching T .
HTTP method. public class ReviewsResource {
» QGET
public Response baz(...) {
}
}

Note that the child resource (ReviewsResource) doesn't need to be annotated
with @Path as it is already done with a method in its parent (the bar() method
above).

To implement this idea, modify the BookResource class to give it such a child
resource returning method:

@Path ("books/{isbn}"™)
public class BookResource {
@Path ("reviews")
[ReEE
public ReviewsResource getReviewsResource (€PathParam("isbn") String isbn) {
BookDB bookDB = BookDB.instance;
if (bookDB.contains (isbn)) { Create such a resource and provide the book to it.
Book book = bookDB.getBook (isbn);
return new ReviewsResource (book) ;
} else {
Response response = Response.status (Status.NOT_FOUND) .build();
throw new WebApplicationException (response) ;

} If the book is not found, you'd like to return a 404
... (Not Found) status code. However, as you're now

} supposed to return a resource, not a response. The

solution is to throw a WebApplicationException

wrapping a response. When CXF receives this

exception, it will return the response included in it.

Very important: Do not indicate any HTTP method
here. You're delegating the request to the child
resource, so let that child resource handle the
various HTTP methods (GET, PUT or whatever).

Chapter 9 Creating scalable web services with REST 223

Create the ReviewsResource class:

Note that it has no @Path annotation
because this is already done by the

method in the parent resource. This resource represents the reviews for

‘ this book only, not for all books.

LRatht—)
public class ReviewsResource {
private Book book;
Once CXF reaches this resource through
public ReviewsResource (Book book) { @ book resource, it will find the method
this.book = book; with a matching HTTP method as usual.
}
@GET
public Response getReviews () {
ReviewsState result = new ReviewsState();
for (Review r : book.getReviews()) {
ReviewState st = new ReviewState();

st.setBy(r.getBy()); the setExpiry() method is defined in the
st.setText (r.getText()); BookResource class. Can't access it for
result.getReview () .add (st) ; now. You'll fix it later.

}

ResponseBuilder builder = Response.ok(result);
// setExpiry(builder) ;
return builder.build();

}

To make the setExpiry() method available to it, put it into a new class and name
it, say, CacheController:

public class CacheController {

public static void setExpiry(ResponseBuilder builder) {
GregorianCalendar now = new GregorianCalendar();
GregorianCalendar nextUpdate = getNextUpdateTime (now) ;
int maxAge = (int) ((nextUpdate.getTimeInMillis() - now

.getTimeInMillis()) / 1000L);

CacheControl cacheControl = new CacheControl ();
cacheControl.setMaxAge (maxAge) ;
builder.cacheControl (cacheControl) ;
builder.expires (nextUpdate.getTime()) ;

}

private static GregorianCalendar getNextUpdateTime (GregorianCalendar now) {
GregorianCalendar nextUpdate = new GregorianCalendar();
nextUpdate.setTime (now.getTime ()) ;
nextUpdate.set (Calendar.HOUR OF DAY, 10);
nextUpdate.set (Calendar.MINUTE, O0);
nextUpdate.set (Calendar.SECOND, 0);
nextUpdate.set (Calendar .MILLISECOND, O0);
if (now.get (Calendar.HOUR OF DAY) >= 10) {

nextUpdate.add (Calendar.DAY OF YEAR, 1);

}
return nextUpdate;

}

}

Let both the BookResource and ReviewsResource classes use it:

@Path ("books/{isbn}")
public class BookResource {
QGET
public Response getDetails (@Context Request request,

@PathParam("isbn") String isbn) {
BookDB bookDB = BookDB.instance;

224 Chapter 9 Creating scalable web services with REST

if (bookDB.contains (isbn)) {
Book book = bookDB.getBook (isbn);
EntityTag entityTag = new EntityTag(Long
.toString (book.getVersion()));
ResponseBuilder builder = request.evaluatePreconditions (
getVersion (book), entityTag);
if (builder != null) {
CacheController.setExpiry (builder) ;
} else {
BookState st = getBookState (book) ;
builder = Response.ok(st);
builder.lastModified (getVersion (book));
builder.tag(Long.toString (book.getVersion())) ;
CacheController.setExpiry (builder) ;
}
return builder.build();
} else {
return Response.status (Status.NOT_FOUND) .build();
}
}
}

public class ReviewsResource {
QGET
public Response getReviews () {
ReviewsState result = new ReviewsState();
for (Review r : book.getReviews()) {
ReviewState st = new ReviewState();
st.setBy(r.getBy());
st.setText (r.getText ());
result.getReview() .add (st);
}
ResponseBuilder builder = Response.ok(result);
CacheController.setExpiry (builder) ;
return builder.build();
}

}
Run the service and access the reviews again at
http://localhost:8080/bs/books/1234/reviews. It should continue to work.

Providing the full review text on demand

Suppose that the client may only want to display a brief summary of each review
to the user. If the user would like to see the full review, he can click on a link to
display the full review. To do that, the initial response may be like:

Chapter 9 Creating scalable web services with REST 225

Now it is not a review but just a The URL to GET the full

reference to a review. review. Here, 0 is the index
) (first review for that book)
<reviews> Just a little summary text and used as an unique ID.
<reviewRef>
<summary>Great...</summary>
<url>http://localhost:8080/bs/books/1234/reviews/0
</review>
<review>
<summary>Execellent...</summary>
<url>http://localhost:8080/bs/books/1234/reviews/1
</review>
</reviews>

To implement this idea, modify the XSD file:

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://ttdev.com/bs"
xmlns:tns="http://ttdev.com/bs" elementFormDefault="qualified">
<element name="book">
<complexType>
<sequence>
<element name="isbn" type="string"></element>
<element name="title" type="string"></element>
</sequence>
</complexType>
</element>
<element name="reviews">
<complexType>
<sequence>
<element ref="tns:reviewRef" minOccurs="0" maxOccurs="unbounded">
</element>
</sequence>
</complexType>
</element>
<element name="reviewRef">
<complexType>
<sequence>
<element name="summary" type="string"></element>
<element name="url" type="anyURI"></element>
</sequence>
</complexType>
</element>
<element name="review">
<complexType>
<sequence>
<element name="by" type="string"></element>
<element name="text" type="string"></element>
</sequence>
</complexType>
</element>
</schema>

Generate the code again. Then modify the ReviewsResource class to return a
list of review references:

226 Chapter 9 Creating scalable web services with REST

public class ReviewsResource {
private Book book;

public ReviewsResource (Book book) {

Use the first word of review

this.book = book; text as the summary.

}

QGET

public Response getReviews (QContext UriInfo [uriInfo) ({
ReviewsState result = new ReviewsState(); Use the current full path
int index = 0; . (books/1234/reviews) as
for (Review r : book.getReviews()) ({ the initial path in the URI

ReviewRef ref = new ReviewRef () ; builder.

ref.setSummary (r.getText () .split (" ") [0]);
UriBuilder builder = uriInfo.getAbsolutePathBuilder() ;

builder.path (ReviewsResource.class, "getReview");
ref.setUrl (builder.build (index) .toString()) ;
result.getReviewRef () .add(ref); fyiin the index value to get Find the @Path value
index++; something like attached to this method
} books/1234/reviews/0. an:ihappfendét to the il
ResponseBuilder builder = Response.ok (result); g:t sofar. So you wi
CacheContFoller.sgtEXpiry(builder); books/1234/reviews/
return builder.build(); {index}.
}
—— @Path (" {index}") =
QGET
public Response getReview(@PathParam("index") int index) {
try {

Review review = book.getReviews () .get (index) ;
ReviewState st = new ReviewState() ;
st.setBy (review.getBy()) ;
st.setText (review.getText()) ;
ResponseBuilder builder = Response.ok(st);
CacheController.setExpiry (builder) ;
return builder.build();
} catch (IndexOutOfBoundsException e) {
return Response.status(Status.NOT FOUND) .build() ;

}

Even though it is not written in this class,
this resource class will handle paths like
books/1234/reviews. So, this method will
handle paths like books/1234/reviews/
{index}.

Run the service and try to access http://localhost:8080/bs/books/1234/reviews
in the browser. You should get the links:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<reviews xmlns="http://ttdev.com/bs">
<reviewRef>
<summary>Great</summary>
<url>http://localhost:8080/bs/books/1234/reviews/0</url>
</reviewRef>
<reviewRef>
<summary>Excellent!/summary>
<url>http://localhost:8080/bs/books/1234/reviews/1</url>
</reviewRef>
</reviews>

Accessing a particular review by http://localhost:8080/bs/books/1234/reviews/0
will also work.

Chapter 9 Creating scalable web services with REST 227

Implementing search

Suppose that you'd like to allow clients to search for books. They can specify a
keyword such as "Java" to match books whose titles contain the word "Java".
They can also specify, say, a date to match books that were published after that
date. Furthermore, both conditions can be specified simultaneously.

Obviously this operation is a GET operation, but what is the resource being
read? It is a certain selection of books that meet the search criteria. The URL
could be http://localhost:8080/bs/bookselections/keyword/java/pubdate/12-26-
2009. However, this doesn't look very natural as it is not a true parent-child
relationship between "bookselections" and "keyword", and between "keyword"
and "java".

An alternative is to use query parameters such as
http://localhost:8080/bs/bookselections?keyword=java&pubdate=12-26-2009.
This is a better when you aren't following a parent-child hierarchy.

To implement this function, modify the XSD file to define the structure of the
response:

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://ttdev.com/bs"
xmlns:tns="http://ttdev.com/bs" elementFormDefault="qualified">
<element name="book">
<complexType>
<sequence>
<element name="isbn" type="string"></element>
<element name="title" type="string"></element>
</sequence>
</complexType>
</element>
<element name="books">
<complexType>
<sequence>
<element ref="tns:book" minOccurs="0" maxOccurs="unbounded">
</element>
</sequence>
</complexType>
</element>
<element name="reviews">
<complexType>
<sequence>
<element ref="tns:reviewRef" minOccurs="0" maxOccurs="unbounded">
</element>
</sequence>
</complexType>
</element>
<element name="reviewRef">
<complexType>
<sequence>
<element name="summary" type="string"></element>
<element name="url" type="anyURI"></element>
</sequence>
</complexType>
</element>
<element name="review">
<complexType>
<sequence>
<element name="by" type="string"></element>
<element name="text" type="string"></element>

228 Chapter 9 Creating scalable web services with REST

</sequence>
</complexType>
</element>
</schema>

Modify the bindings.xml file:

<jaxb:bindings
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
schemaLocation="BookService.xsd"
jaxb:version="2.0">
<jaxb:bindings node="/xsd:schema/xsd:element [@name="book"']">
<jaxb:class name="BookState"></jaxb:class>
</jaxb:bindings>
<jaxb:bindings node="/xsd:schema/xsd:element[@name='books']">
<jaxb:class name="BooksState"></jaxb:class>
</jaxb:bindings>
<jaxb:bindings node="/xsd:schema/xsd:element [@name="reviews']">
<jaxb:class name="ReviewsState"></jaxb:class>
</jaxb:bindings>
<jaxb:bindings node="/xsd:schema/xsd:element [@name="review']">
<jaxb:class name="ReviewState"></jaxb:class>
</jaxb:bindings>
</jaxb:bindings>

Generate the code again. Then create a BookSelectionsResource class:

http://localhost:8080/bs/books/selectionsﬂkeyword=javaﬁrubdate=l2—26—2009

Inject the value of
the query

parameter into the
@Path ("bookselections") argument.
public class BookSelectionsResource {

@GET

public Response select (€QueryParam("keyword")

String keyword,

@QueryParam ("pubdate") String pubDate)-{
List<Book> books
BooksState result
for (Book book books) {

BookState st new BookState();

st.setIsbn (book.getIsbn());

st.setTitle (book.getTitle());
result.getBook () .add(st) ;

new BooksState();

}

ResponseBuilder builder
CacheController.setExpiry (builder) ;
return builder.build();

BookDB.instance.searchBooks (keyword, pubDate) ;

Response.ok (result) ;

What you get is a
string, but you need
a Date. In that
case, CXF will try
two things:

You'll create this
method next.

1: Try a constructor taking a
String (the Date class does
have this constructor).

public class Date

public Date(String s)

}

public static Object valueOf (String s

}

public static Object fromString (String s)

}
}

Create the searchBooks() method in the BookDB class as shown below. Here,

2: Try a static
method named
"valueOf" or

"fromString".

{
{

{

Chapter 9 Creating scalable web services with REST

you simply return all the books.

public class BookDB {
private Map<String, Book> books;

public List<Book> searchBooks (String keyword, String pubDate) {
return new ArrayList<Book>(books.values());
}

}
Register the resource class with the server:

public class BookServer {
public static void main(String[] args) throws InterruptedException,
IOException {
JAXRSServerFactoryBean sf = new JAXRSServerFactoryBean();
sf.setResourceClasses (BooksResource.class, BookResource.class,
BookSelectionsResource.class) ;
sf.setAddress ("http://localhost:8080/bs") ;
sf.create();

}
}

229

Now run the server and try to access http://localhost:8080/bs/bookselections?

keyword=java&pubdate=12-26-2009. You should get the book listing:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<books xmlns="http://ttdev.com/bs">
<book>
<isbn>1234</isbn>
<title>Java Programming</title>
</book>
</books>

What if the client specifies only, say, the keyword but not the pubdate? Then
null will be injected as the value as the pubdate. Therefore, In a real web

service you will probably need to check like:

@Path ("bookselections")
public class BookSelectionsResource {
QGET
public Response select (@QueryParam("keyword") String keyword,
@QueryParam ("pubdate") String pubDate) {
if (keyword == null) {

}

if (pubDate == null) {

}

List<Book> books = BookDB.instance.searchBooks (keyword, pubDate);

}
}

How to send query parameters using the CXF web client? It can be done like

this:

public class BookClient {

public static void main(String[] args) throws InterruptedException {
WebClient client = WebClient.create ("http://localhost:8080/bs");
client.path ("bookselections") ;
client.query ("keyword", "Java");
client.query ("pubdate", new GregorianCalendar (2009, 11, 26) .getTime());
BooksState st = client.get(BooksState.class);
for (BookState st : books.getBook()) {

System.out.println(st.getTitle())

}

}

230 Chapter 9 Creating scalable web services with REST

}
To have the BooksState class, copy the XSD file and bindings.xml file to the
client project and generate the code again. Run the client and it should print:

Java Programming

Doing it in Axis2

The REST support in Axis2 is quite complicated and difficult to use. So, | will not
cover it here.

Summary

If you need to create a highly scalable web service, definitely consider the REST
architecture. It means standardizing on the way the methods (GET, PUT, etc.)
and the resources are specified (URI). This way proxies will be able to cache
the responses.

To truly support caching, you should set the expiry date and time. Then you
should support conditional GETs (validations) using a timestamp or an ETag (or
both).

Usually the path in the URI is designed to reflect a parent-child hierarchy. For
other relationships, you may use query parameters.

The response body is usually XML to remain platform and language neutral. To
generate such XML or to read it, you will use JAXB to convert between Java
and XML. In particular, you should start from XML schema and generate the
corresponding Java classes. You can use JAXB bindings file to customize the

mapping.

Using JAX-RS, the runtime will use the path (or its initial portion) to locate the
resource class, create an instance and use the remaining of the path to locate
the method. The method may return a response or may return a child resource
for it to trace into. For the former case, the method must be annotated with the
HTTP method it can handle. For the latter case, it must not have such an
annotation.

You can use parameters in the @Path annotation so that you can handle
multiple paths.

You can inject various types information from the request into the arguments of
your resource methods such as path parameters, query parameters, the
request itself or the body of the request (converted to a Java object).

Commonly you may need to include URIs to related resources in a response.
To build such URLSs, it's easier to use the UriBuilder which can be injected.

231

Chapter 10

Deploying your services and
integrating them with Spring

232 Chapter 10 Deploying your services and integrating them with Spring

What's in this chapter?

In this chapter you'll learn how to deploy your web services in a web container
such as Tomcat and let them invoke business logic in Spring beans.

Deploying the simple service

Up until now you've been running your web services from console applications.
Behind your back CXF has been running a web server called Jetty to route the
HTTP requests to your services. In production, you're likely already running a
web server such as Tomcat and therefore you probably want to deploy your
services there.

To do that, let's take the SimpleService project as an example. Copy it and
paste it as SimpleWebApp. Modify the pom.xml file:

<project ...>
<modelVersion>4.0.0</modelVersion>
<groupId>SimpleWebApp</groupIld>
<artifactId>SimpleWebApp</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>war</packaging>

</};£<.Jject>
The <packaging> element tells the Eclipse Maven plugin that it is a web

application. Right click the project and choose Maven | Update Project
Configuration for the change to take effect.

Then create a servlet named SimpleServlet in the com.ttdev.ss package:

package com.ttdev.ss;

import javax.servlet.ServletConfig; E)i(;e;%wéigir;lgtxc':ﬁ?'
import javax.servlet.ServletException; handle the HTTP
import javax.xml.ws.Endpoint; requests.

import org.apache.cxf.BusFactory;

import org.apache.cxf.transport.servlet.CXFNonSpringServlet;

public class SimpleServlet extends CXFNonSpringServlet ({ On initialization, the super

class will create a "bus" by

private static final long serialVersionUID = 1L; reading configuration files.
The bus is the central place
@Override ‘ for all endpoints.

public void loadBus (ServletConfig servletConfig) throws ServletException {
super.loadBus (servletConfig);
BusFactory.setDefaultBus (getBus());
Object implementor = new SimpleServiceImpl();
Endpoint.publish("/pl", implementor);

} |

Use that bus as the default

bus.
} Publish an endpoint. It
will attach itself to the Use a relative path. If you deploy your web application
default bus. as http://localhost:8080/ss, then the full URL will be

http://localhost:8080/ss/p1.

Modify the src/main/webapp/WEB-INF/web.xml file to register the servlet:

<?xml version="1.0" encoding="UTF-8"?>

Chapter 10 Deploying your services and integrating them with Spring 233

<web-app ...>

<display-name>SimpleService</display-name>

<welcome-file-list>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>
<welcome-file>default.html</welcome-file>
<welcome-file>default.htm</welcome-file>
<welcome-file>default.jsp</welcome-file>

</welcome-file-list>

<servlet>
<servlet-name>sl</servlet-name>
<servlet-class>com. ttdev.ss.SimpleServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>sl</servlet-name>
<url-pattern>/services/*</url-pattern>

</servlet-mapping>

</web-app>
Right click the project and choose Run As | Maven package. It will create a
SimpleWebApp-0.0.1-SNAPSHOT.war in the target folder. You're ready to

deploy it into Tomcat.

Installing Tomcat

If you already have Tomcat installed, skip to the next section. Otherwise, go to
http:/tomcat.apache.org to download a binary package of Tomcat. Download
the zip version instead of the Windows exe version. Suppose that it is apache-
tomcat-6.0.16.zip. Unzip it into a folder, say tomcat. Note that Tomcat 6.x
works with JDK 5 or above.

Before you can run it, make sure the environment variable JAVA HOME is
defined to point to your JDK folder (e.g., C:\Program Files\Java\jdk1.5.0_02). If
you don't have it, define it now.

Now, open a command prompt, change to tomcat/bin and then run startup.bat.
If it is working, you should see:

234 Chapter 10 Deploying your services and integrating them with Spring

Tomeat

Jun 19, 2887 12:18:42 PM org.apache.catalina.core.fAprLifecyclelistener init
INFO: The Apache Tomcat Native library wvhich allows optimal performance in produy
ction environments was not found on the java.library.path: C:“Program Files“Jawval
NJjdk1.5.8_02bin; . ;C:WINDOUS ~system32;C: “\WINDOWS ; C: “WINDOUS “zys tem22 ; C: “\WINDOUS
;G NWINDOUS NS ystem32“Wben; C: “PROGRA™1 “Borland Delphi6“Bin;C: “PROGRA™1“Borland“De
1phi6a~Projects~Bpl;C:~Program Files“Common Files“GTK“2.B%“bhin;c:“program files“jd
izoftware gpl ghostscript gs-8.15%bin;c“program files’jdisoftware gpl ghostscri
ptags—8.15%1ib;C:~8ubversionsbin;c: maven—2.8.4%bhin

WJun 19, 2087 12:18:42 PM org.apache.coyote.httpll.HttpliProtocol init

IMFO: Initializing Coyote HITP-1.1 on http—8B8A

Jun 17. 2887 1 8:42 PM org.apache.catalina.startup.Catalina load

INF0O: Initialization processed in 1884 ms

Jun 19, 2887 12:18:42 PM org.apache.catalina.core.StandardService start
INF0O: Starting service Catalina

Jun 19, 2087 12:18:42 PM org.apache.catalina.core.StandardEngine start
IMFO: Starting Servlet Engine: Apache Tomcat-s/6.8.13

Jun 17, 2007 12:18:45 PM org.
INF0O: Starting Coyote HTTPA1.
Jun 19, 2087 12:18:45 PM org.

apache.coyote _httpll HttpliProtocol start
1 on http-868A
apache. jk.common.ChannelSocket init

INFO: JK: ajpl3 listening on ~B.8.0.8:8887%

Jun 19, 2887 12:18:45 PM org.apache.jk.server.JkHain start

INFO: Jk running ID=BA time=8-32 config=null

WJun 17, 2087 12:18:45 PM org.apache.catalina.startup.Catalina stapt
rver startup in 28

Fil: Edit

& -

&

Administration

View

- @

Higlory Boolunerks Tools Help

&b [[F nitp#ocalhost B080¢ +| | G-
Apache
Tomcat

The Apache Software
= http://www.apa

If you're seeing this page via a web browser, it
setup Tomceat successfully. Congratule

Status
Tomeat Manager As you may have guessed by now, this is the default

page. It can be found on the local filesystem at:

SCATALINFA HOME/webapps/ROOT/

Documentation

Relegse Motes where "$CATALINA_HOME" is the root of the Tomc
Change Log directory. If you're seeing this page, and you don't th 2
e bl hlls Wassbsids s

Let's shut it down by changing to tomcat/bin and running shutdown.bat.

To deploy the SimpleWebApp-0.0.1-SNAPSHOT.war file into Tomcat, simply
copy it into tomcat/webapps folder (create it if it doesn't exist yet). You can copy
it as ss.war so that it will be available http://localhost:8080/ss. Then start
Tomcat and try to access http://localhost:8080/ss/services/p1?wsdl. You should
see the WSDL file.

Chapter 10 Deploying your services and integrating them with Spring 235

To access it from the client, copy the SimpleClient project and paste it as
SimpleWebAppClient. Then modify the SimpleService P1_Client class to use
the right address:

public final class SimpleService P1 Client {
public static void main (String args[]) throws Exception {

SimpleService Service ss = new SimpleService Service (wsdlURL,
SERVICE NAME) ; N

SimpleService port ss.getPl();

BindingProvider bp (BindingProvider) port;

Map<String, Object> context = bp.getRequestContext() ;

context.put (BindingProvider.ENDPOINT ADDRESS PROPERTY,
"http://localhost:8080/ss/services/pl") ;

{
System.out.println ("Invoking concat...");
com.ttdev.ss.ConcatRequest concat parameters = new ConcatRequest();
_concat_parameters.setS1 ("abc") ;
_concat _parameters.setS2("123");
java.lang.String concat return = port.concat(_ concat parameters);
System.out.println("concat.result=" + concat return);

}
System.exit (0) ;
}

}
Run it and it should print:

Invoking concat...
concat.result=abcl23

Invoking Spring beans from your implementation
object

Up until now all your web services perform very simple operations such as
concatenating two strings. In practice, they should really invoke business logic
such as placing an order for some goods. Typically such business logic may
have been implemented as Spring beans. Let's work on such an example. If
you don't use Spring, skip this section.

Suppose that the business logic is implemented in the SimpleBean class:

package com.ttdev.ss;

public class SimpleBean {
public String concat (String sl, String s2) {
return sl + s2;

}

}
Define the Spring bean in a file named beans.xml in the src/main/webapp/WEB-
INF folder:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">
<bean id="simpleBean" class="com.ttdev.ss.SimpleBean">
</bean>

</beans>

236 Chapter 10 Deploying your services and integrating them with Spring

In order to let your implementation object access this simpleBean, the easiest
way is to turn it into a Spring bean. So, modify the beans.xml file:

<beans ...>
<bean id="simpleBean" class="com.ttdev.ss.SimpleBean">
</bean>
<bean id="simpleImpl" class="com.ttdev.ss.SimpleServiceImpl">
<property name="simpleBean" ref="simpleBean" />
</bean>
</beans>

Modify the SimpleServicelmpl class to have a property named "simpleBean"
and use it to perform the business operation:

package com.ttdev.ss;

@WebService (endpointInterface = "com.ttdev.ss.SimpleService")
public class SimpleServiceImpl implements SimpleService {
private SimpleBean simpleBean;

public void setSimpleBean (SimpleBean simpleBean) {
this.simpleBean = simpleBean;
}

@Override
public String concat (ConcatRequest parameters) {

return simpleBean.concat (parameters.getSl (), parameters.getS2());
}
}

As it is now a Spring bean, you can just new it yourself when creating the
endpoint:

public class SimpleServlet extends CXFNonSpringServlet {
private static final long serialVersionUID = 1L;

@Override
public void loadBus (ServletConfig servletConfig) throws ServletException {
super.loadBus (servletConfig) ;
BusFactory.setDefaultBus (getBus ()) ;
Object implementor = new SimpleServiceImpl () ;
Endpoint.publish("/pl", implementor);
}

}
Instead, tell CXF to create an endpoint from the simplelmpl bean:

Chapter 10 Deploying your services and integrating them with Spring 237

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">
<bean id="simpleBean" class="com.ttdev.ss.SimpleBean">

</bean>])) Use this bean as the

<bean id="simpleImpl" class="com.ttdev.ss.SimpleServiceImpl"> implementation
<property name="simpleBean" ref="simpleBean" /> object.

</bean>

<jaxws:endpoint id="endPointl" address="/pl" implementor="#simpleImpl">
</jaxws:endpoint>
</beans>

To initialize Spring file, use CXFServlet in place of your SimpleServlet which will
load Spring automatically:

<web-app ...>
<display-name>SimpleWebApp</display-name>
<welcome-file-list>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>
<welcome-file>default.html</welcome-file>
<welcome-file>default.htm</welcome-file>
<welcome-file>default.jsp</welcome-file>
</welcome-file-list>
<servlet>
<servlet-name>sl</servlet-name>
<servlet-class>org.apache.cxf.transport.servlet.CXFServlet</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>sl</servlet-name>
<url-pattern>/services/*</url-pattern>
</servlet-mapping>
</web-app>

But how to provide your beans.xml file to Spring? The easiest way is to rename
it as cxf-servlet.xml. By default the CXFServlet will try to load such a bean
definition file.

Now, package the project again and restart Tomcat. Run the client and it should
continue to work.

Deploying RESTful web services

Copy the BookService project and paste it as BookWebApp. Modify the
pom.xml file:

<project ...>
<modelVersion>4.0.0</modelVersion>
<groupId>BookWebApp</grouplId>
<artifactId>BookWebApp</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>war</packaging>

</§£éject>
Right click the project and choose Maven | Update Project Configuration for the
change to take effect. Assuming that your resource classes aren't using Spring,

238 Chapter 10 Deploying your services and integrating them with Spring

modify the src/main/webapp/WEB-INF/web.xml file to register a servlet and
specify the resource classes:

<web-app xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:web="http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd"
id="WebApp_ ID" version="2.5">
<display-name>BookWebApp</display-name>
<welcome-file-list>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>
<welcome-file>default.html</welcome-file>
<welcome-file>default.htm</welcome-file>
<welcome-file>default.jsp</welcome-file>

</welcome-file-list> This servlet will register
<servlet> the resource classes
listed below:

<servlet-name>sl</servlet-name>
<servlet-class>
org.apache.cxf. jaxrs.servlet.CXFNonSpringJaxrsServlet
</servlet-class>
<init-param>
<param-name>jaxrs.serviceClasses</param-name>
<param-value>
com. ttdev.bs.BooksResource com.ttdev.bs.BookResource
com. ttdev.bs.BookSelectionsResource
</param-value>
</init-param>
</servlet>
<servlet-mapping>
<servlet-name>sl</servlet-name>
<url-pattern>/services/*</url-pattern>
</servlet-mapping>
</web-app> The resources will be available
under this path (/services).

The class names are
separated by a space, not
newline and not anything
else.

Right click the project and choose Run As | Maven package. It will create a
BookWebApp-0.0.1-SNAPSHOT.war in the target folder. Copy it into
tomcat/webapps as bs.war to deploy it. Then you should be able to access the
resources like http://localhost:8080/bs/services/books/1234 or
http://localhost:8080/bs/services/books/1234/reviews.

Invoking Spring beans from your resource objects

In the BookWebApp project, assume that the business logic is implemented in a
BooksService class:

package com.ttdev.bs;
public class BooksService {

public boolean contains(String isbn) {
return BookDB.instance.contains (isbn) ;
}
public Book getBook (String isbn) {
return BookDB.instance.getBook (isbn);
}
}

In order for, say, the BookResource object to get access to this Spring bean, it's

Chapter 10 Deploying your services and integrating them with Spring

239

best to let the BookResource object become a Spring bean itself. So, define

these Spring beans in the src/main/webapp/WEB-INF/cxf-serviet.xml:

<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:jaxws="http://cxf.apache.org/jaxws"

xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">

<bean id="bs" class="com.ttdev.bs.BooksService">

</bean>

<bean id="br" class="com.ttdev.bs.BookResource">

<property name="bs" ref="bs" />

</bean>

</beans>

As you're using Spring beans as resource objects, you can't simply register the

resource classes. Instead, define the resources in cxf-servilet.xml:

<beans ...>
<bean id="bs" class="com.ttdev.bs.BooksService">
</bean>
<bean id="br" class="com.ttdev.bs.BookResource">
<propertyl name="bs" ref="bs" />
</bean>
<jaxws:server id="sl1l">
<jaxws:serviceBean>
<ref bean="br"_/> |
</jaxws:serviceBean>
<jaxws:serviceBean>
<ref bean="..." />
</jaxws:serviceBean>

Use this "br" bean as a resource.

—— List other resources.

</jaxws:server>
</beans>

To initialize Spring file, use CXFServlet which will load Spring automatically:

<web-app ...>

<display-name>BookWebApp</display-name>

<welcome-file-list>
<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>
<welcome-file>default.html</welcome-file>
<welcome-file>default.htm</welcome-file>
<welcome-file>default.jsp</welcome-file>

</welcome-file-list>

<servlet>
<servlet-name>sl</servlet-name>

<servlet-class>org.apache.cxf.transport.servlet.CXFServlet</servlet-class>

oo ame> oS FE +&r oot

</servlet>
<servlet-mapping>
<servlet-name>sl</servlet-name>
<url-pattern>/services/*</url-pattern>
</servlet-mapping>
</web-app>

Now, package the project, deploy it again and restart Tomcat. Run the client

240 Chapter 10 Deploying your services and integrating them with Spring

and it should continue to work.

Deploying Axis2 web services

For Axis2, you can simply run the Axis2 server as a web application in Tomcat.
To do that, go to http://ws.apache.org/axis2 to download the WAR (Web
Archive) Distribution (e.g. axis2-1.5.1-war.zip). There are just a handful of files
in the zip file. Unzip it and put the files into,say, axis2-war. The only important
file there is the axis2-1.5.1.war file. To deploy into Tomcat, copy it into
tomcat/webapps. Then start Tomcat by running startup.bat. To check that the
Axis2 server is running, go to http://localhost:8080/axis2 in a browser. You
should see:

@ () Axis 2-Home - Mozilla Firefox <2> ——) @ ®
Fle Edt Wiew History Bookmarks Tools Help

A 5 €@ O @ |[8 httpylocalhost:gogofaxis v H v @,
[@ Axis 2 - Home % v
The Apache Software Foundation
= http://www.apache.org/
Welcome!

Welcome to the new generation of Axis. If you can see this page you have successfully deplo
working, we encourage you to click on the validate link

* Services

Wiew the list of all the available services deployed in this server.
* ‘alidate

Check the system to see whether all the required libraries are in place and vie
* Administration

w

>

Check the tomcat/webapps folder, you should see that there is an axis2 folder
created with the following structure:

Chapter 10 Deploying your services and integrating them with Spring 241

tomcat

webapps

Configuration file for axis

To deploy your web services, just
copy their .aar files into this folder as
— services usual.

iSimpleService.aar

axis2.xml

| _i227.aar

‘ﬂaddressing.mar | .
| — A .mar file for each
module

[rampart.mar

— lib

[' jar files needed by

§ * . jar —— Axis2 itself, the

! modules or your web
services

To deploy the simple service, copy the SimpleService.aar file into the services
folder as shown above. Restart Tomcat for the changes to take effect. Run the
client and it should continue to work.

Using Spring with Axis2

To see how to invoke a Spring bean from the implementation object in Axis2,
copy the Axis2SimpleService project and paste it as Axis2SpringService. Modify
pom.xml to rename the jar file to be generated:

<project ...>
<modelVersion>4.0.0</modelVersion>
<groupId>SpringService</groupId>
<artifactId>SpringService</artifactId>
<version>0.0.1-SNAPSHOT</version>
<dependencies>
<dependency>
<groupld>xerces</groupld>
<artifactId>xercesImpl</artifactId>
<version>2.9.1</version>
</dependency>
<dependency>
<groupld>org.apache.axis2</groupIld>
<artifactId>axis2-codegen</artifactId>
<version>1.5.1</version>
</dependency>
<dependency>
<groupld>org.apache.axis2</groupIld>
<artifactId>axis2-adb-codegen</artifactId>

242 Chapter 10 Deploying your services and integrating them with Spring

<version>1.5.1</version>

</dependency>

<dependency>
<groupIld>org.springframework</groupId>
<artifactId>spring</artifactId>
<version>2.5.6.SEC01</version>

</dependency>

</dependencies>

</§£éject>
You have also changed the name of the artifact. Then create a SimpleBean
class:

package com.ttdev.ss;

public class SimpleBean {
public String concat (String sl, String s2) {
return sl + s2;
}

}
Define the Spring bean in a file named beans.xml in src/main/resources folder:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">
<bean id="simpleBean" class="com.ttdev.ss.SimpleBean">
</bean>

</beans>

In order to let your implementation object (SimpleServiceSkeleton) access this
simpleBean, the easiest way is to turn it into a Spring bean. So, modify the
beans.xml file:

<beans ...>
<bean id="simpleBean" class="com.ttdev.ss.SimpleBean">
</bean>
<bean id="simpleImpl" class="com.ttdev.ss.SimpleServiceSkeleton">
<property name="simpleBean" ref="simpleBean" />
</bean>
</beans>

Modify the SimpleServiceSkeleton class to have a property named
"simpleBean" and use it to perform the business operation:

package com.ttdev.ss;

public class SimpleServiceSkeleton {
private SimpleBean simpleBean;

public void setSimpleBean (SimpleBean simpleBean) {
this.simpleBean = simpleBean;

}

public com.ttdev.ss.ConcatResponse concat (

com.ttdev.ss.ConcatRequest concatRequest) {
String result = simpleBean.concat(
concatRequest.getS1(), concatRequest.getS2());

ConcatResponse response = new ConcatResponse();
response.setConcatResponse (result) ;
return response;

}

}
Next, the most important step: You need to tell Axis2 to use this Spring bean as
the service implementation object. To do that, modify the
src/main/resources/META-INF/services.xml file:

Chapter 10 Deploying your services and integrating them with Spring 243

Axis2 will ask this object supplier for the
implementation object. This supplier will use the
<serviceGroup> bean name specified here ("simplelmpl”) to find
<service name="SpringService"> and return the Spring bean.
<messageReceivers>
<messageReceiver mep="http://www.w3.o0rg/ns/wsdl/in-out"
class="com.ttdev.ss.SimpleServiceMessageReceiverInOut" |/>
</messageReceivers>
<parameter name="ServiceObjectSupplier">
org.apache.axis2.extensions.spring.receivers.SpringServletContextObjectSupplier
</parameter>
<parameter name="SpringBeanName">simpleImpl</parameter>

n 1 n PR

: leaTl et L
Paratt F—rraft Y +ar

N .
—Simpt Y+ Feet Fr</parat +*

<parameter name="useOriginalwsdl">true</parameter>

<parameter name="modifyUserWSDLPortAddress">true</parameter>

<operation name="concat" mep="http://www.w3.org/ns/wsdl/in-out
namespace="http://ttdev.com/ss">
<actionMapping>http://ttdev.com/ss/NewOperation Don't need to specify this class
</actionMapping> anymore.
<outputActionMapping>

http://ttdev.com/ss/SimpleService/concatResponse

</outputActionMapping>

</operation>

</service>
</serviceGroup>

As this object supplier needs to use Spring, and it is Axis2 that calls this object
supplier, you need to make the Spring jar files available to Axis2 itself. So, copy
the <home>/.m2/repository/org/springframework/spring/2.5.6.SEC01/spring-
2.5.6.SECO01.jar into tomcat/webapps/axis2/WEB-INF/lib.

Because when creating the simplelmpl bean, Spring will need access to your
SimpleServiceSkeleton class. Therefore, it has to be available to Axis2 too. So,
choose Run As | Maven package and then copy the jar file into
tomcat/webapps/axis2/WEB-INF/lib.

Next, you need to tell Axis2 to initialize Spring and load your beans.xml file. So,
modify tomcat/webapps/axis2/WEB-INF/web.xml:

<web-app>

<display-name>Apache-Axis2</display-name>

<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener
</listener-class>

</listener>

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>classpath*:beans.xml</param-value>

</context-param>

<servlet>

</serviet>
</Qég—app>
Now, restart Tomcat for the changes to take effect. Deploy the
SpringService.jar file (copy it as an .aar file).

To test it, copy the Axis2SimpleClient and paste it as Axis2SpringClient project.
The modify the SimpleClient class:
public class SimpleClient {

public static void main(String[] args) throws RemoteException {
SimpleServiceStub service = new SimpleServiceStub (

244 Chapter 10 Deploying your services and integrating them with Spring

"http://localhost:8080/axis2/services/SpringService") ;
ConcatRequest request = new ConcatRequest();
request.setSl ("abc");
request.setS2 ("123");
ConcatResponse response = service.concat (request);
System.out.println(response.getConcatResponse());
}

}
Run it and it should print "abc123".

Summary

To deploy your web services with CXF in a web container, just turn your project
into a web application and register the right servlet.

If you aren't using Spring, you need to load the CXF bus and set it as the
default. Then publish the JAX-WS endpoints as usual. For REST resource
classes, just list them in web.xml.

If you are using Spring, define your JAX-WS endpoints and REST resource
beans as Spring beans and let the CXF servlet load the beans.

To deploy your web services with Axis2 in a web container, just deploy the Axis2
server as a web application. Then deploy the services as usual (as .aar files).

To use Spring with Axis2, you need to make all your classes available to Axis2
itself. Tell Axis2 to initialize Spring and point it to the location of your Spring
bean definition XML file. For the service, specify to use a special object supplier
in services.xml so that it will return a Spring bean as the implementation object.

245

Chapter 11

Unit testing your web
services

246 Chapter 11 Unit testing your web services

What's in this chapter?

In this chapter you'll learn how to unit test your web services.

Difficulties in testing a web service in a container

If you're using Spring, usually you'll need to run your web services inside a web
container such as Tomcat. If you make any changes, you'll need to restart your
web application or even Tomcat in order to test them. This usually takes a lot of
time.

In addition, if your implementation objects refer to Spring beans, you will
ultimately invoke the real business logic and probably access the database.
This will slow down the process and make it very difficult to test the web service
in isolation: conversion between Java and XML, handling of WS-Security
headers, given domain data is converted into the right response and etc.

Therefore, you need a way to test run your web service out of a web container
and without invoking Spring beans.

Testing a web service out of container, in isolation

Let's do it. Copy the SimpleService project and paste it as a project named
UnitTesting. Assuming that it uses Spring, so modify pom.xml:

<project ...>
<modelVersion>4.0.0</modelVersion>
<groupId>SimpleService</groupId>
<artifactId>SimpleService</artifactId>
<version>0.0.1-SNAPSHOT</version>
<dependencies>
<dependency>
<groupld>org.apache.cxf</groupId>
<artifactId>cxf-bundle</artifactId>
<version>2.2.5</version>
</dependency>
<dependency>
<groupId>xerces</groupId>
<artifactId>xercesImpl</artifactId>
<version>2.9.1</version>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-test</artifactId>
<version>2.5.6.SEC01</version>
</dependency>
</dependencies>

</§£éject>
Rename the WSDL as ComputeService.wsdl and modify it as shown below:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://ttdev.com/cs" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" name="ComputeService"
targetNamespace="http://ttdev.com/cs">

Chapter 11 Unit testing your web services 247

<wsdl:types>
<xsd:schema targetNamespace="http://ttdev.com/cs">
<xsd:element name="compute" type="xsd:string">
</xsd:element>
<xsd:element name="computeResponse" type="xsd:string">
</xsd:element>
</xsd:schema>
</wsdl:types>
<wsdl:message name="computeRequest">
<wsdl:part element="tns:compute" name="parameters" />
</wsdl :message>
<wsdl:message name="computeResponse">
<wsdl:part element="tns:computeResponse" name="parameters" />
</wsdl:message>
<wsdl:portType name="ComputeService">
<wsdl:operation name="compute'">
<wsdl:input message="tns:computeRequest" />
<wsdl:output message="tns:computeResponse" />
</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="ComputeServiceSOAP" type="tns:ComputeService">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="compute'">
<soap:operation soapAction="http://ttdev.com/cs/compute" />
<wsdl:input>
<soap:body use="literal"™ />
</wsdl:input>
<wsdl:output>
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="ComputeService">
<wsdl:port binding="tns:ComputeServiceSOAP" name="pl">
<soap:address location="http://localhost:8080/cs/pl" />
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

There is nothing special about it. Modify the CodeGenerator class:

public class CodeGenerator {
public static void main(String[] args) {
WSDLToJava.main (new String[] {
"-server"
"-d", "src/main/java",
"src/main/resources/ComputeService.wsdl" });
System.out.println("Done!");

}

}
Delete the com.ttdev.ss package and run the CodeGenerator. Then create the
ComputeServicelmpl class:

package com.ttdev.cs;
import javax.jws.WebService;

@WebService (endpointInterface = "com.ttdev.cs.ComputeService")
public class ComputeServiceImpl implements ComputeService {
private ComplexLogic logic;

public void setLogic (ComplexLogic logic) {
this.logic = logic;

}

@Override

public String compute (String parameters) {
return logic.calc(parameters);

248 Chapter 11 Unit testing your web services

}
}

The ComplexLogic interface represents some complex business logic. Create
this interface as:

package com.ttdev.cs;

public interface ComplexLogic {
String calc(String s);
}

Create the implementation which will be a Spring bean. As promised, you'll
never be invoking this Spring bean during unit testing, so you can do whatever
you like in the calc() method for this exercise because it will only be called in
production:

package com.ttdev.cs;
public class ComplexLogicImpl implements ComplexLogic {

@Override
public String calc(String s) {
throw new RuntimeException ("not implemented");

}

}
For deployment, create a beans.xml file in src/main/resources (if it is to be
deployed as a web application, use it as the cxf-servlet.xml file):

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemalLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">
<bean id="logic" class="com.ttdev.cs.ComplexLogicImpl">
</bean>
<bean id="serviceImpl" class="com.ttdev.cs.ComputeServiceImpl">
<property name="logic" ref="logic" />
</bean>
<jaxws:endpoint id="endPointl" address="/pl"
implementor="#serviceImpl">
</jaxws:endpoint>
</beans>

To wunit test the web service, create the src/test/java folder and
src/test/resources folder. You will put Java files and resource files that are used
for testing only (not for production) into those folders respectively. Then update
the project configuration.

Next, create a ClientCodeGenerator class in the com.ttdev package in the
src/test/java folder:

package com.ttdev;
import org.apache.cxf.tools.wsdlto.WSDLToJava;

public class ClientCodeGenerator {
public static void main(String[] args) {
WSDLToJava.main (new String[] {
"-client",
"-d", "src/test/java",
"-p", "http://ttdev.com/cs=com.ttdev.cs.client",
"src/main/resources/ComputeService.wsdl" });
System.out.println("Done!");

Chapter 11 Unit testing your web services 249

}
}

Run it to generate code for the client that you'll use to test drive the web service.
Then create a ComputeServiceTest class in the com.ttdev.cs package in the
src/test/java folder:

ackage com.ttdev.cs; . X This class is provided by
p g Tell Spring to load this Spring to allow you to
beans.xml file. test Spring beans easily.

import org.apache.cxf.Bus;
import org.apache.cxf.bus.spring.SpringBuskfactory;

import org.springframework.test.context.ContextConfiguration;

import org.springframework.test.context.junit38.AbstractJUnit38SpringContextTests;

@ContextConfiguration (locations = { "/beans.xml" })
public class ComputeServiceTest extends AbstractJUnit38SpringContextTests {
private Bus bus;

@Override

pro.te.ct‘;ed (v)o‘ld setUp() throws Exception { This is the Spring
initBus(); application context created

} by the base class.

@Override

protected void tearDown () throws Exception {
bus.shutdown (false) ;
}
public void testCompute () {
ComputeServiceImpl impl = (ComputeServicelImpl) applicationContext
.getBean ("serviceImpl") ;
impl.setLogic (new ComplexLogic() {
Load your service implementation
@Override object Spring bean.

public String calc(String s) { Make the implementation object use a mock ComplexLogic
return s.toUpperCase(); — object. Instead of doing complex calculation, its calc()
} method will only convert the argument to upper case.

1)
ComputeService Service ss = new ComputeService Service();
ComputeService port = ss.getPl();

assertEquals (port.compute ("xyz"), "XYZ");

} Use the client to call the service. It
private void initBus() { should convert "xyz" to "XYZ".
bus = new SpringBusFactory(applicationContext) .createBus/();

}

This bus factory will look up the bus as a Spring bean
when it needs to create one.

In order to provide the CXF bus out of a web container, create a Spring bean
XML file, say, src/test/resources/beans-test.xml, to define the CXF-related
beans (including the bus) as shown below. This file will define Spring beans
used for unit testing only:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">
<import resource="classpath:META-INF/cxf/cxf.xml" />
<import resource="classpath:META-INF/cxf/cxf-extension-soap.xml" />
</beans>

This step is not needed in production because the CXFServlet will have done
that automatically.

Tell the unit test base class to load this file after loading the beans.xml file

250 Chapter 11 Unit testing your web services

(which is for production):

@ContextConfiguration(locations = { "/beans.xml", "/beans-test.xml" })
public class ComputeServiceTest extends AbstractJUnit38SpringContextTests {

}
However, your endpoint has been configured to listen on a path only, instead of
a full URL:

<beans ...>
<bean id="logic" class="com.ttdev.cs.ComplexLogicImpl">
</bean>
<bean id="serviceImpl" class="com.ttdev.cs.ComputeServiceImpl">
<property name="logic" ref="logic" />
</bean>
<jaxws:endpoint id="endPointl" address="/pl"
implementor="#serviceImpl">
</jaxws:endpoint>
</beans>

This will only work in a web application. For unit testing, you need to use a full
URL. So, modify beans-test.xml to override this "endPoint1" bean:

<beans ...
xmlns:jaxws="http://cxf.apache.org/jaxws"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">
<import resource="classpath:META-INF/cxf/cxf.xml" />
<import resource="classpath:META-INF/cxf/cxf-extension-soap.xml" />
<jaxws:endpoint id="endPointl" address="local://epl"
implementor="#serviceImpl">
</jaxws:endpoint>
</beans>

What is this local:// protocol? It is designed for testing. It is like the loopback
network interface: the service can listen on, say, local://foo, then whatever the
client sends to local://foo will be received by that service, without going through
a web container. In order to use this local protocol, you need to define a factory
for it;

<beans ...>
<import resource="classpath:META-INF/cxf/cxf.xml" />
<import resource="classpath:META-INF/cxf/cxf-extension-soap.xml" />
<bean id="localTransportFactory"
class="org.apache.cxf.transport.local.LocalTransportFactory">
</bean>
<jaxws:endpoint id="endPointl" address="local://epl"
implementor="#serviceImpl">
</jaxws:endpoint>
</beans>

Modify the unit test to use the same local protocol factory on the client side and
let the client connect to local://ep1:

import org.apache.cxf.transport.ConduitInitiatorManager;
import org.apache.cxf.transport.local.LocalTransportFactory;

@ContextConfiguration (locations = { "/beans.xml", "/beans-test.xml" })
public class ComputeServiceTest extends AbstractJUnit38SpringContextTests {
private Bus bus;

@Override
protected void setUp() throws Exception {
initBus () ;

}

Chapter 11 Unit testing your web services 251

@Override
protected void tearDown () throws Exception {
bus.shutdown (false) ;
}
public void testCompute () {
ComputeServiceImpl impl = (ComputeServiceImpl) applicationContext
.getBean ("serviceImpl") ;
impl.setLogic (new ComplexLogic() {

@Override
public String calc(String s) {
return s.toUpperCase();
}
1)
ComputeService_Service ss = new ComputeService Service();
ComputeService port = ss.getPl();
setAddress (port, "local://epl");
assertEquals (port.compute ("xyz"), "XYZ");
}
private void setAddress (ComputeService port, String addr) {

BindingProvider bp = (BindingProvider) port;
bp.getRequestContext () .put (BindingProvider .ENDPOINT ADDRESS_ PROPERTY,
addr) ;

}
private void initBus () {
bus = new SpringBusFactory(applicationContext) .createBus();
setuplocalTransport() ;
}
private void setupLocalTransport() {
LocalTransportFactory localTransportFactory = (LocalTransportFactory)
applicationContext.getBean ("localTransportFactory") ;
ConduitInitiatorManager cim = bus
.getExtension (ConduitInitiatorManager.class) ;
cim.registerConduitInitiator ("http://cxf.apache.org/transports/local",
localTransportFactory) ;
cim.registerConduitInitiator(
"http://schemas.xmlsoap.org/wsdl/soap/http",
localTransportFactory) ;
cim.registerConduitInitiator ("http://schemas.xmlsoap.org/soap/http",
localTransportFactory) ;
cim.registerConduitInitiator ("http://cxf.apache.org/bindings/xformat",
localTransportFactory) ;

}

}
Now, right click the ComputeServiceTest class and choose Run As | JUnit Test.
Then you should see some messages in the console. The JUnit window should
say that the test has passed:

[2i Marker | 4 Server |8 Data S | [Snipp | Bl Consol | 47 Searc | = Proper | & Histor |gu Junit &2~ = O

Finished after 2.574 seconds B CE|Q i =

Runs: 1/1 B Errors: 0 A Failures: 0

= Failure Trace

tEltestCompute (2.514 5)

Summary

To unit test your web services, you should run them out of a web container and

252 Chapter 11 Unit testing your web services

stop invoking Spring beans. To run CXF out of a web container, you can import
the CXF Spring XML files. To stop your implementation objects from invoking
Spring beans, just call their setters to put in mock objects.

For testing, you need to specify the full URL for your endpoints. A good way to
do is to use the local:// protocol for faster speed. To set up the local protocol,
you need to define the local transport factory as Spring bean on the server side
and register it properly on the client side.

Developing Web Services with Apache CXF and Axis2 253

References

- Axis2 developers. Axis2 Documentation. http://ws.apache.org/axis2.

- CXF developers. CXF Documentation.
http://cwiki.apache.org/CXF20DOC/index.html.
- IBM. Develop asynchronous Web services with Axis2.

http://www.ibm.com/developerworks/webservices/library/ws-axis2.

- Nadana Mihindukulasooriya. WS - Security Policy.
http://nandanasm.wordpress.com/2007/10/31/ws-security-policy/

« OASIS. Web Services Security: SOAP Message Security 1.1 (WS-Security
2004). http://docs.oasis-open.org/wss/v1.1.

« OASIS. WS-SecurityPolicy 1.3. http:/docs.oasis-open.org/ws-sx/ws-
securitypolicy/v1.3/os/ws-securitypolicy-1.3-spec-os.html.

- OASIS. Web Services Security UsernameToken Profile 1.0.
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0.

- OASIS. Web Services Security X.509 Certificate Token Profile.
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-
profile-1.0.

« Rampart developers. Rampart Documentation. http://ws.apache.org/rampart.

- Roy Thomas Fielding. Representational State Transfer (REST).
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm.

+ Russell Butek. Which style of WSDL should | use? http://www-
128.ibm.com/developerworks/webservices/library/ws-whichwsdl/?ca=dgr-
devx-WebServicesMVPO03.

« SpringSource. The Spring Framework 2.5 Reference Manual.
http://static.springframework.org/spring/docs/2.5.x/reference/index.html.

« Sun Microsystems. JAX-WS specification. http://jcp.org/en/jsr/detail?id=224.
« Sun Microsystems. JAX-RS specification. https://jsr311.dev.java.net.
« Sun Microsystems. JAXB specification. https://jaxb.dev.java.net.

+ Tomcat developers. Tomcat Documentation.
http://jakarta.apache.org/tomcat.

- W3C. Decryption Transform for XML Signature.
http://www.w3.0rg/TR/2002/CR-xmlenc-decrypt-20020304.

- W3C. Hypertext Transfer Protocol - HTTP/1.1.

http://www.w3.org/Protocols/rfc2616/rfc2616.html.

254 Developing Web Services with Apache CXF and Axis2

« W3C. Namespaces in XML. http://www.w3.0org/TR/1999/REC-xml-names-
19990114.

- W3C. Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508.

« W3C. SOAP Message Transmission Optimization Mechanism.
http://www.w3.org/TR/soap12-mtom.

« W3C. URIs, URLs, and URNSs: Clarifications and Recommendations 1.0.
http://www.w3.0rg/TR/2001/NOTE-uri-clarification-20010921.

« W3C. Web Services Addressing 1.0 — Core. http://www.w3.org/TR/ws-addr-
core.

« W3C. Web Services Addressing 1.0 - SOAP Binding.
http://www.w3.org/TR/ws-addr-soap.

« W3C. Web Services Addressing 1.0 — Core. http://www.w3.org/TR/ws-addr-
core.

- W3C. Web Services Addressing 1.0 - WSDL Binding.
http://www.w3.org/TR/ws-addr-wsdl.

« W3C. Web Services Description Language (WSDL) 1.1.
http://www.w3.0rg/TR/2001/NOTE-wsdI-20010315.

« W3C. Web Services Policy 1.5 - Framework.
http://www.w3.0rg/TR/2006/W D-ws-policy-20061117.

« W3C. XML-binary Optimized Packaging. http://www.w3.org/TR/xop10.

- W3C. XML Encryption Syntax and Processing.
http://www.w3.0rg/TR/2002/REC-xmlenc-core-20021210.

- W3C. XML Schema Part 0: Primer Second Edition.
http://www.w3.0rg/TR/2004/REC-xmiIschema-0-20041028.

- W3C. XML Schema Part 1: Structures Second Edition.
http://www.w3.0rg/TR/2004/REC-xmlschema-1-20041028.

« W3C. XML Schema Part 2: Datatypes Second Edition.
http://www.w3.0rg/TR/2004/REC-xmlschema-2-20041028.

- W3C. XML-Signature Syntax and Processing.
http://www.w3.0rg/TR/2002/REC-xmldsig-core-20020212.

« W3C. XSL Transformations (XSLT). http://www.w3.org/TR/xslt.

- Wil Provost. WSDL First.
http://webservices.xml.com/pub/a/ws/2003/07/22/wsdlfirst.html.
« WS- WS-I Basic Profile Version 1.0. http://www.ws-

i.org/Profiles/BasicProfile-1.0-2004-04-16.html.
- WSS4J developers. WSS4J Axis Deployment Tutorial.

Developing Web Services with Apache CXF and Axis2 255

http://ws.apache.org/wss4j/axis.html.

256 Developing Web Services with Apache CXF and Axis2

Download at WoweBook.com

Alphabetical Index

T3] SRR SURPP PPN 162
N U 64
APACNE AXIS2.... ettt a et 31
APACNE CXF ...ttt e 31
N4 11T G | 5 RSO 81
ASYyMMELriC @NCIYPHON.ooiiiiiiii s 143
AAXIS 2.ttt et e ———————————————raaaaaaaaaaaaeaaeeannnn

MOAUIE. ..ttt e e 191
AXIS2 ARCIIVE.uveiiee ettt e e e e e e e e e seatreeenees 64
N (1220 .| PSSR 246
BASEOA.......oeeeeeeeieeee et e e e e e e e e e e e e e e e 112
BINAING. e e e e e e e e e 21
5T P 238
A e e e e e e e e e e e e e e e e e e aab—araaaeeaabraaaaae 147
(7Y 11T 147
Certificate authority..........coooiiiiii e 147
Certificate Chain...... ... 159
Certificate Path........ooo i 159
L SRR 147
CXF-SEIVIEL. XMLt eeeeeeas 243
CXFNONSPrNGJaXIrSSEIVIEL.......coiieiiiiiiiiie et e e 244
CXENONSPHNGSEIVIEL.coiiiiiiiiiiiie e 238
CXESEIVIEL. ...ttt e et eeeeeeeees 243
DataHaNAIEN ... 117
=Y e o 10 [oSSR SSRSUR 117
13 2SS 147
Dictionary attack........cooooeiriiiiec 179
Digital SIgNatUre.........cooo i 145
DistinguIiShed NAMIE.........uuiiiiiiiiiiiiceeeee e 147
13 147
DOCUMENT SEYIE....oiiiiiiiieeeee e 18
DS A it e e e e e e e e e e e e e e e e e aeeeas 152
o7 o T PSPPSR 30
[g Ted Y/ o) (] I8 OV PP 148
=1 g o T] o | P PRSP 12
FAUIL. ..ot e e e e e 96
FaUIE MESSAGE. ... e eiiiiieie e 96
HOt deployment.........ooo i 64
o 8 I I USSP

P40 O =Y (0 3 oo o = PN 207

P24 S =Y 0 oo o = 219

D240 7S =Y U3 oo o = 218

G107 S =Y (U oo o = TSP 214

404 StAtUS COUB.......oeeeee et e e 218

v@v
Text Box
Download at WoweBook.com

Developing Web Services with Apache CXF and Axis2 257

(07 To1 g 1= ot o1 1 (o] SRRSO PEPRRTI 207
Cache validation..............eeeiiiiie e 209
(@70] g o 1 1Te] g =1 I €1 = U 209
DELETEiiiiie ettt ettt ettt e e e e e e e e e et e e e e e e e ennraeaaaaaaeeas 223
ENtity 10, ... s 216
| =T T PP P PP 216
EXPIreS hEaAGE 207
€T RPN 203
If-Modified-Since header............ooo e 216
If-None-Match header............uuviiiiiii e 216
Last-Modified header.............oo oo 212
LOCAtION NEAUET.......eeiiiieiiiee et 219
O 1 RS UURUPRRRPPIN 218p
PU T e e e e e e e e e 203, 217
QUETY PArAMELET ... ieiieiiee ettt e et e e e e st eeeesseneeeenennas 224,233
AN A ettt e e e ettt e e e e e b e et e e e e e e b taeeeee e e e b bt eee et eeeeeeeaearrrrrrnnns 25
[0 01U a0 =T TST= Lo [TS 14
International Assigned Numbers Association..............ccccceeveiiiiiiiiiieiiiiiiccee e, 25
INEErOPErabIlity.......coiiiiiiiiiii e 122
WIth INET ... e aabanes 82,122
JAX R S . e a e e e e e e eeaeaee 205
Child FE€SOUICE. ..o et rereeeeeeee 227
RS oo o F=T =TSP 207
ReSpONSEBUIIAET. ... 207
UTBUIIET. ...t 222,231
LU 4] 1) o PRSP 222
WebApplicatioNEXCEPLION.uuiiiiiiiiieeiiiee e 228
@ CONTEXL. ..ttt e e 212
(@1 = ISP POPPPPRRRRPPIR 205
(@] 2= 13 PSRRI 205
@PAthParam...........oooiiiii e 204
JAXWV S et e e e e e e e e e e e e e e e e e eeaaees 54
ASYNCHANAIET ... 126
Binding ProVIAEr..... ... 72
ENAPOINt. ..o 53
External <bindingS>........ccooiiiiee e 128
ReqUest CONtEXE. ..o 72
WeEDSErVICECONIEXE.....ci i 186
@WEDFAUIL.......oeiiiii et e e e et e e e e e anreees 102
@WEDBMELNOQ..... ... 54
(@A AT L=] o] == 1o PSP 54
@WEDSEIVICE. ...t e e e e e e 54
D 11 (0 {1 0 o 3PP PPRTSPPNt 125
JAX-WS SUPPOITiN CXF ...t eeeenees
=1 o] 0o 1 | oSS 242
ST Y SO 245

258 Developing Web Services with Apache CXF and Axis2

JAXB. ..ttt e e e — e e e e e aa et e e e e e nnateeaaeaaaan
@XMIEIBMENT....coiiii e 94
@XMIROOEIEMENL......ci e 93
@XIMITYPE. ot e e e e e e e e e e e 94
SOINAINGS™... e 210

JAXRSServerFactoryBean..........c...eeeiiiiiiiiii e 205

KBYSTIOTE. ... 150
ALIBS ...ttt e e e e e e e e aaeaaaaaaaaaeas 150
AlIAS PASSWOIT.eeeeieiiiiiieee ettt e e e e e e e as 152
Generating a certificate request..........ccveviiiiiiciiie e 154
Generating @ KeY Pail......cooo i 151
Importing @ CertifiCate...........ooiiiiiiie e 156
PasSSWOIG. ...ttt e e e e e e e e e e e e eeees 152

32 (oo) PSPPI 151

) =T = | USSR 38

LOCAI NAME.......eiiieiieeee e 13

[oToz= | o] o] (o oo PPN 256

Local protoCol fACIONY.......cooviiiiiie et 256

Maven2 EClipSe PIUGIN. ...cooui i 31

VD5, e e e e aaaaas 152

MeSSage digEST........oooiiiiiee e 144

L] 1 o 31

Y g g 1= TS T = o = TP 112

1Y/ Yo L1 SO
Deploying iNt0 AXIS2......ccco ittt e e e 188

MOAUIE @rChiVe.......ooiiiiiieee e 188

MTOM. o e r e e e e e et e e e e e e st e e e aeeeeas 118
Enabling in the ServiCe.........ocuuiiiiiii 119

1Y O 1S3 (8 o (=T 553 =1 o o RPN 167

[N F= T =T o= Lo T 13

NaMESPACE PrefiX....oiiiiiiiiiiiiii e 14

[N\ e USSP 179

ONE WAY NASN.....eeiiiiiii e 144

(0101511535 IR PU USSR PPPPUPPN 154

(0] 0= =1 1o} o TSP 12

= 1 PRSP PSUUUTTRP 14

Y o]y gF= T T Y
By coarse grained interfaces...........covvveeiiiiiiiiiiiiieeeeeee e 96

o S TP SSSR 147

POMLXMLL e 35

POMLXMLL e a e e e e e e e
0 = T €= o | T 238

] PRSPPI 22

POt tYPE. .. 20

T aTd] o - | PP 186

PrIVALE KBY ... eii it 142

PUDBIIC KY ... 142

Developing Web Services with Apache CXF and Axis2 259

Public Key infrastruCture............ooeviiiiiiiiic e 147
L0 V=T o 1= S USSP 13
QUAIfIEA NAME........oeiiieieee e 13
=0 1o = o PSSO 165
Cryplo PrOVIAET e e e e e e e e e e e e e eeeeeees 166
How it stores the reSUltS....... ... 185
Password callback USAge.........oouuuiiiiiiiiiiiiee e 182
USEREQSIGCEM. ... 176
WSHaNAIEIRESUIL. ... e 185
WSPasswordCallback............coocuviiiiiiiiiiece e 165
WSSecurityENgINERESUIL..........ooiiiiii e 185
Remote Procedure Call.............ooiiiiiiiiiiiiie et 16
Replay attack...........cooiiiii e 184
L RS 203
RESOUICE. ... e e e 204
RESTHUL 1ttt e e e e e e e e e e e e eeas 204
RPC SEYIE.... e a e e 15, 39
RS A e eas 152
T | SR SOPRSPR 179
S Tod 0= o 0 - TSP 14
ANONYMOUS TYPC.... i e e e e e e et e e e e e aa e eaees 87
ANYURLL oo e e e 231
ARFIDULES. ..o 84
BasSEBABINGrY.cooiiiiiie s 113
(070] 0] 0] (=) 1Y/ o1 TSSOSO PP 16
IMPOIING. e 106
Y= D@ oo TS 84
11T 1@ oo U <3 84
S T=T o[0T ot PR 16
Target NAMESPACE.coiiiiiiiiiie e 16
Seeing the SOAP MESSAGES.ccooiiuiiiiiii et 70
T RSP 53
Service endpoint INtErface. ... 54
ST V1ot =Y] (1]) TP 57
7= o130 o o | 195
ST a1 PO PRRRPN 238
SH AT e e e e e e e e e e e e e e e e e eaaaaaaaeaeereraaaaaa 152
ST 1o] 11 0 To TRPT TP PP PPPPPPPPPTPPN 145
Signing and enCryplioN.........cooiiiiii e 177
Simple Object Access ProtocCol...............coooiiiiiiiiiiiieeeeee e 21
1@ R 21
1@ N - Tor 1] TSP 38
SOAP bOdY ElEMENT......oiiiiiiii e 38
SOAP ENVEIOPE. ...coiiiiiiieiiie et e e e e e e 38
SOAP FAUIE. ... a e e e e e e e 97
SOAP header €lemMENT.........ccoie e e eeee 38

SOAP message format..........cccccciiiiiiiiiiiiiieceee e e 38

260 Developing Web Services with Apache CXF and Axis2

S o410V RSP SPPPPTN 238
AbstractJUnit38SpringContextTestS.oouviiiiiiieie e 255
@CoNtextCoNfIQUIatioN.ocuueiiiii e 255

SPHNGBUSFACIONY........eeiiiiii e 255

SymMMELriC @NCIYPLON.coi it 142

7 1Y/ (o 71 (o) 70

1o 12T S 238

Uniform Resource [dentifier....... ..o 25

Uniform Resource NamE...........eoiiiiiiiiiiiie e 25

L] PP ETT TP 25

U R L ettt ettt ettt et ettt e e et e e ettt eeea et e e e anne e e e e neeeeeeeaaaeeeeeaaannennees 25

URN L Lttt h bttt ettt e e ettt e e bt et e e nb e e e s aab e e e s e e b ne e 25
Namespace identifier........ ... 26
Namespace SPECIfiC StNG..........uuviiiiiiiiiiiiiiieeee e 26
]| USSR 26
N S 1S J OO P TP TPPPPPPPP 26

USEINamME TOKEN.....oiiiiiiiiee ettt e e e e e e e e e e e e e e e e e eaa e eeas 181

WED SEIVICE. ... e 12

WED SEIVICE SECUIMY....oiiiiiiiiiiiie ettt e e e e e e 164

Web Services Description Language............cceeeiviiiiiieeeiiiiiiieee e 27

LAV =Y 013 =T o O 206

WIrapped SEYIE......cooiiiiiiieee e 78

L AT AT o] =Y = 1Y [Y 78

LTS SO PR 19

WS-POLICY.c.ceiiiiiiieeeee et e 161
<ENncryptBeforeSigning™........cooiiiiiiiiii e 179
<EncryptedElements>...........o 180
<SENCIyptedParts>. ... 172
SEXACHYONE>...cc e 163
SPOLICY ™.t e e e e e e eeeae 161
<SignedEncryptedSupportingToOKeNS>.........cooiuiiiiiiiiiiieee e 185
<SignedSupportingTOKENS>........iie e 181
<USErNameTOKEN>.... ... 181

VW S-S BCUNEY ...ttt e et e e e e s et e e e e s et e e e e e e nnsrteeeaeeeeas
<BiNarySecurity TOKEN>........cciiiiiiiiiii e 167
<EncryptedData>.............oouiiiiiii e 167,176
SENCIYPEAKEY> ... 176
OB ULy ™.ttt e oo e e e e e e e e e e e e aaaaaaaaaaaaaaes 167
ST [0 F= LU U 167

WS-SECUNLY POlICY.....ccce e 161
<ASYMMELHCBINAING™.........uiiiiiiiii e 162
<INCIUAETOKENS ...ttt 163
<INITAIOITOKEN> ... 162
<MustSupportRefEmbeddedToken>...........ccccooiiiiiiiiiiiiiiiiee e 164
<MustSupportReflssuerSerial>..........cccccciiiiiiiii 164
<RECIPIENTTOKEN ... 162

<SIGNEAPAMSS.....oeiiiiieieieeeeee e 161

Developing Web Services with Apache CXF and Axis2 261

DL T 0 SRR 164

G0 1o (=T o D 163
LTS B] PSP PP PP PPPPPP 27, 36

Target NAMESPACE.coii i 36

Validating @ WSDL fil........coiiiiiiiiiii e 50
LA ST 2 0o T [62
LAY ST] I o N = 1Y T 51

Mapping namespaces to package Names...........cooovviieiiiiiiiiiiiii e 59
LTS SO PP SPT 122
LTS TS 164
DG 01 S 163
D LU 204
D3 11102 TS 116
DY/ o7 - [T R 106
XML-binary optimized packaging......... .. 112
(o o J 112
XPAth. ..o e e 128, 180
Do USSR 16
8 0= T 1= PSR PSSUR 188
AN E T e e e e e e e e e e e aaaaaaaas

INtEropPErability...........euueei i e 82

@RESOUICE.....ceiieiitieiie ettt et e e e et e e e e e s bee e e e e e eeeeas 186

	Home Page
	Learn web services and Apache CXF and Axis2 easily
	Content highlights in this book
	Target audience and prerequisites
	Acknowledgments
	Chapter 1 Designing the interface for a simple web service
	Providing cross platform operations across the Internet
	RPC style web service
	Document style web service
	Determining the operation for a document style web service
	Port type
	Binding
	Port
	Target namespace
	WSDL
	Summary

	Chapter 2 Implementing a web service
	Installing Eclipse
	Using a web service library
	Downloading the jar files easily
	Installing Apache CXF
	WSDL file for the web service
	RPC version of the web service
	Creating the WSDL file visually
	Validating the WSDL file
	Generating the service code
	Creating a client
	Controlling the package name
	Practical significance of the annotations
	Creating the web service with Apache Axis2
	Creating a client using Apache Axis2
	Undeploying a web service from Axis2
	Summary

	Chapter 3 Viewing the SOAP messages
	Seeing the SOAP messages
	Summary

	Chapter 4 Accepting multiple parameters
	Splitting the XML element into multiple parameters
	Using the wrapped style in Axis2
	Interoperability
	Summary

	Chapter 5 Sending and receiving complex data structures
	Product query
	Sending more data in a message
	Returning faults
	Referring to existing XML elements
	Doing it in Axis2
	Summary

	Chapter 6 Sending binary files
	Providing the image of a product
	Enabling MTOM in the service
	Doing it in Axis2
	Interoperability
	Summary

	Chapter 7 Invoking lengthy operations
	Invoking a time consuming operation
	What if you can't modify the WSDL file?
	Extremely lengthy processing
	Specifying the reply address
	Using an asynchronous client in Axis2
	Summary

	Chapter 8 Signing and encrypting SOAP messages
	Private key and public key
	Digital signature
	Signing and encrypting
	Certificate and CA
	Distinguished name
	Performance issue with asymmetric encryption
	Keeping key pair and certificates in Java
	Generating a key pair
	Setting up a CA
	Importing the certificate into the keystore
	Signing SOAP messages
	Supporting digital signatures in the web service
	Encrypting SOAP messages
	Security issues when performing both signing and encrypting
	Sending login information
	Installing Rampart into Axis2
	Creating a secure client in Axis2
	Creating a secure service in Axis2
	Summary

	Chapter 9 Creating scalable web services with REST
	Scalability difficulty with SOAP
	Using a generic proxy
	Creating a RESTful web service
	Enabling caching by a proxy
	Validating the cached response after expiry
	Using other kinds of versions
	What if books can be updated at any time?
	Performing an update
	Implementing add
	Implementing delete
	Listing the reviews on a book
	Providing the full review text on demand
	Implementing search
	Doing it in Axis2
	Summary

	Chapter 10 Deploying your services and integrating them with Spring
	Deploying the simple service
	Installing Tomcat
	Invoking Spring beans from your implementation object
	Deploying RESTful web services
	Invoking Spring beans from your resource objects
	Deploying Axis2 web services
	Using Spring with Axis2
	Summary

	Chapter 11 Unit testing your web services
	Difficulties in testing a web service in a container
	Testing a web service out of container, in isolation
	Summary

