
Implementing SOA: Total Architecture in Practice
by Paul C. Brown

Publisher: Addison Wesley Professional
Pub Date: April 09, 2008
Print ISBN-10: 0-321-50472-0
Print ISBN-13: 978-0-321-50472-2
eText ISBN-10: 0-321-56265-8
eText ISBN-13: 978-0-321-56265-4
Pages: 736

Table of Contents | Index

Overview

Putting Service-Oriented Architecture (SOA) into Practice

"This book is a must-have for enterprise architects implementing SOA. Through practical
examples, it explains the relationship between business requirements, business process
design, and service architecture. By tying the SOA implementation directly to business
value, it reveals the key to ongoing success and funding."
 â!”Maja Tibbling, Lead Enterprise Architect, Con-way, Inc.

"While there are other books on architecture and the implementation of ESB, SOA, and
related technologies, this new book uniquely captures the knowledge and experience of the
real world. It shows how you can transform requirements and vision into solid, repeatable,
and value-added architectures. I heartily recommend it."
 â!”Mark Wencek, SVP, Consulting Services & Alliances, Ultimo Software Solutions, Inc.

In his first book, Succeeding with SOA, Paul Brown explained that if enterprise goals are to
be met, business processes and information systems must be designed together as parts of
a total architecture. In this second book, Implementing SOA, he guides you through the
entire process of designing and developing a successful total architecture at both project
and enterprise levels. Drawing on his own extensive experience, he provides best practices
for creating services and leveraging them to create robust and flexible SOA solutions.

Coverage includes

Evolving the enterprise architecture towards an SOA while continuing to deliver
business value on a project-by-project basis

Understanding the fundamentals of SOA and distributed systems, the dominant
architectural issues, and the design patterns for addressing them

Understanding the distinct roles of project and enterprise architects and how they
must collaborate to create an SOA

Understanding the need for a comprehensive total architecture approach that
encompasses business processes, people, systems, data, and infrastructure

Understanding the strategies and tradeoffs for implementing robust, secure, high-

performance, and high-availability solutions

Understanding how to incorporate business process management (BPM) and business
process monitoring into the enterprise architecture

Whether you're defining an enterprise architecture or delivering individual SOA projects, this
book will give you the practical advice you need to get the job done.

Implementing SOA: Total Architecture in Practice
by Paul C. Brown

Publisher: Addison Wesley Professional
Pub Date: April 09, 2008
Print ISBN-10: 0-321-50472-0
Print ISBN-13: 978-0-321-50472-2
eText ISBN-10: 0-321-56265-8
eText ISBN-13: 978-0-321-56265-4
Pages: 736

Table of Contents | Index
Copyright
Preface
About the Author
Part I: Fundamentals

Chapter 1. SOA and the Enterprise
The Challenge
The Concept of Total Architecture
Architecture Is Structure for a Purpose
Constant Changes
Total Architecture Synthesis
Making Total Architecture Work in Your Enterprise
Key Overview Questions

Chapter 2. Architecture Fundamentals
Structural Organization
Functional Organization
Collaborative Behavior
Total Architecture
Nonfunctional Requirements
Refinement
The Role of the Architect
Enterprise Architecture
Summary
Key Architecture Fundamentals Questions
Suggested Reading

Chapter 3. Service Fundamentals
What Is a Service?
Service Interfaces
The Rationale Behind Services
Summary
Key Service Fundamentals Questions
Suggested Reading

Chapter 4. Using Services
Service Interaction Patterns
Service Access
Access Control
Service Request Routing
Service Composition
Locating Services
Enterprise Architecture for Services
Summary
Key Service Utilization Questions
Suggested Reading

Chapter 5. The SOA Development Process
What Is Different about SOA Development?
The Overall Development Process

Architecture Tasks
Architecture in Context
Total Architecture Synthesis (TAS)
Beware of Look-Alike Processes!
Manage Risk: Architect Iteratively
Summary
Key Development Process Questions
Suggested Reading

Part II: The Business Process Perspective
Chapter 6. Processes

Triggers, Inputs, and Results
Related Processes
Process Maturity
Continuous Processes
Structured Processes
Summary
Key Process Questions
Suggested Reading

Chapter 7. Initial Project Scoping
Assembling the Business Process Inventory
Conducting Interviews
Documenting the Inventory
Ranking Business Processes
Organizing the Remaining Work
Summary
Key Scoping Questions

Chapter 8. The Artifice of Requirements
Differentiation
Characterizing Processes
Patterns of Interaction
Requirements Reflect Design
Summary
Key Requirements Questions
Suggested Reading

Chapter 9. Business Process Architecture
Results
Participants and Their Roles
Activities and Scenarios
Modeling Scenarios
Modeling Interactions
How Much Detail Is Enough?
Guidelines for Using Activity Diagrams
Summary
Key Business Process Architecture Questions
Suggested Reading

Chapter 10. Milestones
Basic Process Milestones
Variations in Milestone Sequences
Grouped Milestones
Recognizing Milestones Requires Design
Using Milestones to Reduce Inter-Process Coupling
Summary
Key Milestone Questions

Chapter 11. Process Constraints
Business Process Constraints Drive System Constraints
Performance Constraints
High Availability and Fault Tolerance
Security

Reporting, Monitoring, and Management
Exception Handling
Test and Acceptance
Compliance Constraints
Summary
Key Process Constraint Questions
Suggested Reading

Chapter 12. Related Processes
Identifying Services
Triggering Events
Summary
Key Related Process Questions

Chapter 13. Modeling the Domain
UML Class Notation
ATM Example Domain Model
Reverse Engineering the Domain Model
Domain Modeling Summary
Key Domain Modeling Questions
Suggested Reading

Chapter 14. Enterprise Architecture: Process and Domain Modeling
Process and Domain Modeling Responsibilities
Establishing Standards and Best Practices
Managing Process and Domain Knowledge Transfer
Reviewing Project Models
Maintaining the Business Process and Domain Model Repository
Defining Business Process Patterns
Defining Common Data Model Representations
Summary
Key Enterprise Process and Domain Modeling Questions

Part III: The Systems Perspective
Chapter 15. Systems Architecture Overview

The Challenge of Architecting Distributed Systems
Learning from the CORBA Experience
Efficiently Exploring Architectures
Summary
Key Systems Architecture Overview Questions

Chapter 16. Top-Level Systems Architecture
First-Cut Structure
Initial Evaluation
Communications and Modularization
Service Identification and Performance
Modeling System Interactions
Modeling Deployment
Addressing Performance
Early Architecture Evaluation
Key Top-Level SystemsArchitecture Questions
Suggested Reading

Part IV: Communications
Chapter 17. Transport

Transport Technology
Selecting Transports
Messaging Server Topology
Capacity
Point-to-Point Interaction Patterns
Point-to-Point Intermediaries
Transport-Supplied Services
Summary
Key Transport Questions

Suggested Reading
Chapter 18. Adapters

API-Based Adapters
Database-Based Adapters
Combining API and Database Approaches
File-Based Adapters
Protocol-Based Adapters
Documenting Adapter Usage
Summary
Key Adapter Questions

Chapter 19. Enterprise Architecture: Communications
Defining a Communications Strategy
Interaction Standards
Standardizing Adapters
Summary
Key Enterprise Architecture Communications Questions

Part V: Data and Operations
Chapter 20. Data Challenges
Chapter 21. Messages and Operations

Message Semantics and Operation Names
Transport Destinations and Operation Bundling
Content Representation
Content Transformation
Reference Data in Content Transformation
Summary
Key Messages and Operations Questions

Chapter 22. Data Consistency: Maintaining One Version of the Truth
Approaches to Maintaining Data Consistency
Cached Data with a Single System of Record
Coordinated Updates via Distributed Transactions
Edit Anywhere, Reconcile Later
Dealing with Data Inconsistencies
Data Management Business Processes
Summary
Key Data Consistency Questions
Suggested Reading

Chapter 23. Common Data Models (CDM)
What Is a Common Data Model?
CDM Relationship to the Domain Model
The Need for Multiple CDM Representations
Planning for CDM Changes
When to Use Common Data Models
Summary
Key Common Data Model Questions

Chapter 24. Identifiers (Unique Names)
Identity (Unique Name) Authorities
Hierarchical Identifiers
Coping with Identity Errors
Mapping Identifiers
Summary
Key Identifier Questions

Chapter 25. Results Validation
Checking Enumerated Values
Where and When to Validate
Summary
Key Data Validation Questions

Chapter 26. Enterprise Architecture: Data
Naming Schemes

Architecting Content Transformation
Systems of Record
Common Data Models
Identifiers
Data Quality Management
Summary
Key Enterprise Architecture Data Questions

Part VI: Coordination
Chapter 27. Coordination and Breakdown Detection

Activity Execution Management Patterns (AEMPs) Involving Interactions
Coordination Pattern Styles
Fire-and-Forget Coordination Patterns
Request-Reply Patterns
Delegation
Delegation with Confirmation
Summary
Key Coordination Questions

Chapter 28. Transactions: Coordinating Two or More Activities
Two-Phase Commit Distributed Transactions
Limitations of Two-Phase Commit Protocols
Compensating Transactions
Working around the Limitations of Compensating Transactions
Summary
Key Transaction Questions
Suggested Reading

Chapter 29. Process Monitors and Managers
Process Monitoring
Minimizing the Impact of Monitoring Breakdowns
The Process Manager as a Monitor
Process Management Limitations
Summary
Key Process Monitoring and Management Questions

Chapter 30. Detecting and Responding to Breakdowns
Selecting Coordination Patterns to Improve Breakdown Detection
Responding to Breakdowns
Summary
Key Breakdown Detection and Recovery Questions

Chapter 31. Enterprise Architecture: Coordination
Preferred Coordination Patterns
Breakdown Recording
Breakdown Annunciation
Recovery Processes
Summary
Key Enterprise Coordination Questions

Part VII: High Availability, Fault Tolerance, and Load Distribution
Chapter 32. High Availability and Fault Tolerance Fundamentals

Fault Tolerance Strategies
Failure Detection Strategies
Failover Management
Redirecting Clients
Summary
Key High-Availability and Fault Tolerance Questions

Chapter 33. Stateless and Stateful Failover
Stateless and Stateful Components
Stateless Failover
Saving Work in Progress through Coordination
Stateful Failover
Storage Replication

Summary
Key Failover Questions
Suggested Reading

Chapter 34. Multiple Component Failover
Intra-Site versus Inter-Site Failover
Clustering: An Intra-Site Failover Technique
Coordinating Peer Application Failover with Asynchronous Replication
Making a Business Process Fault-Tolerant
Summary
Key Multi-Component Failover Questions

Chapter 35. Workload Distribution
Work Assignment Strategies
Distribution Management and Work Completion
The Sequencing Problem
Access to Shared Persistent State
Geographic Workload Distribution
Summary
Key Workload Distribution Questions

Chapter 36. Enterprise Architecture: Fault Tolerance, High Availability, and Load Distribution
Business Process Categorization
Information Storage
Individual Component and Service Failover Patterns
Composite Patterns for FT and HA Services
Composite Patterns for FT and HA Business Processes
Summary
Key Enterprise Fault Tolerance, High-Availability, and Load Distribution Questions
Suggested Reading

Part VIII: Completing the Architecture
Chapter 37. Process Security

Security Information Classification
Identity and Authentication
Authorization
Encryption
Digital Signatures
Other Security-Related Requirements
Reference Data Servers and Performance
Trust Zones
Channel Enforcement
Zone Enforcement and Policy Agents
Multi-Zone Security
Summary
Key Security Questions
Suggested Reading

Chapter 38. Process Monitoring
Performance Monitoring
Monitoring Process Status
Supervisory Processes
The Impact of Monitoring on Performance
Summary
Key Process Monitoring Questions

Chapter 39. Architecture Evaluation
Usability
Performance
Cost and Schedule Feasibility
Observability
Ability to Evolve
Ability to Handle Stress Situations
Summary

Key Architecture Evaluation Questions
Suggested Reading

Chapter 40. Testing
Unit Testing, Test Harnesses, and Regression Testing
Integration Testing and Order of Assembly
Environments for Functional and System Testing
Performance Testing
Failure Mode Testing
Summary
Key Testing Questions

Part IX: Advanced Topics
Chapter 41. Representing a Complex Process

Eliding Communications Detail
Eliding Participant Activity Details
Eliding Supporting Participants
Abstracting Subprocesses
Summary
Key Complex Process Representation Questions

Chapter 42. Process Management and Workflow
Process Management
Styles of Work Assignment
Initiating Workflow
Making the Management Process Fault Tolerant
Human Interfaces
Related Processes
Prioritized Work
Dynamic Work Assignments
Dynamic Result and Process Definitions
Summary
Key Process Management and Workflow Questions
Suggested Reading

Chapter 43. The Enterprise Architecture Group
Half a Group Is Better than Noneâ!”But Not Good Enough
Best Practice Development
Knowledge Transfer
Governance
Designing with Evolving Requirements
Summary
Key Enterprise Architecture Group Questions

Afterword
Focus Your Work
Seek the Expertise of Others
Be Pragmatic, But Consider the Long View

Index

Copyright
Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers and
content particular to your business, training goals, marketing focus, and branding interests.
For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States please contact:

 International Sales
 international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Brown, Paul C.
 Implementing SOA : total architecture in practice / Paul C. Brown.
 p. cm.
 Includes index.
 ISBN 0-321-50472-0 (pbk. : alk. paper)
 1. Computer architecture. 2. Computer network architectures. 3. Business enterprisesâ!”
Computer networksâ!”Management. 4. Web services. I. Title.
QA76.9.A73B82 2008
 004.2'2â
!”dc22 2008005257

Copyright Â© 2008 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

 Pearson Education, Inc.
 Rights and Contracts Department
 501 Boylston Street, Suite 900
 Boston, MA 02116
 Fax: (617) 671-3447

ISBN-13: 978-0-321-50472-2

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.

First printing, April 2008

Dedication

For Maria

Preface
If you are an architect responsible for a service-oriented architecture (SOA) in an
enterprise, you face many challenges. Whether intended or not, the architecture you create
defines the structure of your enterprise at many different levels, from business processes
down to data storage. It defines the boundaries between organizational units as well as
between business systems. Your architecture must go beyond defining services and provide
practical solutions for a host of complex distributed system design problems, from
orchestrating business processes to ensuring business continuity. Implementing your
architecture will involve many projects over an extended period, and your guidance will be
required.

In Succeeding with SOA, I discussed the need for an enterprise to pay close attention to its
architecture, the role of its architects, and the importance of setting the right organizational
context for their success. In this book, Implementing SOA, I turn to the work of the
architects themselvesâ!”your workâ!”guiding you through the process of defining a service-
oriented architecture at both the project and enterprise levels. Whether you are an architect
putting SOA into practice or you are an engineer aspiring to be an architect and wanting to
learn more, I wrote this book for you.

Doing SOA well can be very rewarding. Done properly, your enterprise will comprise a
robust and flexible collection of reusable business and infrastructure services. The enterprise
will be able to efficiently recombine these services to address changing business needs. On
the other hand, if you do SOA poorly, your enterprise will be encumbered with a fragile and
rigid set of functionality (which I hesitate to call services) that will retard rather than
promote enterprise evolution. You don't want to end up there. Implementing SOA will show
you the pitfalls as well as the best practices. In short, it will guide you to doing SOA well.

The SOA Architectural Challenges

Doing SOA well presents you with four interrelated architectural challenges.

1. Services define the structure of both business processes and systems. Business
processes and systems have become so hopelessly intertwined that it is no longer
possible to design one without altering the other. They have to be designed together,
a concept I call total architecture. Thus, building your service-oriented architecture is
not just a technical exercise, it is also a business exercise that requires the active
participation of the business side of the house.

2. You are not building your SOA from scratch. Your enterprise today operates using a
working set of business processes and systems. You can't afford to disrupt business
operations just because you want to build an SOA. Practically speaking, you need to
evolve your existing business processes and systems into an SOA. During this
transition, individual projects must continue to deliver tangible business value,
independent of your SOA initiative.

3. Your SOA is a vision that requires a consistent interpretation as it is put into practice.

The actual implementation of your SOA will happen piecemeal, project by project.
Services that are developed in today's project must satisfy future needs, and today's
projects must leverage the services developed in yesterday's projects. Ensuring that
existing services are appropriately used, and that new services will meet future
needs, requires coordination and planning across multiple projects, both present and
future.

4. A service-oriented architecture is actually a distributed system. As such, your SOA
must incorporate self-consistent solutions to all of the classic distributed system
design problems: trading off service granularity against communications delays,
coping with communications breakdowns, managing information that is distributed
across services and sites, coordinating service execution and load distribution,
ensuring service and business process availability and fault tolerance, securing your
information, and monitoring and managing both business processes and services. The
requirements driving your solution choices stem from the needs of the business
processes involved and are thus tied in with business process design as well as
systems design. As before, solutions to these problems require consistent approaches
across all of your projects.

At the end of the day, your challenge as an architect is to organize your enterprise's
collaboration between business processes, people, information, and systems, and to focus it
on achieving your enterprise's goals.

About the Book

Implementing SOA is a comprehensive guide to addressing your architectural challenges. It
shows you how to smoothly integrate the design of both business processes and business
systems. It will tell you how to evolve your existing architecture to achieve your SOA
objectives, maintaining operational support for the enterprise during the transition. It
demonstrates how to use a proactive enterprise architecture group to bring a consistent and
forward-looking architectural perspective to multiple projects. Finally, it shows you how to
address the full spectrum of distributed system design issues that you will face.

This book is organized into nine parts. Part I presents the fundamental concepts of
architecture, services, and the total architecture synthesis methodology. Parts II through
VIII discuss a series of architectural design issues, ranging from understanding business
processes to monitoring and testing your architecture. Part IX then builds on these
discussions to address the large-scale issues associated with complex business processes
and workflow, concluding with a summary discussion of the workings of the enterprise
architecture group.

In Parts II through VIII, each of the architecture topics is discussed from two perspectives:
the project perspective and the enterprise architecture perspective. Each part first discusses
the design issues as though the project architect were creating the entire architecture from
scratch. The last chapter in each part then addresses the realities of a multi-project
environment and the role that the enterprise architecture group must play to ensure that
the design issues are appropriately addressed throughout the total architecture. This
separation highlights the relative roles of the project and enterprise architects as well as
the manner in which they need to collaborate. The enterprise architecture group chapter in
Part IX then summarizes the activities of this group.

The book as a whole, and each individual chapter, can be approached in two ways. One way
is prescriptive. The book presents a structured approach to tackling individual projects and
managing the overall enterprise architecture. The other way is to use the book as a review
guideline. Each chapter discusses a topic and concludes with a list of key questions related
to that topic. Use the questions as a self-evaluation guide for your current projects and
enterprise architecture efforts. Then use the content of the individual chapters to review the
specific issues and the various ways in which they can be addressed. Either way, you will
strengthen your enterprise architecture.

Implementing SOA is a comprehensive guide to building your enterprise architecture. While
the emphasis is clearly on SOA, SOA is just a style of distributed system architecture. Real-
world enterprise architectures contain a mixture of SOA and non-SOA elements. To reflect
this reality, the discussions in this book extend beyond SOA to cover the full scope of
distributed business systems architecture.

The pragmatic approach of Implementing SOA will guide your understanding of each issue
you will face, your possible solution choices, and the tradeoffs to consider in building your
solutions. The key questions at the end of each chapter not only provide a convenient
summary, but also serve as convenient architecture review questions. These questions, and
the supporting discussions in each chapter, will guide you to SOA success.

Acknowledgments

This book is dedicated to my wife, Maria. Without her love and support, neither this book
nor the previous one would ever have come into existence. She picked up the slack for
many things I should have been doing and gave me encouragement when I grew weary of
the task. Mere words are inadequate to express my love and appreciation.

There are many who have helped along the way as well. I thank my mentors who helped
me learn how to explore uncharted territory: John Reschovsky, Joel Sturman, David Oliver,
David Musser, and Mukkai Krishnamoorthy. I thank my colleagues who have provided an
intellectual foil for these ideas: Jonathan Levant, John Hutchison, James Rumbaugh, Michael
Blaha, and William Premerlani. For their support of my enterprise methodology work, I
thank Brian Pierce, Bruce Johnson, Paul Beduhn, and Paul Asmar. For their help in
sharpening the real-world architectural concepts, I thank Paul Asmar, David Leigh, Saul
Caganoff, and Janet Strong. For helping me turn a concept into a book, I thank Michael
Blaha and William Premerlani. For helping me make this book a reality, I thank Paul Asmar,
Ram Menon, Roger Strukhoff, Scott Fingerhut, Peter Gordon, Michael Blaha, and Charly
Paelinck.

PCB
Schenectady, NY
February 19, 2008

About the Author
Paul C. Brown is Principal Software Architect at TIBCO, a world leader in enterprise
software and services (www.tibco.com). His model-based tool architectures underlie
applications ranging from process control interfaces to NASA satellite mission planning. Dr.
Brown's extensive design work on enterprise-scale information systems led him to develop
the total architecture concept introduced in his first book, Succeeding with SOA: Realizing
Business Value Through Total Architecture and detailed in this book. He received his Ph.D.
in computer science from Rensselaer Polytechnic Institute.

Part I: Fundamentals

Chapter 1. SOA and the Enterprise
Service-oriented architecture (SOA) is an architectural style that modularizes information
systems into services. You then orchestrate collections of these services to bring business
processes to life. In a successful SOA, you can readily recombine these services in various
ways to implement new or improved business processes.

SOA is a logical evolutionary descendant of the software modularization techniques that
began more than 50 years ago with the introduction of structured programming. SOA's
novelty is that it gives you increased flexibility in the choice of implementation technologies
and locations for the service providers and consumers. The abstracted service interfaces
also enable providers and consumers to evolve independentlyâ!”as long as the interfaces
remain stable.

The benefits of an SOA derive primarily from a single characteristic: the stability of the
service interface. This stability, relative to the overall rate of systems changes, isolates
service consumers from changes in service implementations. This isolation limits the scope
of changes and thus reduces the cost of subsequent changes. You derive a much larger
benefit when you are able to reuse servicesâ!”exactly as they are. Reuse avoids the cost of
re-implementing or modifying the functionality encapsulated in the service.

The Challenge

The stability of service interfaces is the key to SOA success. A stable interface isolates the
service user from the ongoing changes in the service provider and thus reduces the scope
of work that is required each time the service provider is modified. This reduction in scope
carries with it a corresponding reduction in cost in the form of cost avoidance. Interface
stability is also the key enabler for service reuse. If the existing interface cannot support the
needs of a future service user or service provider, then changes to the interface will be
required. The cost of making these changes diminishes or eliminates the anticipated savings
that justified the development of the service in the first place.

Actually achieving this interface stability is the dominant SOA challenge. Why? Because a
business service interface does more than establish a boundary between systems. A
business service encapsulates a piece of a business process. It establishes an interface
between the encapsulated portion of the business process and the rest of the business
process. A sales order management service encapsulates the portions of business
processes that create and maintain sales orders. Thus when you define business services,
you are architecting your business processes as well as your systems.

Business processes run on information. All but the most trivial of services manage some set
of information. The definition of the service determines what information it manages,

distinguishing this information from information managed by other system components and
services. For example, a sales order management service is the system of record for
sales order information, but it does not manage warehouse inventory. Thus, business
services modularize information.

Business processes (and systems, for that matter) rely on people. Even in a highly
automated business process, people are the final recourse for finding and fixing problems.
In many other business processes, people are an integral part of the process, making
decisions and otherwise contributing their knowledge and skills to the process. These people
belong to organizationsâ!”and so do the business services. When you define business
services, you are establishing the responsibilities of organizations as well as systems. You
are establishing the roles of people in the organization along with the responsibility for
managing the service itself.

The architecture of the modern enterprise defines the structure of more than its systems. It
defines the structure of the people, processes, and information as well. It is the total
architecture of the enterprise.

Part I: Fundamentals

Chapter 1. SOA and the Enterprise
Service-oriented architecture (SOA) is an architectural style that modularizes information
systems into services. You then orchestrate collections of these services to bring business
processes to life. In a successful SOA, you can readily recombine these services in various
ways to implement new or improved business processes.

SOA is a logical evolutionary descendant of the software modularization techniques that
began more than 50 years ago with the introduction of structured programming. SOA's
novelty is that it gives you increased flexibility in the choice of implementation technologies
and locations for the service providers and consumers. The abstracted service interfaces
also enable providers and consumers to evolve independentlyâ!”as long as the interfaces
remain stable.

The benefits of an SOA derive primarily from a single characteristic: the stability of the
service interface. This stability, relative to the overall rate of systems changes, isolates
service consumers from changes in service implementations. This isolation limits the scope
of changes and thus reduces the cost of subsequent changes. You derive a much larger
benefit when you are able to reuse servicesâ!”exactly as they are. Reuse avoids the cost of
re-implementing or modifying the functionality encapsulated in the service.

The Challenge

The stability of service interfaces is the key to SOA success. A stable interface isolates the
service user from the ongoing changes in the service provider and thus reduces the scope
of work that is required each time the service provider is modified. This reduction in scope
carries with it a corresponding reduction in cost in the form of cost avoidance. Interface
stability is also the key enabler for service reuse. If the existing interface cannot support the
needs of a future service user or service provider, then changes to the interface will be
required. The cost of making these changes diminishes or eliminates the anticipated savings
that justified the development of the service in the first place.

Actually achieving this interface stability is the dominant SOA challenge. Why? Because a
business service interface does more than establish a boundary between systems. A
business service encapsulates a piece of a business process. It establishes an interface
between the encapsulated portion of the business process and the rest of the business
process. A sales order management service encapsulates the portions of business
processes that create and maintain sales orders. Thus when you define business services,
you are architecting your business processes as well as your systems.

Business processes run on information. All but the most trivial of services manage some set
of information. The definition of the service determines what information it manages,

distinguishing this information from information managed by other system components and
services. For example, a sales order management service is the system of record for
sales order information, but it does not manage warehouse inventory. Thus, business
services modularize information.

Business processes (and systems, for that matter) rely on people. Even in a highly
automated business process, people are the final recourse for finding and fixing problems.
In many other business processes, people are an integral part of the process, making
decisions and otherwise contributing their knowledge and skills to the process. These people
belong to organizationsâ!”and so do the business services. When you define business
services, you are establishing the responsibilities of organizations as well as systems. You
are establishing the roles of people in the organization along with the responsibility for
managing the service itself.

The architecture of the modern enterprise defines the structure of more than its systems. It
defines the structure of the people, processes, and information as well. It is the total
architecture of the enterprise.

Part I: Fundamentals

Chapter 1. SOA and the Enterprise
Service-oriented architecture (SOA) is an architectural style that modularizes information
systems into services. You then orchestrate collections of these services to bring business
processes to life. In a successful SOA, you can readily recombine these services in various
ways to implement new or improved business processes.

SOA is a logical evolutionary descendant of the software modularization techniques that
began more than 50 years ago with the introduction of structured programming. SOA's
novelty is that it gives you increased flexibility in the choice of implementation technologies
and locations for the service providers and consumers. The abstracted service interfaces
also enable providers and consumers to evolve independentlyâ!”as long as the interfaces
remain stable.

The benefits of an SOA derive primarily from a single characteristic: the stability of the
service interface. This stability, relative to the overall rate of systems changes, isolates
service consumers from changes in service implementations. This isolation limits the scope
of changes and thus reduces the cost of subsequent changes. You derive a much larger
benefit when you are able to reuse servicesâ!”exactly as they are. Reuse avoids the cost of
re-implementing or modifying the functionality encapsulated in the service.

The Challenge

The stability of service interfaces is the key to SOA success. A stable interface isolates the
service user from the ongoing changes in the service provider and thus reduces the scope
of work that is required each time the service provider is modified. This reduction in scope
carries with it a corresponding reduction in cost in the form of cost avoidance. Interface
stability is also the key enabler for service reuse. If the existing interface cannot support the
needs of a future service user or service provider, then changes to the interface will be
required. The cost of making these changes diminishes or eliminates the anticipated savings
that justified the development of the service in the first place.

Actually achieving this interface stability is the dominant SOA challenge. Why? Because a
business service interface does more than establish a boundary between systems. A
business service encapsulates a piece of a business process. It establishes an interface
between the encapsulated portion of the business process and the rest of the business
process. A sales order management service encapsulates the portions of business
processes that create and maintain sales orders. Thus when you define business services,
you are architecting your business processes as well as your systems.

Business processes run on information. All but the most trivial of services manage some set
of information. The definition of the service determines what information it manages,

distinguishing this information from information managed by other system components and
services. For example, a sales order management service is the system of record for
sales order information, but it does not manage warehouse inventory. Thus, business
services modularize information.

Business processes (and systems, for that matter) rely on people. Even in a highly
automated business process, people are the final recourse for finding and fixing problems.
In many other business processes, people are an integral part of the process, making
decisions and otherwise contributing their knowledge and skills to the process. These people
belong to organizationsâ!”and so do the business services. When you define business
services, you are establishing the responsibilities of organizations as well as systems. You
are establishing the roles of people in the organization along with the responsibility for
managing the service itself.

The architecture of the modern enterprise defines the structure of more than its systems. It
defines the structure of the people, processes, and information as well. It is the total
architecture of the enterprise.

The Concept of Total Architecture

Business processes, people, information, and systems have become so intertwined in the
modern enterprise that you can no longer design them independently. You have to address
them in totoâ!”as a whole. Furthermore, the scale and complexity of enterprise business
processes requires that you do this design hierarchically. A high-level architectureâ!”the
total architectureâ!”determines the participants, their roles and responsibilities, and the
dynamics of their interaction required to achieve the business goals (Figure 1-1).
Subsequent steps then detail and execute this architecture.

Figure 1-1. Total Architecture

Total architecture is not a choice. It is a concession to reality. Attempts to organize
business processes, people, information, and systems independently result in structures
that do not fit together particularly well. The development process becomes inefficient, the
focus on the ultimate business objective gets lost, and it becomes increasingly difficult to
respond to changing opportunities and pressures. The only real choice you have lies in how
to address the total architecture.

The word total is appropriate for another reason as well. Traditionally in the business world,
architecture has almost exclusively been the concern of the IT community. The business
really didn't care as long as IT got the job done. But what are we saying here? The
structuring of the business processes has to be done in concert with the structuring of the
systems. Architecture is no longer an IT issueâ!”it is an enterprise issue. We are talking
about nothing less than total enterprise architecture. IT can't do it alone!

Architecture Is Structure for a Purpose

Every architecture is created for a specific purpose. Imagine that there has been a
magnificent mansion under construction near where you live. You have been watching it
evolve for months with growing curiosity. One day you are given an opportunity to tour the
property, and you are delighted. You drive in and are impressed with the broad sweep of
the expansive circular drivewayâ!”it will provide more than enough parking for even the
largest party! You walk up the steps of the exquisite portico and through the huge brass-
trimmed oak double doors into a spacious marble foyer. You wander through wide corridors
leading to dozens of magnificently furnished rooms until you finally reach the mansion's
crown jewel, the ballroom. What a palace! A work of artâ!”well conceived and well
executed, although more than a little extravagant.

Then one of your fellow wanderers approaches you and asks you what you think of this new
concept in retail sales. Sales, you ask? Yesâ!”the mansion is a new concept for retailing
home furnishings. The merchandise is laid out exactly as it would be in your homeâ!”or at
least the home you wished you had! Suddenly you begin to wonder. As big as that driveway
is, will it hold hordes of holiday shoppers? Are the doors and hallways wide enough to
handle crowds of shoppers with their packages? Where is the merchandise that you actually
purchase? The more you think about it, the less sense it all makes. The architecture is just
wrongâ!”it doesn't suit the purpose. It may look like a magnificent mansion, but it will
probably make a poor store.

What has all this to do with software architecture? An architecture, any architecture, is a
structure with a purpose. That purpose is to support some form of activity. A good
architecture will advance this purpose. A poor architecture will detract. Your house would
not make a good factory, nor would New York's Grand Central Station make a good house.
This is as true for the architecture of information systems as it is for the architecture of
buildings. And just as it is with buildings, the creation of a good architecture requires a
clear understanding of its intended purpose.

Because this is a book about the architecture of the enterprise information systems, we
must begin by asking this: What is the purpose of the architecture? Simply put, it is to
enable the business processes of the enterprise. That enablement can take a variety of
forms, ranging from simple record keeping to completely automating business processes.

Increasingly, automation is becoming the focus. As you automate, systems become active
participants in the business processes, making decisions and taking action. The systems and
the business processes become so intertwined that you cannot even define the business
process without discussing the role of the system. You now have a chicken-and-egg
situation in which the business process cannot be designed without making assumptions
about how and when the system should participate, and you cannot evaluate the
reasonableness of that participation without beginning to design the system itself.

The traditional waterfall requirements-followed-by-system-design paradigm does not
accomplish this. You need a new paradigm in which business process design and system
design are addressed concurrently. It is this concurrent design paradigm, this Total
Architecture Synthesis (TAS), that is the subject of this book.

The TAS paradigm is not a radical departure from the past. It is a simple restructuring of
the traditional design activities to produce a more efficient iterative design technique. It is
similar in concept to agile software development, but at the architectural level. Sketch a
business process and its requirements, sketch an architecture to support it, then evaluate.
Like it? Add more detail to the process, refine the architecture, evaluate again. Don't like
it? Try something elseâ!”you haven't made a big investment, so there's nothing holding
you back.

Constant Changes

The environment in which your enterprise lives is constantly changing. Customers and
partners expect increasing levels of service and responsiveness. Your current competitors
are constantly maneuvering to get the upper hand, and new companies threaten with
disruptive technologies. And, of course, you have your own initiatives to improve your
competitive position. Simply having a good implementation of today's business processes is
not sufficient. Your enterprise needs to be able to adapt to these changes and initiate its
own in order to remain viable.

The winner in such situations will be the enterprise that is most agile. The total architecture
perspective is the critical enabler. With a solid understanding of the interactions between
business processes, information, people, and systems, you will be able to quickly adapt and,
at the same time, preserve future agility. This is particularly important when defining
services. Because service interfaces are points of stability in the design, you need a good
understanding of the flexibility that your enterprise requires to ensure that these stable
interfaces will support future needs.

As I discussed at length in Succeeding with SOA, attempting adaptive changes without this
understanding is risky at best and catastrophic at worst. You won't have a good
understanding of the consequences of your changes, even in the near term. In the long
term, you are likely to end up with a fragile chewing-gum and bailing-wire hodge-podge of
systems that nobody understands. Such situations inhibit change and place your enterprise
at a competitive disadvantage.

Total Architecture Synthesis

The good news is that considering your total architecture does not have to take longer or
cost more than doing it on the cheap. It simply requires focusing on what's important. What
are the business goals of the project? What business process changes are required to
achieve those goals? Which business processes (and changes) are most likely to present
challenges to the systems? What systems architecture (or changes) will it take to address
those challenges?

Realize that you must eventually answer all of these questions. The trick is to answer them
before you have committed to implementation, or even to detailed design. At this point,
making mistakes and changing direction is quick and cheap. It's only a paper design, and
easy to adjust. Then, once you are satisfied that you are headed in the right direction, you
can detail the design and begin implementation with confidence. This is the philosophy of
TAS.

Will your architecture be perfect? Of course not. Nor does it need to be. But the overall
structure and organizationâ!”your total architectureâ!”will be both solid and flexible.
Structure is what is expensive and time consuming to alter. You will find that, in practice,
the types of subsequent alterations you will need to make are minor and easily
accommodated.

You will find TAS to be efficient. While it does involve analysis, it avoids the analysis-
paralysis problem by focusing on those things that really make a difference to the overall
structure, and leaving the details for later. How efficient? There is no faster way to successâ
!”because you prioritize the work and only address questions that absolutely have to be
answered. You can get to failure fasterâ!”and many doâ!”but not success. The failure may
not show up until you try to make subsequent changes, but without the total architecture
perspective you are flying blind. Eventually you will crash.

So how do you do this? How do you organize business processes, people, information, and
systems and focus them on achieving enterprise goals? And how do you do this efficiently
and quickly? Implementing SOA will show you how.

Making Total Architecture Work in Your Enterprise

The issues and concerns addressed by Total Architecture are ubiquitous. You will find them
in every enterprise and every project, and you must address them. However, you don't
want to become fixated on finding the best possible solution to each issue or concern. The
most common failing is not one of addressing an issue improperly; rather, it is failing to
address the issue at all. Total Architecture will guide you in understanding what those issues
are.

If Total Architecture teaches nothing else, it shows you that these issues and their
resolution are interdependent. The "best possible" solution to one issue, viewed in isolation,
may turn out to be less than optimal when its impact on other issues is taken into account.
Use Total Architecture as a guide to understanding these dependencies and arriving at
solutions that are optimal for the enterprise.

Finally, you should note that while the issues and concerns addressed by Total Architecture
are ubiquitous, the prescriptive techniques presented here are but one approach among
many. The detailed techniques you ultimately use and the manner in which you organize to
apply them will vary depending upon the degree of centralization in the enterprise, the level
of formality the organization is accustomed to, and the culture of the organization. Use the
techniques in this book as a benchmark against which to compare your present processes
and methods. Identify the gaps, and determine the best way of filling those gaps in your
enterprise. Then act.

Total Architecture is a mindsetâ!”one that keeps you focused on the purpose of the
enterprise. It reminds you that the interactions of business processes, people, information,
and systems are but a means to help the enterprise achieve its ends. To achieve those
ends, you must consciously architect those interactions. Architects must be charged with
this responsibility and given the executive support to make it happen. Total Architecture is
the lens that focuses the enterprise on its purposes.

Key Overview Questions

1. Does your present architecture facilitate business change or get in its way?

2. Do your projects have clearly defined business goals? How do you maintain
the focus on achieving these goals during design?

3. Do you consciously design your business processes?

4. Does your approach to designing business services take into consideration
the structure that the services impose upon the business processes?

5. What steps do you take to ensure that your services (a) can be reused, and
(b) are, in fact, being reused?

Chapter 2. Architecture Fundamentals
Architecture is the characterization of the organization of a system in terms of its
constituent parts. It characterizes the physical structure, functional organization, and
collaborative behavior of those constituent parts and relates them to the system's intended
purpose. A completed architectural description serves as a reference for the stakeholdersâ
!”those who charter, fund, design, implement, and utilize the systemsâ!”as they strive to
ensure that the systems that are realized satisfy the purpose that motivated their
construction.

Upon reflection, you will see that this definition is as applicable to the architecture of
physical buildings as it is to that of business systems. A hotel, for example, is a temporary
place of residence, and its structure and organization must support that purpose. Similarly,
the architecture of an enterprise exists to support the business processes of the enterprise.
The ensuing discussion draws upon examples from both domains to clarify this definition of
architecture and its implications for your work.

Structural Organization

When you think of architecture, your intuition probably leads you first to the notion of
structure (Figure 2-1). At the highest physical level, an architecture consists of one or more
components. In a city, there are many buildings. In an enterprise there are many
applications. Each of these components, in turn, can comprise subcomponents. Remember
that a service (since this is a book about SOA) is just a specialized form of component, so
everything said here about components applies to services as well.

Figure 2-1. Structure

Components

Some architectural components are obvious when you consider the purpose of the overall
system. In the city you find houses, stores, hotels, restaurants, offices, and movie theaters,
all playing obvious roles in supporting daily life. In the enterprise you find order
management systems, customer management systems, account management systems,
claims systems, and financial accounting systems, again playing obvious roles in the
operation of the enterprise. I will refer to these obvious components as the major
components of the architecture.

There are other components that play supporting roles. Their roles do not become obvious

until you consider the details of how the major components actually execute their roles. In
the city there are components involved in the distribution of power, water, gas, sewage,
and information. Their role does not become obvious until, for example, you consider how a
restaurant prepares its food. Only then do you discover the restaurant's need for water,
power, gas, sewage, and even for information as it places orders for supplies and manages
accounts. In enterprise systems the supporting components are the power distribution,
networks, file systems, databases, and the machines on which the applications run. It is not
until you consider how the order management system actually manages orders that you
discover the need for file systems, databases, network communications, machines to run
the applications, and power to support the networks, machines, and file systems.

In understanding an architecture, you begin with knowledge of the major components and
the manner in which they collaborate to satisfy the business purpose. Then, as you begin to
consider the mechanics of how the components collaborate, you refine this high-level
understanding by determining how the major components accomplish their tasks. In so
doing, you identify the need for the supporting components and show how they participate
in the overall collaboration.

Subcomponents

Components have an internal substructure of their own. The structure of a building, for
example, is an organization of spaces. Larger spaces comprise smaller spaces, both interior
and exterior. Consider a large hotel and the plot of land upon which it rests. One wing
contains ballrooms and meeting rooms. Another wing contains the pool, fitness center, and
spa. The tower contains the guest rooms. These large spaces all connect to a lobby area,
which contains the registration desk, shops, and restaurants. Other spaces house the
kitchens, laundry, storage rooms, heating and air conditioning equipment, and maintenance
shops. The hotel has exterior space as well, comprising driveways, parking lots, patios, and
recreational spaces. The organization of these spaces is the subcomponent structure of the
hotel.

Business systems have internal structure as well. An application might be implemented in a
two-tier or 3-tier architectural style (Figure 2-2). Each of the components will, in turn, have
substructure.

Figure 2-2. Application Architecture Styles

[View full size image]

When it comes to subcomponents, the architect must make a judgment call as to how
much substructure he or she must consider. An architect designing a house, for example,

shows the placement of rooms and closets and specifies the type of wall construction but
does not show the detailed internal structure of the walls. The exact placement of 2x4s and
sheetrock is left up to the framing contractor.

In distributed systems, for the most part, you want to at least identify all of the individual
software executables that are involved in the business processes. Generally, the internal
structure of each process is left up to the designer of that process, although the architect
may choose to specify the technology to be used and the style of the design. In the end,
what you need to identify are the "moving parts" of the systemâ!”the components that take
action.

While ideally you want to understand all of the moving parts of the design, you have to be
somewhat pragmatic about the level of detail you seek. This is particularly true when there
are large and complex applications involved in the overall business processâ!”applications
that comprise two or more software executables. To what extent do you need to understand
the internal structure of these applications?

The pragmatic answer is that if you are modifying the application, then you need to
understand its internal structure. If you are not modifying the application, and the
application owner can accurately determine the performance characteristics and shared
resource demands (network and disk in particular), then you can treat that application as a
black box. But I warn you now, you are trusting the veracity of that system owner's claims.
If they turn out to be inaccurate, your architecture may not work. You need to convince
yourself that the system owner knows what he or she is talking about. Otherwise, you have
no choice but to model the application's internal structure.

For the most part, the architect will leave the internal design of each component up to the
design team responsible for the component. The exception will be when the architect can
anticipate specific design decisions that will impact the feasibility of the design or the
externally observable behavior of the component. When there are complex algorithms
involved, such as sorting and searching large data sets, the architect may need to research
the available algorithms to determine that it is possible to build a component with the
required performance characteristics. In such cases, the architect should specify the specific
type of algorithm to be used.

Chapter 2. Architecture Fundamentals
Architecture is the characterization of the organization of a system in terms of its
constituent parts. It characterizes the physical structure, functional organization, and
collaborative behavior of those constituent parts and relates them to the system's intended
purpose. A completed architectural description serves as a reference for the stakeholdersâ
!”those who charter, fund, design, implement, and utilize the systemsâ!”as they strive to
ensure that the systems that are realized satisfy the purpose that motivated their
construction.

Upon reflection, you will see that this definition is as applicable to the architecture of
physical buildings as it is to that of business systems. A hotel, for example, is a temporary
place of residence, and its structure and organization must support that purpose. Similarly,
the architecture of an enterprise exists to support the business processes of the enterprise.
The ensuing discussion draws upon examples from both domains to clarify this definition of
architecture and its implications for your work.

Structural Organization

When you think of architecture, your intuition probably leads you first to the notion of
structure (Figure 2-1). At the highest physical level, an architecture consists of one or more
components. In a city, there are many buildings. In an enterprise there are many
applications. Each of these components, in turn, can comprise subcomponents. Remember
that a service (since this is a book about SOA) is just a specialized form of component, so
everything said here about components applies to services as well.

Figure 2-1. Structure

Components

Some architectural components are obvious when you consider the purpose of the overall
system. In the city you find houses, stores, hotels, restaurants, offices, and movie theaters,
all playing obvious roles in supporting daily life. In the enterprise you find order
management systems, customer management systems, account management systems,
claims systems, and financial accounting systems, again playing obvious roles in the
operation of the enterprise. I will refer to these obvious components as the major
components of the architecture.

There are other components that play supporting roles. Their roles do not become obvious

until you consider the details of how the major components actually execute their roles. In
the city there are components involved in the distribution of power, water, gas, sewage,
and information. Their role does not become obvious until, for example, you consider how a
restaurant prepares its food. Only then do you discover the restaurant's need for water,
power, gas, sewage, and even for information as it places orders for supplies and manages
accounts. In enterprise systems the supporting components are the power distribution,
networks, file systems, databases, and the machines on which the applications run. It is not
until you consider how the order management system actually manages orders that you
discover the need for file systems, databases, network communications, machines to run
the applications, and power to support the networks, machines, and file systems.

In understanding an architecture, you begin with knowledge of the major components and
the manner in which they collaborate to satisfy the business purpose. Then, as you begin to
consider the mechanics of how the components collaborate, you refine this high-level
understanding by determining how the major components accomplish their tasks. In so
doing, you identify the need for the supporting components and show how they participate
in the overall collaboration.

Subcomponents

Components have an internal substructure of their own. The structure of a building, for
example, is an organization of spaces. Larger spaces comprise smaller spaces, both interior
and exterior. Consider a large hotel and the plot of land upon which it rests. One wing
contains ballrooms and meeting rooms. Another wing contains the pool, fitness center, and
spa. The tower contains the guest rooms. These large spaces all connect to a lobby area,
which contains the registration desk, shops, and restaurants. Other spaces house the
kitchens, laundry, storage rooms, heating and air conditioning equipment, and maintenance
shops. The hotel has exterior space as well, comprising driveways, parking lots, patios, and
recreational spaces. The organization of these spaces is the subcomponent structure of the
hotel.

Business systems have internal structure as well. An application might be implemented in a
two-tier or 3-tier architectural style (Figure 2-2). Each of the components will, in turn, have
substructure.

Figure 2-2. Application Architecture Styles

[View full size image]

When it comes to subcomponents, the architect must make a judgment call as to how
much substructure he or she must consider. An architect designing a house, for example,

shows the placement of rooms and closets and specifies the type of wall construction but
does not show the detailed internal structure of the walls. The exact placement of 2x4s and
sheetrock is left up to the framing contractor.

In distributed systems, for the most part, you want to at least identify all of the individual
software executables that are involved in the business processes. Generally, the internal
structure of each process is left up to the designer of that process, although the architect
may choose to specify the technology to be used and the style of the design. In the end,
what you need to identify are the "moving parts" of the systemâ!”the components that take
action.

While ideally you want to understand all of the moving parts of the design, you have to be
somewhat pragmatic about the level of detail you seek. This is particularly true when there
are large and complex applications involved in the overall business processâ!”applications
that comprise two or more software executables. To what extent do you need to understand
the internal structure of these applications?

The pragmatic answer is that if you are modifying the application, then you need to
understand its internal structure. If you are not modifying the application, and the
application owner can accurately determine the performance characteristics and shared
resource demands (network and disk in particular), then you can treat that application as a
black box. But I warn you now, you are trusting the veracity of that system owner's claims.
If they turn out to be inaccurate, your architecture may not work. You need to convince
yourself that the system owner knows what he or she is talking about. Otherwise, you have
no choice but to model the application's internal structure.

For the most part, the architect will leave the internal design of each component up to the
design team responsible for the component. The exception will be when the architect can
anticipate specific design decisions that will impact the feasibility of the design or the
externally observable behavior of the component. When there are complex algorithms
involved, such as sorting and searching large data sets, the architect may need to research
the available algorithms to determine that it is possible to build a component with the
required performance characteristics. In such cases, the architect should specify the specific
type of algorithm to be used.

Functional Organization

You don't build systems for funâ!”you build them for a purpose. That purpose is to provide
support for one or more kinds of activities. As an architect, one of the things you need to
consider and specify is which component is involved in which activities and what that
component's responsibilities are with respect to those activities (Figure 2-3).

Figure 2-3. Functional Organization

[View full size image]

The purpose of a hotel, for example, is to provide short-term support for the activities you
associate with living in a residence: sleeping, personal hygiene, and perhaps eating,
physical fitness, and recreation as well. For an enterprise, the purpose is to support the
business processes of the enterprise that enable it to provide goods and services. These
business processes comprise sequences of activities. By identifying which system
components support which activities, and indicating exactly what each component does with
respect to an activity, you define the role that the component is expected to play with
respect to the intended purpose of the overall architecture. More precisely, the role
identifies the set of behaviors that the component is expected to exhibit.

In your role as architect, it is your responsibility to clearly define the role of each
component. You record your intent by labeling each component with the name of the role it
will play. In the blueprints for your house, for example, you will find the cooking space
labeled kitchen, the sleeping spaces labeled bedrooms, and the personal hygiene spaces
labeled bathrooms. Subsequently, you will define the behaviors that are expected of each
role.

The roles to be played by business system components are derived from the business
processes they are intended to support. A retail business has an order-to-cash business
process that transforms goods into revenue, a stock-replenishment business process that
ensures goods are on the shelf when needed, and financial business processes to close the
books at the end of each day, week, quarter, and year. In modularizing an architecture, the
architect decomposes these business processes into activities and assigns the functional
responsibility for executing those activities to the components of the architecture. In so
doing, the architect is functionally organizing the architecture and defining the intended
business role of each component. But sometimes labeling the components with clearly

recognizable role names is not easy.

Shared Resources

In the architecture of buildings, the relationship between the physical spaces and their
functional purpose is, for the most part, straightforward. In the architecture of business
systems this relationship is often more complicated. Computers, databases, networks,
application servers, and web browsers are all general-purpose components. Any given
computer might house the order management function, the warehouse management
function, or the accounting functionâ!”or all three. Because these components are general
purpose, many of them end up being shared resourcesâ!”resources that support more than
one business purpose. A single database, for example, might house data associated with
several functions. Such sharing can make it difficult for the architect to relate the
component back to its functional business purposes in a clear and unambiguous manner.

This relationship between components and the business processes they support must be
clear. The functional requirements for the components derive from their business roles. The
nonfunctional requirements such as response time, throughput, and availability are, in turn,
derived from these functional requirements and the needs of the overall business process.
Unless you clearly understand the roles of the component, you can only guess at the
functional and nonfunctional requirements. Such guesswork generates riskâ!”risk that the
component's support for the business process will be inadequate and that the business itself
will consequently suffer.

One reason such guesswork is risky is that each component has a finite capacity to do
work. This capacity is determined by factors such as the number and speed of the CPUs, the
amount of RAM, the capacity and speed of the disks, and the bandwidth and latency
characteristics of the networks. Sizing these componentsâ!”determining their required
capacityâ!”requires an understanding of both their intended functional purpose and the
volume of business activity they must support.

When components are shared, these finite capacity limitations can also cause unintended
adverse interactions between business processes. If one business process is consuming
more than its fair share of a component's resources, it may starve another business process
of the resources that it needs. If a single database is supporting order management,
warehouse management, and accounting applications, then the end-of-quarter financial
accounting activity may place such a burden on the database that the enterprise's ability to
take orders and ship goods is degraded. Such interactions are the unintended consequences
resulting from an architectural decision to share the resource.

Another reason that guesswork is risky is the show-stopping impact that system component
failures can have on the business process. If the component is the sole provider of a
needed function in a business process, the loss of the component will keep that business
process from executing. Without understanding which components are supporting which
business processes, you cannot determine the business consequences of a component
failure. Absent this understanding, you can only guess at the level of high availability, fault
tolerance, and business continuity investment that is appropriate for each component.

Guessing at requirements and guessing at investment levels generates risk for the
enterpriseâ!”risk that is unnecessary and avoidable. As an architect, you must define the

functional role that each component is expected to play in each business process that it
participates in. These role definitions are as much a part of the architecture definition as are
the physical structures of the business systems. Not only must you understand these roles,
you must also document and pass this understanding on to others to guide them in their
evaluation and implementation of the architecture.

Coping with Evolving Requirements

Most enterprises are in a continual state of flux, responding to changing business goals and
environmental pressures. This state of flux results in continually evolving business
processes which, in turn, result in continually evolving system requirements. This continuing
evolution presents an ongoing challenge for the enterprise architect to maintain clearly
defined roles for each component. Without clearly defined roles, the requirements for the
individual components become unclear. This, in turn, exposes the enterprise to the risks
discussed previously.

One powerful tool the architect has for managing this risk is to clearly label each component
with its intended business role. A role identifies expected behaviors (which will be
subsequently defined), and the ability to clearly label the component is an indication that
the expected behavior has been clearly identified. Furthermore, labeling provides an
evolutionary guide for future architects and designers as the architecture evolves. Role
names help the architects and designers determine the appropriate home for new
functionalityâ!”unless that functionality actually belongs to a newly emerging role!

The Temptation of Expediency

When new functionality is required, particularly functionality that is part of a newly
emerging role, there is a temptation to be expedient and simply place that functionality in
whichever component seems to be the most convenient. This temptation is to be avoided,
as it leads to a loss of clarity with respect to the role each component is expected to play in
the enterprise. A loss of clarity makes it increasingly difficult to understand the component's
requirements. This introduces guesswork into the requirement's definitionâ!”guesswork that
brings risk.

Consider an operational data store containing sales order information. The purpose of this
data store is to maintain sales order information in support of the order-to-cash business
process. Now consider the fate of orders that have been shipped and paid. There is
information in these old orders that is of value to the business. Should these orders be
allowed to accumulate in the operational data store? The expedient answer is yes.
Historically, however, this has not been the right answer.

This situation, of course, was the genesis of the role commonly referred to as the data
warehouse. If you allow old orders to accumulate in the operational data store, its
performance deteriorates as the number of completed orders piles up. Slice-and-dice data
mining queries further tax the data store and degrade its operational performance. In
response, the historical data was moved into a separate componentâ!”the data warehouse.

For those who allow the data to accumulate in the operational data store, the transition to a
data warehouse is, in many cases, traumatic. The accumulating data in the operational data
store leads to a gradual degradation in order-to-cash business process performance and a

growing realization that some type of change was required. By the time the data warehouse
is introduced, the operational data store performance problems make completing the split a
time-critical exercise, further increasing the complexity of an already difficult project.

Recognizing that a new business processâ!”in this case, historical data analysisâ!”is
emerging gives the enterprise time to make a graceful transition. With such recognition, the
short-term accumulation of transactions while an appropriate data analysis process and
supporting architecture is being developed will probably be acceptable. This allows the
business to begin reaping value from the data while the data warehouse is put into place
without excessive deterioration of the operational data store performance.

It is important to recognize that new functionality often indicates the emergence of new
roles. You, as an architect, must continually be on the lookout for such indications. When
you recognize the emergence of a new role, it is your responsibility to determine the
appropriate home for this new role. The key here is to ensure that you remain involved in
the evolution of the business processes and systems so that you can observe the
emergence of new roles and evolve the architecture accordingly. You must watch
databases, in particular. They are particularly vulnerable to expedient-driven growth that
muddies their business purpose.

The consequences of expedient-driven database growth often do not become apparent until
site disaster recovery is considered. Then it becomes apparent that there is some data in
the database (current order information) that cannot be lost and therefore must be kept
synchronized at the recovery site in real time or near real time. At the same time, there is
other data (data warehouse information) that is less critical. The enterprise can actually
tolerate a small level of data loss in this information during the unlikely event of a site
disaster recovery.

The dilemma this mixed utilization presents is that real-time data synchronization is
expensive, and that expense is proportional to the amount of data being synchronized.
Real-time data synchronization impacts application performance and requires costly inter-
site network bandwidth, not to mention the cost of the software and hardware required.
Periodic synchronization, on the other hand, is transparent to applications and relatively
inexpensive. The presence of both types of data in the same database creates a massive
design problem for which there is no happy solution. Either all data is replicated in real time
(imposing the performance and cost penalties on all applications updating data), or a hand-
crafted mixed-mode synchronization strategy must be devised. Such strategies are complex
to design, expensive to implement, and nearly impossible to test. And an untested failover
is unlikely to actually work.

These two examples illustrate the need to have well-defined component roles. One of your
chief challenges as an architect is to ensure that component roles remain clearly defined in
the face of business processes and systems evolution. Ignore this challenge, or do it poorly,
and your architecture will become a chewing gum and bailing wire concoction that is fragile,
inflexible, and costly to maintain. Keep roles clearly defined and your architecture will be
able to evolve gracefully, efficiently, and cost-effectively.

Collaborative Behavior

The components of an architecture are not isolated from one another, and their mere ability
to perform certain functions does not, by itself, satisfy their business purpose. The
components must collaborate together to make this happen. Furthermore, it is not until you
examine this collaboration that you can understand whether your architecture effectively
supports the business processâ!”or inhibits it.

Activities

Understanding collaboration begins with understanding activities. An activity is a function
performed by one or more agents that uses one or more inputs and produces one or more
results (Figure 2-4). The activity's inputs include the event that triggers the performance of
the activity, and for some activities this event may be the only input. The results of an
activity include its completion status, and for some activities this may be the only result.

Figure 2-4. Activity Structure

How does this apply to building architecture? You probably think it strange to talk about the
spaces of a building being participants in activities. After all, people are the primary agents
in most of the activities that take place in buildings. However, buildings actually do
contribute to the activities that take place within them. Your kitchen, for example, provides
heat, light, running water, drains, refrigeration, heating elements, and storage spaces.
These are secondary agents for performing activities. But buildings can provide primary
agents as well. Your dishwasher completely automates the function of washing the dishes,
although it does not load the dishwasher or put the dishes away. If you stop and think
about it, as buildings become more sophisticated, they play increasingly important agent
roles in the activities they support.

The role of business systems as agents in business processes is a bit more obvious, but
people play prominent agent roles as well. The mix, of course, varies depending upon the
degree of automation in the business process. If you purchase a piece of software and take
delivery online, the entire transaction is being handled by the business systems. You are the

only human participant in the process. Hiring an employee, on the other hand, tends to
involve many people who work in conjunction with a number of business systems to bring
the new person on board and provision them to play their role as an employee.

Objects

The inputs, results, and agents associated with an activity are all objects (things) of one
sort or another (Figure 2-5).[1] Lumping agents with inputs and outputs may seem a bit odd
until you consider that some activities have inputs or results that are agents for other
activities.

[1] Don't confuse the term object here with the programming language conceptâ!”objects in this context
are simply things.

Figure 2-5. Objects and Activities

For example, the activities of hiring employees, making tools, and implementing information
systems all produce results that then become agents for other activities.

Another important relationship involving objects is ownership. Ownership is not a structural
relationship between objects, but rather a responsibility relationship. The sales order
management system owns (is responsible for) sales orders. The warehouse management
system owns (is responsible for) the inventory in the warehouse.

Ownership implies management responsibility. The owning object is responsible for (and
therefore needs to control) the objects that it owns. This has implications for systems
design. The sales order management system owns the data in its underlying database. To
carry out this responsibility, access to the underlying data needs to be under the control of
the order management system. Changes to the underlying data must be managed by the
order management system so that it can enforce the business rules associated with altering
the data. The implication is that if other participants are going to change the data, the order
management system must provide interfaces so that other participants can ask it to make
the required changes. The order management system becomes a service provider.

Ownership tends to be one of those relationships that is not very clearly defined in business
systems. Pieces of information (the most commonly owned objects in business systems)
tend to be replicated haphazardly in various systems. Many organizations struggle to simply
identify the system of record for pieces of informationâ!”the one truly accurate copy. The

problem this presents is that you can't manage something you don't control, and the value
added for most business services is all about management. A sales order management
service that cannot guarantee the accuracy of the sales order information isn't worth
anything. For this reason, the identification of ownership relationships is an important
aspect of architecture.

Communications

Activities are related to one another through the objects involved in their execution. The
most common relationship is that one activity produces a result that is an input to another
activity. This is called a producer-consumer relationship. Generally, when the same agent is
responsible for carrying out both activities, you tend to ignore (from an architectural
perspective) the details of how that result gets to the next activity. You leave that up to the
designer of the agent that will carry out the activities. However, when the two activities are
being carried out by different agents, communication between those agents is required to
convey the results of one agent's activity to the next agent.

Communication itself is a specialized form of activity (Figure 2-6). A communication has at
least two agents, the Sender and Recipient, and one or more items that are delivered by
the activity. There may be a number of intermediary agents involved in delivering the items,
and some address information as well. When you send a letter, the postal service serves as
the intermediary and the address on the envelope tells the service where to deliver the
letter. The envelope itself contains the items to be delivered. When you send an e-mail, you
have a similar scenario, with the e-mail servers and networks being the intermediaries.

Figure 2-6. Structure of a Communication

Business Processes

Armed with the notions of activity, object, and communication, you can now model the
structure of a business process as a collaboration between participants (Figure 2-7). This

model makes a somewhat artificial distinction between the objects that play the role of
agent, which from now on I will refer to as participants, and the objects that are the inputs
and outputs of activities, which I will continue to refer to as objects. This distinction is valid
for most business processes because with respect to a specific business process, each
object tends to be either an active participant (a performer of activities) or a passive object
involved in the activity. Even the hiring of a new employee fits this model, with the new
employee truly being a participant and the inputs and outputs of the activities being the
paperwork, records, and system configuration changes that result from the process.

Figure 2-7. Business Process

[View full size image]

Another somewhat artificial distinction in this model is the differentiation between
communications and other kinds of activities. This separation distinguishes the functional
responsibilities of an individual participant (the activities for which it is the sole agent) from
the communications between the participants.

Figure 2-8 shows an example of an order-to-cash business process for an online merchant.
Here you can see the participants along with their activities and communications. This UML
activity diagram notation enables you to clearly show the structure of a business process. It
shows the participants in the process, the individual activities they perform, the
communications between them, and the objects being conveyed in the communications.

Figure 2-8. Order-to-Cash Business Process Normal Execution

[View full size image]

At this point it should be very clear that the components of an architecture do not live in
isolation. On the contrary, their suitability for their intended purpose depends entirely upon
their ability to collaborate with one another to bring business processes to life. You can't
evaluate this abilityâ!”and therefore cannot evaluate your architectureâ!”without
understanding the required collaboration and the nature of the activities and
communications involved. You have to understand the business processes that are being
supported and how the architectural components participate in those processes.

Total Architecture

Putting it all together, combining the concepts of structural organization, functional
organization, and collaborative behavior, you arrive at the understanding of total
architecture depicted in Figure 2-9. In this representation you can clearly see that the
participants in the business processes are a combination of system components and
organizational units, each of which may have their own substructure. The business process
produces, consumes, and communicates objects that may be either informational elements
or physical objects, both of which may have substructure as well. A complete description of
an architecture must address the total architecture in its entirety.

Figure 2-9. Total Architecture

[View full size image]

However, while a complete architectural description must characterize all of this structure,
you as an architect may not be responsible for defining it all. For example, business
processes are commonly defined by the business stakeholders from the perspective of the
human participants. These business process definitions indicate which activities are being
performed by the systems, but not necessarily by which systems components. Your
responsibility as a systems architect is to identify which systems components are
performing those activities and further detail the activities and objects involved. Your job,
then, is to ensure that the total architecture picture is clear, the collaborations will actually
work, and the implementation can be accomplished within the cost and schedule guidelines.

Nonfunctional Requirements

To completely characterize a business process, you need to go beyond the activities and
consider what are commonly referred to as the nonfunctional requirements, which are also
referred to as quality attributes. This catch-all category includes all of the constraints that
the business process must satisfy to ensure that it meets the business requirements,
constraints such as the rate at which the business process must execute and the time frame
in which the results are expected. Any constraint that the business process must satisfy
constitutes a nonfunctional requirement.

From the nonfunctional requirements for the overall business process you can determine the
nonfunctional requirements for the individual participants in the processâ!”but only after
you have defined the collaborative behavior that brings the business process to life. Given a
requirement that orders are being received at a particular rate and must be shipped within
a day of order receipt, you can use your understanding of the collaborative behavior shown
in Figure 2-8 to determine what each participant must be able to do to satisfy those
requirements.

Translating nonfunctional business process requirements to nonfunctional participant
requirements often requires some analysis and some design decisions. If you expect 10,000
orders a day and the warehouse is a single-shift operation, then the warehouse must be
able to pack and ship 10,000 orders in an eight-hour period. If the business process
requires that the confirmation of the order takes no longer than 30 seconds, then the credit
check and inventory check operations need to be completed within this time frame. As an
architect, part of your responsibility is to budget this time and establish response-time
service-level agreement (SLA) requirements for the warehouse management system and
credit-checking services.

Refinement

At this point you may be saying to yourself that defining a collaboration sounds more like
design than architectureâ!”and you may be wondering what the difference is after all. This
understandable confusion arises because architecture and design are the same kind of
activity. They differ only in their level of detail. You can think about architecture and design
as two points along a continuous spectrum of refinement that ranges from concept to
operation (Figure 2-10). Movement along this spectrum represents the process of
refinement.

Figure 2-10. Refinement

The New Oxford American Dictionary defines refinement as "the improvement or
clarification of something by the making of small changes."[2] To make this definition work
for architecture, I need to add a clarification: After an architecture has been defined,
refinement cannot alter the architecture; it can only add detail. The reason for this
restriction is that you want to ensure that any reasoning that you have done about the
architecture prior to refinement remains valid after the refinement. If a change to the
architecture becomes necessary, youâ!”the architectâ!”must be involved.

[2] Elizabeth J. Jewell, Frank Abate, and Erin McKean. 2005. The New Oxford American Dictionary. New
York, NY: Oxford University Press, p. 1423.

For example, consider the model of an order shown in Figure 2-11. This model is typical of
the architectural specification you would expect for the order being communicated between
the browser and the sales management system in Figure 2-8. Any specific
representation of the order that contains all of the information in the model constitutes a
proper refinement of the order. The refinement could, for example, indicate that the name
consists of three fields containing the person's first, middle, and last name respectively.
Similarly, an address representation consisting of street address, city, state, country, and
postal code would also be a refinement. In contrast, a representation that omitted any of
the information in the model or added additional information (such as the customer's e-mail
address) would not be considered a refinement.

Figure 2-11. Class Model of an Order

The Role of the Architect

The notion of refinement is an important one in architecture. The architect's job is to
identify the components of the system and specify the components in sufficient detail that
any proper refinement of the architecture will lead to a successful implementation. The
architect adds only enough detail to be confident that if different design teams implement
(refine) different components, the components will still collaborate properly to bring the
business processes to life. Implementations that are not strict refinements are alterations to
the architecture and require the architect's review and approval.

An architectural specification must, at a minimum, provide the following information:

1. An identification of each type of participant required (whether a system component
or organizational unit).

2. A specification for each system component, including the information and physical
objects owned by the component, a detailed specification of each interface, and a
specification of the component's externally observable behavior. Optionally, the
architect may choose to further constrain the internal architecture of the component.

3. A specification for each organizational participant detailing the information and
physical objects owned by the organizational unit, the movement of information and
physical objects to and from that participant, and the characterization of the
observable behavior of the participant.

4. A detailed specification of each communication and communication mechanism.

5. A specification of the geographic deployment of the participants including the number
and type of each participant at each location and the connectivity between the
participants and between the locations.

6. A description of the collaboration of the participants that indicates how the
collaboration satisfies the business need.

Enterprise Architecture

Characterizing an architecture by describing how it supports business processes seems to
present a dilemma when you look at architecture from the enterprise perspective. There are
many business processes in your enterprise, and the future will bring business processes
you haven't even thought of yet. How do you define an architecture for the enterprise under
such circumstances?

Architecture Styles

A commonly used but ultimately unsatisfactory approach is to completely ignore
collaborative behavior and focus entirely on specifying the structural organization and a few
principles of functional organization. You've already seen a couple of examples back in
Figure 2-2 that sketched client-server and 3-tier application architectures.

Architecture styles generally describe the structure of an architecture and provide a set of
principles for determining which type of functionality belongs in each portion of the
structure. The Client-Server Application Architecture style of Figure 2-2 partitions an
application into server components that are responsible for data management and client
components that are responsible for business logic and user interface. The 3-Tier
Application Architecture style in the same figure partitions the application into three
components, essentially separating the Client of the Client-Server style into a user interface
presentation layer and a business logic layer.

Of course enterprise architectures involve more than one application, and immediately you
begin to see one of the limitations of this approach. When there is more than one
application, application architecture styles do not provide any guidance regarding what
functionality belongs in one application versus another, nor do they provide any guidance as
to how, when, and why those applications ought to communicate with one other.

The enterprise version of an architecture style generally looks something like Figure 2-12.
Here you see the enterprise characterized as a collection of applications that share a
common communications service. There has been some evolution in this picture as the
communications service has evolved from a raw network to what is now loosely called an
enterprise service bus, but the principles remain the sameâ!”as do the weaknesses. There
is no guidance in this style about which functionality belongs in which applications, nor is
there any guidance surrounding when applications should communicate. In other words,
there is no guidance around collaboration.

Figure 2-12. Distributed System Architecture Style

Guidance on collaboration is essential. Poorly conceived collaborations will not satisfy
business needs. To illustrate this, consider the two functional assignment alternatives shown
in Figure 2-13. Now ask yourself which of the two functional responsibility assignments for
activity 2 is preferable.

Figure 2-13. Functional Assignment Alternatives

[View full size image]

This type of question arises whenever you consider making an activity a part of a service.

You might, for example, be considering making activity 2 into a service performed by
participant Bâ!”the service provider. Is this a good idea or not?

Well, what if activity 2 were a trivial operationâ!”say subtraction. Does it make sense
for participant A to package two numbers as a message, send them to participant
B, and then wait for participant B to compute the answer, package up the answer, and
send it back? Probably not. The overhead of the communication and the delays involved far
exceed the cost of performing the subtraction operation in participant A. Making it into
a service would not be efficient.

Now consider the opposite extreme. activity 2 is an operation that generates a huge
data set as a result, and activity 3 analyzes that data set and reduces it to a simple
yes/no answer. Does it make sense to have activity 2 performed by another participant
and incur the cost of having to move that huge data set from participant B back to
participant A? Or would it make more sense to have participant A perform both
activities and save the communications costs?

To answer these questions, you need to have some understanding of the nature of the
activities and the size of the results. In other words, you need to understand something
about the business process and the pattern of collaboration in order to determine whether a
particular set of functional assignments makes sense. And herein you find the key to
enterprise architecture: patterns.

Patterns

A pattern is a style of describing a solution to a problem. In the words of Christopher
Alexander, "Each pattern describes a problem which occurs over and over again in the
environment, and then describes the core of the solution to that problem, in such a way
that you can use the solution a million times over, without ever doing it the same way
twice."[3]

[3] Alexander, Christopher, Sara Ishikawa, and Murray Silverstein. 1977. A Pattern Language: Towns â!¢
Buildings â!¢ Construction. New York, NY: Oxford University Press, p. x.

If you examine the business processes in your enterprise, you will find that the majority of
the collaborations in these business processes follow a relatively small number of patterns.
For example, a customer uses a web browser to interact with an application server and
execute a transaction in a particular back-office system. Any number of business processes
might use this pattern. Enterprise architecture amounts to identifying those patterns and
defining the structure, functional organization, and collaboration to be used when
implementing those patterns.

You will find patterns at many different levels of abstraction in your enterprise architecture.
High-level collaboration patterns that define business processes are refined through the
application of lower-level patterns. This book is essentially a walk through the family of
patterns needed to address distributed systems design in the enterprise. For enterprise
business systems, it provides the equivalent of Alexander's pattern language for
characterizing towns, buildings, and construction.[4] The patterns in this book fall into the
following categories:

[4] Ibid. pp. xviiâ!“xxxiv

Collaboration patterns: Parts II and III

Communications Patterns: Part IV

Data Patterns: Part V

Coordination Patterns: Part VI

HA, FT, and LD Patterns: Part VII

Security Patterns: Part VIII

Monitoring Patterns: Part VIII

These patterns are presented in a suggested sequence of refinement. If you address the
design issues in this sequence, it is most likely that you will be able to address each issue
through refinementâ!”using the selected pattern to add detail to the current architectural
description. This sequencing will minimize the likelihood of having to alter a design decision
after it has been made, and thus lead to an efficient design process.

Summary

Architecture is structure related to purpose. In the enterprise, this purpose is to support the
business processes that make the enterprise work. Your understanding of the business
processes is an essential prerequisite to creating an architecture. In fact, the business
process itself defines the collaboration of peoples and systems required to execute the
business process, and this collaboration definition is actually part of the architecture. It is
through understanding of this collaboration that you become aware of the responsibilities of
and the requirements for the people and systems involved. Understanding this collaboration
also makes it possible to derive the nonfunctional requirements for the individual
participants from those of the overall business process. This derivation ensures that the
collaboration will be capable of satisfying the business process's overall nonfunctional
requirements.

Architecture is high-level design. The goal is to specify that design in such a way that the
design can be driven to implementation through a process of refinementâ!”adding detail
without altering the design. To accomplish this, a total architecture definition must:

1. Identify all participants (distinct entities) involved in the business process, whether
human or machine.

2. Specify each system component.

3. Specify component interactions with human participants.

4. Specify each communication and communication mechanism.

5. Specify the geographic deployment of the participants and the connectivity among
them.

6. Specify how the participants collaborate to satisfy the business need.

Architectures evolve over time as changing business processes require new functionality and
added capacity. Care must be taken to ensure that these changes are made in a coherent
and consistent manner, and that the resulting architecture remains robust and flexible. This
requires the maintenance of current-state architecture and business process definitions so
that the architectural impact of proposed changes can be readily assessed.

The collaborations defined by business processes require added detail before they can be
implemented. Design issues related to communications, data, coordination, fault tolerance,
high availability, load distribution, security, and monitoring must all be addressed before the
individual components and services can be implemented.

If individual projects are left to their own devices to address these design issues, the result
is liable to be a hodge-podge of solutions and technologies that will drive up the complexity
and cost of systems development. Avoiding this problem requires a proactive enterprise
architecture group that defines enterprise-standard design patterns for addressing design
issues.

Key Architecture Fundamentals Questions

1. Does your architecture documentation identify all participants in the
solution, both human and machine?

2. Does your architecture documentation define the functional responsibilities
of the participants and the manner in which they collaborate to satisfy the
business needs?

3. Do you maintain current documentation of both your architecture and your
business processes?

4. Are the nonfunctional requirements for participants derived from the
nonfunctional requirements of the business processes they participate in? Is
the derivation included in your architecture documentation?

5. Does your enterprise architecture group define, teach, and evolve the
design patterns for high-level collaborations found in your business
processes?

6. Does your enterprise architecture group define, teach, and evolve the
design patterns to solve communications, data, coordination, fault
tolerance, high availability, load distribution, security, and monitoring
problems found in your enterprise?

Suggested Reading

Alexander, Christopher, Sara Ishikawa, and Murray Silverstein. 1977. A Pattern Language:
Towns â!¢ Buildings â!¢ Construction. New York, NY: Oxford University Press.

Buschmann, Frank, Regine Meunier, Hans Hohnert, Peter Sommerlad, and Michael Stal.
1996. Pattern-Oriented Software Architecture: A System of Patterns. Chichester: John Wiley
and Sons.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns:
Elements of Reusable Object-Oriented Software. Upper Saddle River, NJ: Addison-Wesley.

Shaw, Mary and David Garlan. 1996. Software Architecture: Perspectives on an Emerging
Discipline. Upper Saddle River, NJ: Prentice Hall.

Chapter 3. Service Fundamentals
A business process (or any process, for that matter) is an organized set of tasks. Executing
the business process is a matter of coordinating the execution of these tasks. The idea
behind a service-oriented architecture (SOA) is to have the individual tasks performed by
specialized components called services. The work of these services is then coordinated to
bring the business process to life. What differentiates the SOA approach is that each service
is designed for convenient reuse. If another business process requires the same task to be
performed, it employs the existing serviceâ!”the same service that was used to support the
original business process.

What Is a Service?

A service is a well-defined unit of work performed by a component and packaged for easy
access. The idea is to implement the functionality exactly once, do it well, and then make it
widely accessible. The extra effort involved in initially creating the service (and there is
always extra effort) is paid for by avoiding future development costs either through the
direct reuse of the service or by isolating the service user from ongoing internal
implementation changes within the service.

Operations

The tasks performed by a service are its operations. You can think of a service as a bundle
of closely related operations (Figure 3-1). The simplest operations are, in the mathematical
sense, pure functionsâ!”they take inputs and produce outputs that are solely based on the
inputs. For example, they take two numbers and add or subtract them.

Figure 3-1. Basic Service

However, addition and subtraction are so simple that they are actually not good candidates
for service operationsâ!”at least when the service user is a computer. This becomes
apparent when you realize that the operation is actually being performed by another
component with communications involved (Figure 3-2). In the case of addition and
subtraction, the overhead of communicating with the service provider to invoke these
operations is so much greater than the service user's cost of executing the operations that
it just doesn't make sense. So one of the tradeoffs in deciding what ought to be a service

begins to emerge: the granularity of the work versus the communications costs.

Figure 3-2. Simple Service Utilization Example

Service operations that are pure mathematical functions do exist, but they are not common.
Two examples that often begin their lives as purely functional concepts are data
transformations and rule evaluations. A data transformation takes one data structure and
reorganizes its data elements into another data structure. A purely functional business rule
takes in one or more data structures and generates output structures containing conclusions
about the input data.

Referenced Objects

In reality, data transformations and rule evaluations commonly require some form of
reference data. Data transformations frequently perform lookups and substitutions on the
data. One system's identifiers in the input data structure need to be replaced with another
system's identifiers in the output data structure. To support this, a cross-reference table is
needed that maps one system's identifiers to the other system's identifiers. Data
transformations often convert monetary values given in one currency to values in another
currency. To support this, a currency exchange table is needed.

Rules often require reference data as well. Consider the rules governing the access to
business banking accounts. A business rule might state, "Permission to perform operations
on this account is granted if the person requesting the operation is either the person owning
the account or a superior of that person." Executing this rule obviously requires some
information about the placement of individuals within an organization structure. This is
reference data.

To keep an operation in its purely functional form, the user of the operation would have to
access the reference data prior to invoking the operation. The user would have to look up
the other system's identifiers, map dollars to euros, and explore the organizational structure
of the people involved in the transaction. Logically, however, these additional tasks belong
with the operation. The operation now evolves beyond being a simple mathematical
function to include the use of reference data.

The idea that operations can reference things goes beyond simply referencing data. Some
service operations may reference physical objects as well: an individual person, an
automobile, an aircraft, a package, or a building. In general, many service operations will
reference objects in the process of performing their operations (Figure 3-3). But these
objects are not part of the service. The service does not manage these objectsâ!”it only
references them. Thus, these objects lie outside the scope of the service.

Figure 3-3. A Service with Referenced Objects

Owned Objects

Some services exist specifically to manage objects. In fact, the core functionality of most
business processes revolves around the management of objects such as sales orders,
shipments, and warehouse inventory. If you want to assemble such business processes
from services, then you need to organize services that manage objects. Management
implies complete control, and the only way to guarantee complete control over an object is
for the service to own it. Now you have services that own some objects and merely
reference others. You need to clearly distinguish between the objects that the service owns
and manages, and those objects that it merely references (Figure 3-4). And herein lies one
of the major challenges in service designâ!”clearly establishing the ownership of objects.

Figure 3-4. Structure of a Service with Owned Objects and Referenced Object

[View full size image]

Consider an SOA approach to building an order-to-cash business process. Figure 3-5 shows

some initial concepts for some of the services you might want. In this conceptualization, the
Sales Order Service manages the information specifically related to individual sales
orders, the Product Information Service manages the information about the products
being offered, and the Customer Information Service keeps track of information
about the individual customers. So far, so good.

Figure 3-5. Initial Service Concepts Supporting an Order-to-Cash Business Process

Now take a look at the inherent structure of the data (Figure 3-6). Some of the classes
clearly belong to a specific service. Sales Order and Sales Order Line Item
obviously belong to the Sales Order Service. Likewise, Product belongs to the
Product Information Service and Customer belongs to the Customer
Information Service. But what about Address and Phone? Even more challenging,
what about the relationship between Sales Order and Customer, and between Sales
Order Line Item and Product? Which services own these?

Figure 3-6. Information Related to Sales Orders

[View full size image]

Such questions are the crux of service design and comprise a major challenge in evolving
from a design centered around a single monolithic database to a design involving
distributed services, each managing a subset of the data. The ownership of Address and
Phone is fairly straightforward. As a class (i.e., a concept), neither is uniquely owned by
any specific service. Instead, each service owns specific instances of these classes that play
particular roles with respect to the other objects that are owned by the service. For
example, the Sales Order Service owns the shippingAddress, billingAddress,
and contactPhone, while the Customer Information Service owns the
homeAddress, workAddress, defaultShippingAddress, defaultBillingAddress,
homePhone, workPhone, and cellPhone. In fact, each service may have different
representations for these objects, although there are benefits to maintaining a uniform
representation of these objects across the services (i.e., a common data model), particularly
in their interfaces.

Owning Relationships

Determining the ownership of relationships presents more of a challenge. Defining a
relationship requires referencing the objects at both ends of the relationship. How do you
represent a relationship when one of these objects is owned by one service and the other
by another service? The Sales Order Service needs to know who the customer is for

the order, but it is not the owner of the Customer object. How exactly do you do that?

One approach is to add some of the needed customer data to the Sales Order Service
and have this service manage this customer data. However, now you've lost the advantage
of having a Customer Information Service that manages all of the customer data.
How do you update customer data and keep it consistent when there is customer data
present in more than one service? This is exactly the type of problem you are seeking to
avoid with a SOA.

Another approach is to keep a bare-bones reference to the customerâ!”just the
customerIDâ!”in the Sales Order Service. This is simpler and less risky, for
identifiers are generally not edited after they have been created. However, this approach
presents its own issues. First, if you want to print out or display the order with the
customer name or other customer information, the Sales Order Service has to go to
the Customer Information Service to obtain the information. From a performance
perspective, the delays in such retrieval may not be acceptable, and it may not be practical
for the Customer Information Service to support this type of query load. Second, you
won't be able to delete a customer from the Customer Information Service without
first determining whether there are any remaining references to that customer (i.e.,
instances of the customerID) in any other service. Otherwise, deleting the Customer
would leave invalid references in the other services. Even worse, recycling the customerID
would actually leave old Sales Orders referencing the wrong customer.

Don't get the wrong impression here. These issues do have eminently practical resolutions.
The point is that you have to dig down into the structure and ownership of the data (and
other managed objects) in order to clearly define the scope of each service. As you dig and
define ownership, your concept for each service is likely to evolve. Continuing this example
will illustrate the evolution.

Assume that, for performance reasons, the Sales Order Service must have the
customer's name readily available. Also for performance reasons, it must have the product
name available. Figure 3-7 shows the resulting logical data model for the Sales Order
Service. Note that you need an understanding of the service's intended utilization to
conclude that this information needs to be present in the Sales Order Service!

Figure 3-7. Logical Data Model for Sales Order Service

This data model clearly resolves the issue of owning the relationships: The relationship
between the Sales Order and the Customer is owned by the Sales Order Service,
as is the relationship between Sales Order Line Item and Product. But now you are
left with copies of this data in the Sales Order Serviceâ!”data for which the service is
not the owner. How do you manage this data?

Managing Cached Information

The solution for maintaining the accuracy of replicated data is to treat it as a cached copy of
the original. This involves establishing a single service as the system-of-record for the
original data and adding subscription operations to notify others of changes to the original
data. Services that maintain copies of the information subscribe to this service and update
their local copies when the data changes.

Figure 3-8 shows the modified conceptualization of the services considered earlier. The
Sales Order Service (the service containing the cached information) subscribes to the
change notification service of each of the other services for which it holds cached data. The
Product Information Service provides a
subscribeToProductChangeNotification subscription operation and a corresponding
productInformationHasChanged notification operation. The Customer Information
Service provides the subscribeToCustomerChangeNotification and
customerInformationHasChanged operations.

Figure 3-8. Extended Services

[View full size image]

The placement of the productInformationHasChanged and
customerInformationHasChanged operations may seem a bit strange at first. These are
the operations that are called by the subscription service when changes occur. Intuitively,
you would expect these operations to be on the service that receives the change notification
(i.e., the Sales Order Service), since it is the one responding to the notifications.
However, it is the subscription service itself that actually defines the operation interface,
including the data that is passed when it is called. For this reason, the operation is shown
as part of the subscription service. These notification operations are examples of the
proposed WSDL Out-Only message exchange pattern.[1]

[1] W3C (World Wide Web Consortium). March 2004. "Web Services Description Language (WSDL)
Version 2.0 Part 2: Message Exchange Patterns." W3C Working Draft 26. www.w3.org/TR/2004/WD-
wsdl20-patterns-20040326.

It may take a bit of thought to get comfortable with the Out-Only message exchange
pattern, but it is an important one. The subscription service defines the interface (the

notification interface), but this interface is not called by another component. Instead, the
interface is called by the subscription service itself and causes a message to be sent to the
subscribing component. It is as if the notification operation were part of the subscribing
component's interface.

The subscription paradigm provides a means for the subscription service to send
notifications to other components without having to know anything specific about the
notification recipients. The only thing the subscription service knows (or assumes, at least)
is that all recipients have implemented the notification interface. This leads to a degree of
independenceâ!”decouplingâ!”between the subscription service and the components being
notified, but does not necessarily lead to complete independence.

When a service contains cached information from another service that cannot be arbitrarily
deleted, it has a dependency on the system-of-record service that provides the information.
In this example, the order would not make a lot of sense if the customer or the product
information were deleted. Thus the Sales Order Service depends upon the Customer
Information Service and the Product Information Service not to delete
information that it is currently using.

The existence of such dependencies usually becomes clear when you consider the impact of
purgingâ!”permanently deletingâ!”information. In a practical system, the removal of
customer and product information requires coordination with the Sales Order Service
so that orders don't end up missing customers or products. You may find yourself with a
purge strategy that starts with removing old orders and then proceeds to remove old
customers and old products. To ensure that you are not deleting customers and products
for which there are still active orders, you may want to add operations on the Sales Order
Service to find orders related to a particular customer or product. Alternatively, you may
not want to delete old customers or products at all; instead, simply mark them as inactive
in the system-of-record. Of course, eventually you are going to need to do a purge anyway
as the accumulating information will degrade performance and stress physical storage
limits.

As this example illustrates, defining services requires that you rationalize the structure and
ownership of data as well as functionality. You can't just wrap a poorly organized database
with services and expect to have well-defined and easy-to-manage services. Put lipstick on
a pig and you still have a pig! Designing services requires teasing data apart for
manageability and establishing clear ownership for both objects and relationships.

When one service references objects owned by another service, you will likely have to add
operations to manage replicated data. The full lifecycle of referenced objects, from creation
through modification and destruction, needs to be considered. If arbitrary purges of
referenced objects cannot be allowed, then you must document this dependency, describe
the required object management, and add the required operations to the services.

Chapter 3. Service Fundamentals
A business process (or any process, for that matter) is an organized set of tasks. Executing
the business process is a matter of coordinating the execution of these tasks. The idea
behind a service-oriented architecture (SOA) is to have the individual tasks performed by
specialized components called services. The work of these services is then coordinated to
bring the business process to life. What differentiates the SOA approach is that each service
is designed for convenient reuse. If another business process requires the same task to be
performed, it employs the existing serviceâ!”the same service that was used to support the
original business process.

What Is a Service?

A service is a well-defined unit of work performed by a component and packaged for easy
access. The idea is to implement the functionality exactly once, do it well, and then make it
widely accessible. The extra effort involved in initially creating the service (and there is
always extra effort) is paid for by avoiding future development costs either through the
direct reuse of the service or by isolating the service user from ongoing internal
implementation changes within the service.

Operations

The tasks performed by a service are its operations. You can think of a service as a bundle
of closely related operations (Figure 3-1). The simplest operations are, in the mathematical
sense, pure functionsâ!”they take inputs and produce outputs that are solely based on the
inputs. For example, they take two numbers and add or subtract them.

Figure 3-1. Basic Service

However, addition and subtraction are so simple that they are actually not good candidates
for service operationsâ!”at least when the service user is a computer. This becomes
apparent when you realize that the operation is actually being performed by another
component with communications involved (Figure 3-2). In the case of addition and
subtraction, the overhead of communicating with the service provider to invoke these
operations is so much greater than the service user's cost of executing the operations that
it just doesn't make sense. So one of the tradeoffs in deciding what ought to be a service

begins to emerge: the granularity of the work versus the communications costs.

Figure 3-2. Simple Service Utilization Example

Service operations that are pure mathematical functions do exist, but they are not common.
Two examples that often begin their lives as purely functional concepts are data
transformations and rule evaluations. A data transformation takes one data structure and
reorganizes its data elements into another data structure. A purely functional business rule
takes in one or more data structures and generates output structures containing conclusions
about the input data.

Referenced Objects

In reality, data transformations and rule evaluations commonly require some form of
reference data. Data transformations frequently perform lookups and substitutions on the
data. One system's identifiers in the input data structure need to be replaced with another
system's identifiers in the output data structure. To support this, a cross-reference table is
needed that maps one system's identifiers to the other system's identifiers. Data
transformations often convert monetary values given in one currency to values in another
currency. To support this, a currency exchange table is needed.

Rules often require reference data as well. Consider the rules governing the access to
business banking accounts. A business rule might state, "Permission to perform operations
on this account is granted if the person requesting the operation is either the person owning
the account or a superior of that person." Executing this rule obviously requires some
information about the placement of individuals within an organization structure. This is
reference data.

To keep an operation in its purely functional form, the user of the operation would have to
access the reference data prior to invoking the operation. The user would have to look up
the other system's identifiers, map dollars to euros, and explore the organizational structure
of the people involved in the transaction. Logically, however, these additional tasks belong
with the operation. The operation now evolves beyond being a simple mathematical
function to include the use of reference data.

The idea that operations can reference things goes beyond simply referencing data. Some
service operations may reference physical objects as well: an individual person, an
automobile, an aircraft, a package, or a building. In general, many service operations will
reference objects in the process of performing their operations (Figure 3-3). But these
objects are not part of the service. The service does not manage these objectsâ!”it only
references them. Thus, these objects lie outside the scope of the service.

Figure 3-3. A Service with Referenced Objects

Owned Objects

Some services exist specifically to manage objects. In fact, the core functionality of most
business processes revolves around the management of objects such as sales orders,
shipments, and warehouse inventory. If you want to assemble such business processes
from services, then you need to organize services that manage objects. Management
implies complete control, and the only way to guarantee complete control over an object is
for the service to own it. Now you have services that own some objects and merely
reference others. You need to clearly distinguish between the objects that the service owns
and manages, and those objects that it merely references (Figure 3-4). And herein lies one
of the major challenges in service designâ!”clearly establishing the ownership of objects.

Figure 3-4. Structure of a Service with Owned Objects and Referenced Object

[View full size image]

Consider an SOA approach to building an order-to-cash business process. Figure 3-5 shows

some initial concepts for some of the services you might want. In this conceptualization, the
Sales Order Service manages the information specifically related to individual sales
orders, the Product Information Service manages the information about the products
being offered, and the Customer Information Service keeps track of information
about the individual customers. So far, so good.

Figure 3-5. Initial Service Concepts Supporting an Order-to-Cash Business Process

Now take a look at the inherent structure of the data (Figure 3-6). Some of the classes
clearly belong to a specific service. Sales Order and Sales Order Line Item
obviously belong to the Sales Order Service. Likewise, Product belongs to the
Product Information Service and Customer belongs to the Customer
Information Service. But what about Address and Phone? Even more challenging,
what about the relationship between Sales Order and Customer, and between Sales
Order Line Item and Product? Which services own these?

Figure 3-6. Information Related to Sales Orders

[View full size image]

Such questions are the crux of service design and comprise a major challenge in evolving
from a design centered around a single monolithic database to a design involving
distributed services, each managing a subset of the data. The ownership of Address and
Phone is fairly straightforward. As a class (i.e., a concept), neither is uniquely owned by
any specific service. Instead, each service owns specific instances of these classes that play
particular roles with respect to the other objects that are owned by the service. For
example, the Sales Order Service owns the shippingAddress, billingAddress,
and contactPhone, while the Customer Information Service owns the
homeAddress, workAddress, defaultShippingAddress, defaultBillingAddress,
homePhone, workPhone, and cellPhone. In fact, each service may have different
representations for these objects, although there are benefits to maintaining a uniform
representation of these objects across the services (i.e., a common data model), particularly
in their interfaces.

Owning Relationships

Determining the ownership of relationships presents more of a challenge. Defining a
relationship requires referencing the objects at both ends of the relationship. How do you
represent a relationship when one of these objects is owned by one service and the other
by another service? The Sales Order Service needs to know who the customer is for

the order, but it is not the owner of the Customer object. How exactly do you do that?

One approach is to add some of the needed customer data to the Sales Order Service
and have this service manage this customer data. However, now you've lost the advantage
of having a Customer Information Service that manages all of the customer data.
How do you update customer data and keep it consistent when there is customer data
present in more than one service? This is exactly the type of problem you are seeking to
avoid with a SOA.

Another approach is to keep a bare-bones reference to the customerâ!”just the
customerIDâ!”in the Sales Order Service. This is simpler and less risky, for
identifiers are generally not edited after they have been created. However, this approach
presents its own issues. First, if you want to print out or display the order with the
customer name or other customer information, the Sales Order Service has to go to
the Customer Information Service to obtain the information. From a performance
perspective, the delays in such retrieval may not be acceptable, and it may not be practical
for the Customer Information Service to support this type of query load. Second, you
won't be able to delete a customer from the Customer Information Service without
first determining whether there are any remaining references to that customer (i.e.,
instances of the customerID) in any other service. Otherwise, deleting the Customer
would leave invalid references in the other services. Even worse, recycling the customerID
would actually leave old Sales Orders referencing the wrong customer.

Don't get the wrong impression here. These issues do have eminently practical resolutions.
The point is that you have to dig down into the structure and ownership of the data (and
other managed objects) in order to clearly define the scope of each service. As you dig and
define ownership, your concept for each service is likely to evolve. Continuing this example
will illustrate the evolution.

Assume that, for performance reasons, the Sales Order Service must have the
customer's name readily available. Also for performance reasons, it must have the product
name available. Figure 3-7 shows the resulting logical data model for the Sales Order
Service. Note that you need an understanding of the service's intended utilization to
conclude that this information needs to be present in the Sales Order Service!

Figure 3-7. Logical Data Model for Sales Order Service

This data model clearly resolves the issue of owning the relationships: The relationship
between the Sales Order and the Customer is owned by the Sales Order Service,
as is the relationship between Sales Order Line Item and Product. But now you are
left with copies of this data in the Sales Order Serviceâ!”data for which the service is
not the owner. How do you manage this data?

Managing Cached Information

The solution for maintaining the accuracy of replicated data is to treat it as a cached copy of
the original. This involves establishing a single service as the system-of-record for the
original data and adding subscription operations to notify others of changes to the original
data. Services that maintain copies of the information subscribe to this service and update
their local copies when the data changes.

Figure 3-8 shows the modified conceptualization of the services considered earlier. The
Sales Order Service (the service containing the cached information) subscribes to the
change notification service of each of the other services for which it holds cached data. The
Product Information Service provides a
subscribeToProductChangeNotification subscription operation and a corresponding
productInformationHasChanged notification operation. The Customer Information
Service provides the subscribeToCustomerChangeNotification and
customerInformationHasChanged operations.

Figure 3-8. Extended Services

[View full size image]

The placement of the productInformationHasChanged and
customerInformationHasChanged operations may seem a bit strange at first. These are
the operations that are called by the subscription service when changes occur. Intuitively,
you would expect these operations to be on the service that receives the change notification
(i.e., the Sales Order Service), since it is the one responding to the notifications.
However, it is the subscription service itself that actually defines the operation interface,
including the data that is passed when it is called. For this reason, the operation is shown
as part of the subscription service. These notification operations are examples of the
proposed WSDL Out-Only message exchange pattern.[1]

[1] W3C (World Wide Web Consortium). March 2004. "Web Services Description Language (WSDL)
Version 2.0 Part 2: Message Exchange Patterns." W3C Working Draft 26. www.w3.org/TR/2004/WD-
wsdl20-patterns-20040326.

It may take a bit of thought to get comfortable with the Out-Only message exchange
pattern, but it is an important one. The subscription service defines the interface (the

notification interface), but this interface is not called by another component. Instead, the
interface is called by the subscription service itself and causes a message to be sent to the
subscribing component. It is as if the notification operation were part of the subscribing
component's interface.

The subscription paradigm provides a means for the subscription service to send
notifications to other components without having to know anything specific about the
notification recipients. The only thing the subscription service knows (or assumes, at least)
is that all recipients have implemented the notification interface. This leads to a degree of
independenceâ!”decouplingâ!”between the subscription service and the components being
notified, but does not necessarily lead to complete independence.

When a service contains cached information from another service that cannot be arbitrarily
deleted, it has a dependency on the system-of-record service that provides the information.
In this example, the order would not make a lot of sense if the customer or the product
information were deleted. Thus the Sales Order Service depends upon the Customer
Information Service and the Product Information Service not to delete
information that it is currently using.

The existence of such dependencies usually becomes clear when you consider the impact of
purgingâ!”permanently deletingâ!”information. In a practical system, the removal of
customer and product information requires coordination with the Sales Order Service
so that orders don't end up missing customers or products. You may find yourself with a
purge strategy that starts with removing old orders and then proceeds to remove old
customers and old products. To ensure that you are not deleting customers and products
for which there are still active orders, you may want to add operations on the Sales Order
Service to find orders related to a particular customer or product. Alternatively, you may
not want to delete old customers or products at all; instead, simply mark them as inactive
in the system-of-record. Of course, eventually you are going to need to do a purge anyway
as the accumulating information will degrade performance and stress physical storage
limits.

As this example illustrates, defining services requires that you rationalize the structure and
ownership of data as well as functionality. You can't just wrap a poorly organized database
with services and expect to have well-defined and easy-to-manage services. Put lipstick on
a pig and you still have a pig! Designing services requires teasing data apart for
manageability and establishing clear ownership for both objects and relationships.

When one service references objects owned by another service, you will likely have to add
operations to manage replicated data. The full lifecycle of referenced objects, from creation
through modification and destruction, needs to be considered. If arbitrary purges of
referenced objects cannot be allowed, then you must document this dependency, describe
the required object management, and add the required operations to the services.

Service Interfaces

Service users need to be able to access the service operations in order to use them: The
operations require interfaces. To achieve the expected benefits from services, these
interfaces must facilitate convenient access. Your services should be accessible from any
platform and location, and your service providers should be able to run on whatever
platform is most appropriate. To accomplish this, you need to carefully consider the
technologies you use for accessing the services and representing data. You also need to
consider the potential benefits of refining the semantics of the data structures used by the
operations and the operations themselves.

Common Access Technology

When a component directly uses the functionality of another component, it is tied to the
design of that component's interfaces in a number of ways (Figure 3-9). First and foremost,
it is tied to the technology of that interface. If the functionality being accessed is a CICS
transaction on a mainframe, the user must be able to invoke a CICS transaction on a
mainframe. If the functionality is in a Java subroutine, the user must be able to invoke a
Java subroutine. This kind of dependency creates problems for services. If you want your
services to be widely accessible, the technology used for accessing the service interface
must be uniformly available on a wide variety of platforms. This is a fundamental
requirement for all services.

Figure 3-9. Native and Service Interfaces

[View full size image]

Common Data Representation Technology

Most service operations require passing data back and forth. Native interfaces expect this
data to be in the form required by the provider. Depending on the provider, this form might
be a binary representation, text encoded in EBCDIC[2] (Extended Binary Coded Decimal
Interchange Code) or ASCII[3] (American Standard Code for Information Interchange), or a
serialized Java object. The variety of native representations is nearly endless.

[2] www-306.ibm.com/software/globalization/cdra/index.jsp, Appendix A. Encoding Schemes.

[3] ANSI X3.4-1967, American Standard Code for Information Exchange.

Many of these representations are platform-specific. EBCDIC and its variants are the
standard character representations on mainframes, while ASCII and its variants are the
standard character representations on most other platforms. Text representations can also
be specific to the native language of the people using the systems. The basic EBCDIC and
ASCII encodings represent the Roman alphabet as used in English-speaking countries. They
cannot represent the character sets used in other languages. More recent standards such as
Unicode[4] are capable of representing the character sets used in many human languages.

[4] The Unicode Consortium. 2006. The Unicode Standard, Version 5. Upper Saddle River, NJ: Addison
Wesley Professional.

Beyond the issue of simple character representations, applications often have rules
regarding how the data is organized. Often these rules are ad hoc, specifying the format of
individual records and the sequencing of records in a file or message. Understanding and
complying with ad hoc rules is a time-consuming design process for both the provider and
user of the data structures. Recent standards have begun to change this picture. MIME
(Multipurpose Internet Mail Extensions)[5] organize the structure of e-mail messages and
allow for multiple character sets (and non-character data as well) to be employed. HTML
(Hypertext Markup Language)[6] and XML (eXtensible Markup Language)[7] provide
standards for organizing data, and XML schemas provide standard representations for the
rules governing the structure of the data. The use of these standards greatly simplifies the
passing of data.

[5] MIME is defined by a set of standards from the Internet Engineering Task Force (IETF). Part I of these
standards can be found at http://www.ietf.org/rfc/rfc2045.txt.

[6] HTML is a joint standard of the International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC). The current version can be found at
https://www.cs.tcd.ie/15445/15445.HTML.

[7] XML is a specification developed by the World Wide Web Consortium (W3C). Information about the
specification can be found at http://www.w3.org/XML/.

Binary data presents even greater challenges. Binary representations on different platforms
can vary in the ordering of the bytes within a word, with some platforms placing the high-
order (most significant) bytes first and others placing them last. The actual manner in which
the data itself is represented in binary depends upon the type of data being represented
(images, sounds, video, computer programs). Even for one type of data, there are often
multiple binary representations in use. Some of these representations have become
standards.

Too many variations in data representation complicate the exchange of data between the
user and provider. Because of this, it is common practice in establishing a service-oriented
architecture to standardize the technologies used to represent data being transported
across service interfaces. XML has emerged as the representation of choice for textual data,
but only when the increased size of the data structures is tolerable. When the increased size
is not acceptable, more compact proprietary formats may be preferable, but these carry
with them the increased costs of custom code for assembling, parsing, and validating the
data structures. In establishing your service-oriented architecture, you should standardize
by selecting a preferred set of data representations.

While standards for data representations are important, you need to be careful not to
inappropriately force these standards on every interface. If two components use the same
native data representation (not one of your standards) and you are implementing a
dedicated point-to-point interface between them, there is little benefit in converting the
data to one of your standard representations only to convert it back to the same native
representation.

Common Data Semantics

Selecting a data representation technology facilitates the exchange of data between the
parties, but it still leaves quite a bit of room for variation. Specifying XML for text-based
representations does not determine what information is being represented or how that
information is organized. Yet both the user and provider of functionality need to understand
what information is expected and how it is expected to be organized.

When you are using a native interface, the content and structure of the data is completely
determined by the provider. The rules for organizing the information often have no formal
representation. Consider the representation of a sales order shown in Figure 3-10. This is
typical of the organization of sales orders found in many older systems, particularly file-
based systems. This representation simply defines two record types, but does not tell you
what the rules are for combining the two record types into a file or message. Common
sense would tell you that there ought to be one instance of Record Type 1 to represent
the overall order and one instance of Record Type 2 for each of the order's line items.
But are you allowed to put more than one order in a file or message? Could the order
record be the last one, after the line items, instead of the first record?

Figure 3-10. Native Order Representation

There are other issues as well. The concepts of customer, address, and phone are all
blended together in Record Type 1, and the concepts of sales order line item and product
are blended together in Record Type 2. There is no explicit representation of the
complete sales orderâ!”just the collection of instances of the two record types.

Such representations are often awkward. In traditional record format, the fields containing
the data are present, but there are no labels identifying which field represents which piece
of data. There may be rules regarding which fields are required and which are optional. To
use these data structures, you have to know the format and the rulesâ!”if you can find
them!

These types of issues motivated the development of data structures with machine-readable
formal definitions such as the data description language (DDL) used to describe relational
database structures and XML schemas for describing textual structures. XML schemas are
defined using the XML Schema Definition (XSD) language.[8]

[8] XML Schema Part 0: Primer Second Edition W3C Recommendation 28. October 2004.
www.w3.org/TR/xmlschema-0/.

The logical data model you saw back in Figure 3-7 is an abstract example of this sort of
data structure. If such a logical model is transformed into an XML schema with each object
and attribute represented as an XML element, then you have achieved two benefits. From a
human perspective, such data structures are generally easier to produce and consume,
since the XML representation of the order is self-describing and easy to understand. From a
machine perspective, standard software can be used to access the data and validate that
the order representation complies with the schema definition.

Having gone to the trouble of engineering such a data structure, it would make sense to use
that data structure (or the relevant parts of it) in other interfaces whenever the same set of

information is required. This gives rise to the notion of a common data model (CDM) or
common object model (COM). Such models standardize the representations of specific
concepts and relationships. Chapter 18 explores the engineering of these data structures in
more detail.

While common data models sound like a good idea, you have to realize that there is work
involved in their development. Developing representations that can serve multiple purposes
requires understanding the variety of its potential usages. Furthermore, using a
representation that is native to neither the user nor the provider requires that the data be
transformed into this representation by the user and transformed from this representation
by the provider. You want to be convinced that the representations will actually be reused
before making the investment. There is little point in engineering an abstract representation
for a dedicated point-to-point interface.

Common Operation Semantics

While there may be an exact 1-to-1 correspondence between the operations you want to
provide for your service and the operations actually available in the native implementation,
there may be times when you want the service to provide an operation that is actually a
composite of underlying operations. For example, a common enterprise resource planning
(ERP) application does not provide the ability to place an order as a single operation.
Instead, it provides two operations. The first operation takes the order and places it in a
temporary staging table. The ERP application periodically checks this staging table and tries
to process any orders it finds. It then places the processing results in a second status table
and provides a second operation to retrieve the status.

For ease of use, you may want your service to provide a single operation that, from the
user's perspective, accepts the order and returns the results. The implementation of this
operation would invoke the first native operation, wait the requisite period of time to allow
processing to occur, retrieve the results, and return the results to the user. Of course,
determining what the appropriate abstract operation ought to be will require some
understanding of the intended utilization, and therefore more work.

Choosing the Level of Interface Commonality

It should be apparent by now that there are a number of standardization choices to be
made in developing service interfaces. These choices are summarized in Table 3-1. Note
that the standardization of the access technology and data representation technology does
not require an in-depth understanding of the business processesâ!”only a broad
understanding of the type of information being used. Standardizing the data and operation
semantics, on the other hand, requires a detailed understanding of the business processes
that will use the data and operations, and is correspondingly more difficult and expensive to
achieve.

Table 3-1. Pros and Cons of Interface Standardizations

Type of
Standardization Advantage Disadvantage

Common Access
Technology

Makes the functionality
uniformly accessible on any

Mechanisms to access the common
technology must be provided for each

technology platform. technology platform.

Common Data
Representation
Technology

Simplifies data access when
moving data between
technology platforms.

â
!
¢

Mechanisms for reading and
manipulating the representations must
be provided for each technology
platform.

 â
!
¢

Mapping to/from native representation
technologies may be required.

Common Data
Semantics

The use of well-engineered
representations for business
concepts and relationships
simplifies the understanding
and use of this information.

â
!
¢

Engineering data representations that
can support multiple operations
requires a good understanding of the
business processes and a
correspondingly greater development
effort.

 â
!
¢

Mapping to/from native data
representations may be required.

Common
Operation
Semantics

Providing a well-defined
operation that makes sense
in multiple business contexts
makes the operation easier
to use and thus promotes
reuse.

Defining operations that can be used in
multiple business contexts requires a
good understanding of the business
processes and a correspondingly greater
engineering effort.

Because of this variability in effort, you probably don't want to try and standardize all of
these for every service operation. In many cases, standardizing the access and data
representation technologies alone is sufficient to provide significant business benefits. The
additional benefits of standardizing the data structure and operation semantics should be
carefully weighed against the costs before deciding to standardize them as well.

The effort required to achieve these differing levels of standardization is also the reason
why you don't want to arbitrarily turn every interface into a service operation. If you have
two applications on the same technology platform that are already interacting successfully
and you can't demonstrate the need for a third application to use those interfaces, then
there may be little business benefit in standardizing any aspect of the interfaces.

The Rationale Behind Services

What benefit do you derive from using services? Services obviously provide an abstraction
mechanism that allows you to think about the use of the provided functionality without
getting bogged down in the details of its implementation. They encapsulate the functionality
into a separate component that can be independently tested, monitored, and managed. This
abstraction makes it easier to design and understand higher-level designs, but this
simplicity comes at a price.

Building services requires time and effort beyond simply implementing the required
functionality, and there is a runtime cost to using abstracted service access mechanisms as
well. So what are the specific benefits that justify the extra development and runtime
costs? There are basically two: reuse and stability. While there are other benefits that
accrue from building a service-oriented architecture, it is difficult to make a case that these
other benefits justify the SOA investment. Reuse and stability are the economic drivers.

Service Reuse

The largest form of payback comes from the reuse of an existing service interface (Figure
3-11). This reuse typically occurs when a second or subsequent component utilizes an
existing service interface. The initial payback comes in the form of cost avoidance. When
the second and subsequent users are able to utilize the existing interface to access the
same functionality, the cost of developing additional interfaces and/or modifying the
underlying functionality is avoided. You can also get interface reuse payback when a single
service interface masks the existence of two or more service providers, a situation that
often arises as a result of mergers and acquisitions. Once again, the savings comes from
avoiding the cost of modifying the service user(s) so that they can utilize the second service
provider. The interface remains the same, and the rules for determining which provider to
use under which circumstances are encapsulated in the service and hidden from the users.

Figure 3-11. Service Reuse Patterns

[View full size image]

When you are considering an interface's potential for reuse, you should take future plans

into consideration. Today you may have only a single service user and a single service
provider, but you expect to add another service user or service provider in the not too
distant future. The new service user may be a consequence of adding another channel for
doing business. The new service provider may be the consequence of mergers and
acquisitions, or a technology decision to replace a custom system with a best-of-breed
commercial system. Identifying these additional service users and providers establishes that
there will eventually be payback for establishing the stable service interface. Of course, in
making the final decision to build the service interface, you have to weigh the likelihood of
these future changes actually occurring against today's investment in developing the service
and its interfaces.

Interface Stability

Another form of payback occurs when the interface itself becomes a point of stability in an
otherwise evolving service provider implementation. The stable interface isolates the service
user from the ongoing changes in the service provider, and thus reduces the scope of work
that is required each time the service provider is modified. This reduction in scope carries
with it a corresponding reduction in cost. Thus the payback comes in the form of cost
avoidance.

Interface stability is the key enabler for service reuse. If the existing interface cannot
support the needs of a future service user or service provider, then changes to the interface
will be required. The cost of making these changes diminishes or eliminates the anticipated
savings that justified the development of the service in the first place.

Achieving interface stability requires extra work and contributes to the incremental added
cost of developing services. Designing stable interfaces requires a broad perspective on the
future business processes in which the service will be used, which in turn requires additional
analytical effort. Generally when you first develop a service, only one use of the service
clearly definedâ!”its application in the current project. To achieve interface stability, you
need to put additional effort into discovering and analyzing other future usages. Only then
will you have confidence that the interface will support those future usages without
significant modification. This additional effort not only drives up the cost of the service, but
the exploration requires the expertise and experience of relatively senior people whose
insight into the future plans for the business and the implications of those plans are
required to fully understand the future service usages.

Service Evolution

Of course, no crystal-ball look into the future is going to yield the perfect service or the
perfect service interface. You need to recognize that there are changes that are easy (and
inexpensive) to accommodate and changes that are hard to accommodate. Additive
changes are generally easy to accommodate, while structural changes are generally hard to
accommodate.

Additive changes simply add to what is already there without altering the existing structure.
The only components that are impacted are the ones using the additions. Adding a new
operation to a service does not require any changes to the existing operations or the
existing users of those operations. Similarly, adding a new field to an existing data structure
does not need to force changes on the components that do not use the new field. Additive

changes can generally be introduced gradually in an evolutionary manner at relatively low
cost.

Structural changes, on the other hand, are expensive. Changing what an operation does
immediately impacts all users of the operation. Changing the structure of data immediately
impacts all users of the data. For example, consider the extent of the changes that would be
required to the earlier sales order design if you wanted to extend your business to sell to
companies as well as individual people (Figure 3-12). Now your customer is a legal entity
that might be either a person or a company. Furthermore, if the order is placed by a
company, you will want to know both the company and the individual who placed the order.
You may even need to validate whether that person is authorized to make purchases on
behalf of the company.

Figure 3-12. Sales Order Information Model Extended for Business to Business

[View full size image]

What is complex about this change is that a single conceptâ!”the Personâ!”has evolved
into three. Some of the existing relationships now point to different classes, a change that
impacts every user of those relationships. Entirely new relationships have been added:
purchaser and authorizedPurchaser. These new relationships must be created,
managed, and communicated.

Structural changes like this will cause many data structures and interfaces to change, with
correspondingly high costs. Because of this, you want to make an effort when designing

services to ensure that your information model is rich enough to accommodate the changes
you can see coming down the pike without altering the structure. Some of the potential
sources of such changes include changes in product or service offerings (often the result of
mergers and acquisitions), changes to the supply pipeline (outsourcing, in particular), and
the addition of new channels through which goods and services will be offered. Every
needed data structure refinement that you can identify ahead of time is cost avoidedâ!”and
thus increases the return on investment for your services.

At the same time, you have to be realistic in terms of your expectations. Despite your best
efforts, some structural changes will eventually be required. To enable the graceful
introduction of structural changes, you should ensure that your service infrastructure allows
the simultaneous deployment of multiple versions of service operations. This will enable you
to introduce the new operations and gradually migrate the existing users rather than forcing
a "big bang" update of all impacted components.

Summary

A service is an encapsulated unit of functionality that has been packaged for ease of access
and use. The functionality provided by a service often includes the management of specific
categories of data. In such cases, the scope of the service extends from its interfaces all the
way to the data it manages.

A service often utilizes external data as wellâ!”data that it does not manage. A clear
distinction must be drawn between the data being managed by a service and external data
being referenced by the service. Particular attention needs to be paid to establishing
management responsibility for the relationships joining managed data and external data.
Representing these relationships often requires maintaining copies (caches) of some
external data within the service. In such cases, the maintenance of this cached information
must be part of the service design.

Service interfaces are the means by which service users gain access to service functionality.
The ease with which these interfaces can be used depends upon the choice of access
technology. Ideally, the chosen access technologies should make it relatively simple to
provide services on any platform and access them from any platform.

Most service operations require the exchange of data between the service user and the
service provider. The use of a common data representation technology greatly facilitates the
exchange of data between disparate platforms.

Beyond establishing common access and data representation technologies, service interfaces
may also employ standardized representations of data (i.e., common data models). The
considerations involved in deciding whether or not to use standardized representations are
discussed in Chapter 23. The service interface may also standardize the semantics of the
operations, abstracting them away from the details of the underlying functional
implementation. The level of standardization for data representations and operation
semantics does not have to be uniform across all services.

Implementing a service always costs more, both in terms of design effort and runtime
resources, than simply providing direct access to native functionality. The payback for this
additional investment occurs when the service is used a second or subsequent timeâ!”or
when the service interface serves to isolate the service user from an evolving service
implementation. In both cases, the stability of the service interfaceâ!”its ability to support
future usages without alterationâ!”is essential for obtaining payback from this additional
investment. The ability of the service to support future usage without interface alteration is
the key consideration in deciding whether the investment in creating the service is
warranted. The identification and evaluation of potential services is explored in Chapters 12
and 16.

Key Service Fundamentals Questions

1. Do your service definitions extend to identifying the data being managed by
the service (i.e., defining the system of record for the data)?

2. Do your service definitions clearly identify external data (data for which the
service is not the system-of-record) that is cached within the service? Do
your service designs include mechanisms for updating this cache?

3. Does the technology you use for accessing services make it convenient to
implement services on any platform and access them from any platform?

4. Do your services employ common data representation technologies that
facilitate the movement of data between disparate platforms?

5. In designing services, do you evaluate future service usages and design the
service interfaces broadly enough to support these future usages without
significant modification?

6. Are you able to evolve services by co-deploying old and new versions of
services and gradually migrating service users to the new version?

Suggested Reading

W3C (World Wide Web Consortium). March 2004. "Web Services Description Language
(WSDL) Version 2.0. Part 2: Message Exchange Patterns," W3C Working Draft 26.
www.w3.org/TR/2004/WD-wsdl20-patterns-20040326.

Chapter 4. Using Services
Services, on their own, provide no benefit. To get benefit from your services, you need to
employ them as an element of a larger processâ!”a process that provides value to your
enterprise. Other participants in the process need to interact with the service and benefit
from the service results. Thus you need to be able to integrate the service with other
services and nonservice functionality as well as to form your business processes. This
chapter explores a number of choices that are available for integrating services into
business processes.

Service Interaction Patterns
Synchronous Request-Reply

When you think of "using" a service, what probably comes to mind first is having the
service user ask the service provider to perform the serviceâ!”and then waiting for the
result. This style of interaction is characterized by the synchronous request-reply pattern
shown in Figure 4-1. It is perhaps the most common service interaction style.

Figure 4-1. Synchronous Request-Reply Interaction Pattern

The synchronous request-reply pattern is simple. The service provider only needs to supply
a single operation interface (Figure 4-2). The service user calls this operation to submit the
request, and this same operation provides the mechanism for returning the result.

Figure 4-2. Synchronous Request-Reply Interface

Asynchronous Request-Reply

The synchronous request-reply interaction pattern is not sufficient to build most real-world
business processes. Much as you (and the retailer) might like it, when you order a book
online, the book does not arrive while you are still sitting at the keyboard! You don't wait
for the book, to the exclusion of all other activity, until it arrives. Instead, you go off about
your business for a few days until the book is delivered. This is the style of interaction
represented by the asynchronous request-reply pattern shown in Figure 4-3.

Figure 4-3. Asynchronous Request-Reply Interaction Pattern

Since the asynchronous request-reply pattern delivers the result at some future point, it
requires a mechanismâ!”a second operationâ!”for the service provider to deliver the result.
If the service provider is to initiate the delivery of the result, then the service user typically
provides an operation and corresponding interface for this purpose (Figure 4-4). Note that
for the service provider to use this interface, the original request must tell the service
provider about the interface to be used to deliver the result.

Figure 4-4. User-Supplied Asynchronous Result Interface

Alternatively, the service provider could supply a result retrieval operation with its
corresponding interface (Figure 4-5). With this approach, the service user invokes the result
retrieval operation to determine whether the result is ready and retrieve it if it is. This is
the style of interaction you use when you take your laundry to the dry cleaners. In the first
interaction, you deliver the dirty laundry, and in the second you go back to pick up the
cleaned items.

Figure 4-5. Provider-Supplied Asynchronous Result Interface

When the service provider supplies a result retrieval operation, the service user is the one
who initiates the second interaction. For efficiency, the service provider typically specifies a
time after which the results will be available. This response-time service-level agreement
(SLA) is a promise, but there is no absolute guarantee that your laundry will be ready at
that time. But if the service provider meets the promise most of the time (99%), it makes
for an efficient interaction. In the absence of such an SLA, the service user can only guess
at when the result will be ready. This guesswork leads to the repeated invocation of the
interface to determine whether the results are readyâ!”an inefficient process often referred
to as polling.

Message-based service access, which involves a third-party communications intermediary,
is inherently asynchronous. Thus message-based communications provides a convenient

alternative for returning asynchronous results. Message-based approaches are discussed
later in this chapter.

Subscription

Subscription services (Figure 4-6) deliver more than one result. They provide an ongoing
series of results spread out over time. In using a subscription service, the service user
registers with the service provider to receive a series of resultsâ!”asynchronously. Your
newspaper subscription is an example of this type of service, as are the stock market
activity alerts delivered to your phone or computer.

Figure 4-6. Subscription Interaction Pattern

Like the asynchronous request-reply pattern, the subscription pattern also requires two
operation interfaces (Figure 4-7). If the parties are interacting directly, generally one of the
interfaces will be provided by the service provider and the other by the service user. The
service provider supplies a synchronous request-reply subscription interface that results in
acknowledgment of the subscription. The service user provides an interface for the
subsequent delivery of the expected results. As with asynchronous request-reply, the

subscription request must indicate how the results are to be delivered.

Figure 4-7. Typical Subscription Interfaces

Unsolicited Notification

The existence of the service user's delivery interface opens up the possibility for a fourth
interaction pattern: the unsolicited notification (Figure 4-8). Once a service provider
becomes aware of the presence of a delivery interface, there is nothing stopping the service
provider from sending results that were not explicitly requested. The most obnoxious form
is, of course, junk mail and its electronic equivalent, spam. But unsolicited notification can
be beneficial as well. Companies often notify their employees and customers of significant
events using such notifications. If you see flames in an auditorium, yelling "Fire!" is an
unsolicited notification as well. You (the service provider) are notifying others in the
auditorium (the service users) of the presence of a dangerous situation.

Figure 4-8. Unsolicited Notification Pattern

Unsolicited notifications only require a single interfaceâ!”the delivery interface on the
service user (Figure 4-9). As you shall see shortly, the use of a messaging service provides
another means of delivering unsolicited notifications.

Figure 4-9. Unsolicited Notification Interfaces

Interaction Pattern Summary

More complex interaction patterns than these are, of course, possible. But every interaction
pattern can be assembled from these four basic patterns: synchronous request-reply,
asynchronous request-reply, subscription, and unsolicited notification. Therefore, a detailed
understanding of these four patterns will provide you with the tools to analyze any
interaction pattern you may encounter. Chapter 27 will explore the properties of these
patterns in more detail and will elaborate on some of the more common complex interaction
patterns as well.

Chapter 4. Using Services
Services, on their own, provide no benefit. To get benefit from your services, you need to
employ them as an element of a larger processâ!”a process that provides value to your
enterprise. Other participants in the process need to interact with the service and benefit
from the service results. Thus you need to be able to integrate the service with other
services and nonservice functionality as well as to form your business processes. This
chapter explores a number of choices that are available for integrating services into
business processes.

Service Interaction Patterns
Synchronous Request-Reply

When you think of "using" a service, what probably comes to mind first is having the
service user ask the service provider to perform the serviceâ!”and then waiting for the
result. This style of interaction is characterized by the synchronous request-reply pattern
shown in Figure 4-1. It is perhaps the most common service interaction style.

Figure 4-1. Synchronous Request-Reply Interaction Pattern

The synchronous request-reply pattern is simple. The service provider only needs to supply
a single operation interface (Figure 4-2). The service user calls this operation to submit the
request, and this same operation provides the mechanism for returning the result.

Figure 4-2. Synchronous Request-Reply Interface

Asynchronous Request-Reply

The synchronous request-reply interaction pattern is not sufficient to build most real-world
business processes. Much as you (and the retailer) might like it, when you order a book
online, the book does not arrive while you are still sitting at the keyboard! You don't wait
for the book, to the exclusion of all other activity, until it arrives. Instead, you go off about
your business for a few days until the book is delivered. This is the style of interaction
represented by the asynchronous request-reply pattern shown in Figure 4-3.

Figure 4-3. Asynchronous Request-Reply Interaction Pattern

Since the asynchronous request-reply pattern delivers the result at some future point, it
requires a mechanismâ!”a second operationâ!”for the service provider to deliver the result.
If the service provider is to initiate the delivery of the result, then the service user typically
provides an operation and corresponding interface for this purpose (Figure 4-4). Note that
for the service provider to use this interface, the original request must tell the service
provider about the interface to be used to deliver the result.

Figure 4-4. User-Supplied Asynchronous Result Interface

Alternatively, the service provider could supply a result retrieval operation with its
corresponding interface (Figure 4-5). With this approach, the service user invokes the result
retrieval operation to determine whether the result is ready and retrieve it if it is. This is
the style of interaction you use when you take your laundry to the dry cleaners. In the first
interaction, you deliver the dirty laundry, and in the second you go back to pick up the
cleaned items.

Figure 4-5. Provider-Supplied Asynchronous Result Interface

When the service provider supplies a result retrieval operation, the service user is the one
who initiates the second interaction. For efficiency, the service provider typically specifies a
time after which the results will be available. This response-time service-level agreement
(SLA) is a promise, but there is no absolute guarantee that your laundry will be ready at
that time. But if the service provider meets the promise most of the time (99%), it makes
for an efficient interaction. In the absence of such an SLA, the service user can only guess
at when the result will be ready. This guesswork leads to the repeated invocation of the
interface to determine whether the results are readyâ!”an inefficient process often referred
to as polling.

Message-based service access, which involves a third-party communications intermediary,
is inherently asynchronous. Thus message-based communications provides a convenient

alternative for returning asynchronous results. Message-based approaches are discussed
later in this chapter.

Subscription

Subscription services (Figure 4-6) deliver more than one result. They provide an ongoing
series of results spread out over time. In using a subscription service, the service user
registers with the service provider to receive a series of resultsâ!”asynchronously. Your
newspaper subscription is an example of this type of service, as are the stock market
activity alerts delivered to your phone or computer.

Figure 4-6. Subscription Interaction Pattern

Like the asynchronous request-reply pattern, the subscription pattern also requires two
operation interfaces (Figure 4-7). If the parties are interacting directly, generally one of the
interfaces will be provided by the service provider and the other by the service user. The
service provider supplies a synchronous request-reply subscription interface that results in
acknowledgment of the subscription. The service user provides an interface for the
subsequent delivery of the expected results. As with asynchronous request-reply, the

subscription request must indicate how the results are to be delivered.

Figure 4-7. Typical Subscription Interfaces

Unsolicited Notification

The existence of the service user's delivery interface opens up the possibility for a fourth
interaction pattern: the unsolicited notification (Figure 4-8). Once a service provider
becomes aware of the presence of a delivery interface, there is nothing stopping the service
provider from sending results that were not explicitly requested. The most obnoxious form
is, of course, junk mail and its electronic equivalent, spam. But unsolicited notification can
be beneficial as well. Companies often notify their employees and customers of significant
events using such notifications. If you see flames in an auditorium, yelling "Fire!" is an
unsolicited notification as well. You (the service provider) are notifying others in the
auditorium (the service users) of the presence of a dangerous situation.

Figure 4-8. Unsolicited Notification Pattern

Unsolicited notifications only require a single interfaceâ!”the delivery interface on the
service user (Figure 4-9). As you shall see shortly, the use of a messaging service provides
another means of delivering unsolicited notifications.

Figure 4-9. Unsolicited Notification Interfaces

Interaction Pattern Summary

More complex interaction patterns than these are, of course, possible. But every interaction
pattern can be assembled from these four basic patterns: synchronous request-reply,
asynchronous request-reply, subscription, and unsolicited notification. Therefore, a detailed
understanding of these four patterns will provide you with the tools to analyze any
interaction pattern you may encounter. Chapter 27 will explore the properties of these
patterns in more detail and will elaborate on some of the more common complex interaction
patterns as well.

Service Access

On the surface, accessing a service sounds so simpleâ!”just call the interface! In reality,
access can get very complicated as you try to control access to services and maintain
flexibility concerning where service users and providers are deployed. The following sections
explore a number of the design issues you will encounter and the design patterns that you
can use to address them.

Direct Service Access

The most obvious way to use a service is to directly access the service provider's interface
(Figure 4-10). While this is straightforward, it requires that the service user be aware of
both the functionality provided by the service interface (which you would expect) and the
location of the interface. If you are using HTTP to access your service, for example, then
the service user needs to know either the IP address or hostname of the machine on which
the service is running as well as the specific socket corresponding to the service's interface.

Figure 4-10. Direct Service Access

This requirement to know about the interface's location makes the design of the service
user dependent on the deployment specifics of the service provider. If the service provider
is moved from one machine to another, then the service user's configuration must be
updated to reflect the change. If the service becomes very successful and has many users,
such dependencies make it difficult to move the service provider. Such movement might be
required to add capacity by moving the service to a larger machine or recover from a
machine outage by moving the service to an alternate machine. While network-level
solutions such as virtual IP addresses and virtual hostnames provide some relief, they have
their own limitations and accompanying administrative costs as well.

Variations in Direct Service Access
Service Lookup

One means of avoiding this dependency between the service user and the location of the
service interface is to employ a lookup service (Figure 4-11). The lookup service knows the
actual location of the provider's service interface. In order for the service user to access the
service, it first uses the lookup service to get the actual location of the service interface and
then uses this information to access the service. The JNDI (Java Naming and Directory
Interface)[1] is a service interface that is commonly used for this purpose. The advantage of
this approach is that when a service provider changes location, only the lookup service
needs to be updated. The service users will pick up the change from the lookup service.

[1] http://java.sun.com/products/jndi/.

Figure 4-11. Lookup Service

When a lookup service is used, the lookup typically occurs just the first time a particular
user wants to access the service. Once the service interface is located, the user continues
to use that interface as long as it is operational.

Of course, the lookup service itself now presents exactly the same problem that it solves for
other services: the service user must know the location of the lookup interface to be able to
use it. But at least the problem is reduced in scope to just accessing the lookup service,
which presumably will not change its interface location very often.

Proxy Access

Another approach that can isolate the service user from the details of the service provider's
deployment is to employ a level of indirectionâ!”a proxyâ!”for accessing the service (Figure
4-12). To the service user, the proxy presents what appears to be the service's interface
without knowing that it is, in reality, a proxy interface. The proxy forwards all incoming
requests to the real service interface and forwards replies from the service interface back to
the service user through the proxy interface.

Figure 4-12. Proxy Access Interfaces

Direct Access Limitations

There are a couple of drawbacks to the direct access approach and its service lookup and
proxy variants. One is that any change in the location of the service provider's interface
requires changes to the configuration of some other component. In direct access, the
component requiring update is the service user. With service lookup, it is the lookup
service, and with a proxy it is the proxy. This dependency of other components on the

physical location of the service provider's interface complicates changing the service
provider's location. It adds administrative overhead and adds to the time it takes to
implement such changes.

This administrative overhead affects more than just the normal deployment of services. It
comes into play when you want to provide a fault tolerant or highly available service as
well. In such cases, when something happens to the existing service provider you need to
bring up a replacement copy of the service provider. This replacement copy will be in a
different location, generally on a different machine. For local failover, this different machine
may be in the same data center, but in the case of a site disaster it will be in a different
data center. In such cases it becomes very difficult to maintain the appearance of the
"same location" for the service interface with network-based virtual IP addresses and
hostnames. Administrative changes to service users, lookup services, or proxy agents are
generally required.

These administrative changes significantly complicate the design, implementation, and test
of service failover. A failure to make any of the required administrative changes during a
failover will cause the service to become unavailable just as surely as a breakdown in
bringing up the backup service provider. The more administrative changes that need to be
made, the greater the chance an implementation mistake will cause the failover itself to fail.
Since testing failover is an arduous and risky activity, there are advantages to keeping the
administrative changes as simple as possibleâ!”or eliminating them altogether.

This situation gets even more complicated when asynchronous request-reply, subscription,
and unsolicited notification patterns come into play. These patterns often require delivery
interfaces on the service userâ!”interfaces that the service provider, lookup service, or
proxy need to know about. This makes the administrative problem even more complex,
since location information now needs to be updated when service clients move.

Message-Based Service Access

Messaging services provide an alternate means for service users and service providers to
interact. We are all familiar with messaging services such as e-mail and instant messaging.
At the systems level, messaging services such as the standards-based JMS (Java Messaging
Service), IBM Websphere MQ, and TIBCO Rendezvous are in common use.

When using a messaging service, all communications between the parties is exchanged
using an intermediaryâ!”the Messaging Service Provider (Figure 4-13). In contrast
with the proxy approach, both sender and recipient are very much aware that they are
employing a third party to send and receive messages.

Figure 4-13. Messaging Service

Electronic messaging services differ from postal (physical mail) services in a subtle but
significant way. Postal service mailboxes are physical entities that serve as the interfaces
between the messaging service and its users. An address in physical mail systems
designates the physical mailbox to which the letter or package is to be delivered. In other
words, the address is location-specific.

In contrast, electronic messaging separates the concepts of destination and interface. The
address now denotes a logical destination whose physical location is unknown to either the
sender or recipient. The messaging service interface is no longer tied to a specific
destination. Instead, the messaging service provides a generic interface for sending and
receiving messages regardless of the destination. This separation greatly simplifies the use
of messaging services.

Abstract destinations provide location independence. The fact that the logical destination is
no longer tied to the physical location of the recipient means that the recipient's location
can change without impacting the senderâ!”or the mail service. Thus, you can send an e-
mail message to jane.doe@messageservice.com without having any idea where Jane
Doe actually is. Furthermore, Jane Doe can retrieve her message from any machine that can
access the messaging service, whether at home, at work, or at an Internet café in Istanbul!

The messaging service provides all the interfaces needed for communications (Figure 4-14).
This simple shifting of interfaces to the messaging service greatly simplifies making
deployment changes. None of the participantsâ!”sender, recipient, or messaging serviceâ
!”has any dependency at all on the location of the sender and recipient. In fact, the only
location dependency that remains is that the sender and recipient must know the location of

the messaging service interfaces. Consequently, the sender and recipient can move freely
without altering any configuration informationâ!”anywhere. As long as both can access the
messaging service interfaces, they can communicate with each other.

Figure 4-14. Messaging Service Interfaces

There is another significant benefit that arises from the fact that the messaging service
provides both the sending and receiving interfaces. Because the message recipient does not
have to provide an interface to receive a message (it uses the messaging service's interface
instead), it is easy for any component to receive a message. All that is required is an
agreed-upon destination name. Thus it is easy for any component to be both a sender and
a recipient. This communications flexibility enables the convenient implementation of the
asynchronous request-reply, subscription, and unsolicited notification service interaction
patterns. Therefore, the use of a messaging service provides flexibility in choosing whatever
service interaction pattern seems most appropriate for the service being designed.

Access Control

The primary reason for creating services is to make it easier to access their functionality,
but at the same time you need to exercise some control over who is using the services. You
may need to control who can perform certain operations. After all, you don't want some
stranger making withdrawals from your bank account! You may need to limit the volume of
usage. Services have finite capacity, and an unbounded demand may cause undesired
performance degradation or outright failure. For a variety of reasons, you often need the
ability to control access to your services.

Access control can be thought of as a set of policies applied at one or more policy
enforcement points. An access control policy is a rule governing the access to the service.
These rules may specify actions that individual parties are either allowed to take or must
take under specific circumstances, or they may specify conditions under which access may
be granted. One of the access control policies governing access to your bank account from
an ATM is that you must provide a PIN (a required action on your part), and that PIN must
match the one the bank has associated with your bank account (a condition that must be
satisfied).

A policy enforcement point identifies the specific place in the architecture (usually an
interface) at which the policy is enforced. In the ATM example, the enforcement point may
be in the ATM (which would require the bank to provide the real PIN for the account to the
ATM), or it may be at the bank when the transaction request is approved (a safer
alternative).

Access control policies can cover many topics. Authentication (validating your credentials),
authorization (establishing that the supplied credentials give you the right to access this
particular account), and encryption (protecting your PIN from unauthorized viewing) are
common topics for access control policies, but there are many others as well. Digital signing
of message contents, the non-repudiation of requests (making an undeniable record that a
particular message was received), and the creation of an audit trail of service utilization are
frequently found to be requirements in business processes.

Policy Enforcement Points

While it may be easy to state a policy, finding the appropriate place to enforce the policy is
often not as straightforward as you might like. The enforcement of a policy requires the
interception of the request, and possibly the reply as well. Setting up the system to
intercept the request and reply requires a change to the architecture.

There are a number of places at which access control policies might be enforced. The choice
of where to locate the policy enforcement point and which participant will initiate the policy
enforcement depends very much upon the technique used to access the service. When
services are being directly accessed, the enforcement point for these policies is generally
the service interface, and the required functionality for enforcement is generally provided by
the service provider (Figure 4-15). Of course, the service provider will likely employ other
supporting services to aid in this enforcement, but it is the service provider that is
responsible for intercepting the requests (and possibly the replies as well) and ensuring that

the policies are checked and enforced.

Figure 4-15. Access Control Policy Enforcement in Direct Service Access

While placing policy enforcement within the service provider may make logical sense, it
does require a change to the service provider design. For some service providers,
particularly purchased software applications, this may not be an option. Even when it is
possible, changing the service provider design may be complex. From a software
maintenance perspective, this can be an expensive option.

Access Control with Proxies

Proxies provide an alternative location for policy enforcementâ!”one that allows access
control policies to be added without altering the service provider (Figure 4-16). This style of
access control is commonly used when services are being provided via HTTP interfaces. In
many cases such proxies are introduced into HTTP-based systems specifically to provide
access control. Proxies used for this purpose are often referred to as policy agents.

Figure 4-16. Access Control Policy Enforcement with Proxy Access

[View full size image]

Moving policy enforcement into the proxy provides a nice separation of concerns from a
software engineering perspective. With this approach, policy enforcement can be added or
modified without altering the underlying service provider. The policies and policy
enforcement can be tested and managed independently of the service provider.

The proxy approach has an access control weakness: In the strictest sense, the original
service interface remains unprotected. Any component that can gain access to this service
interface is in a position to use itâ!”or abuse it. Because of this, when the proxy pattern is

employed, the actual service provider is generally located on a physically secure private
network protected by a firewall. To guard against unauthorized access, the proxy is placed
in a demilitarized zone (DMZ), which is separated from the public network by another
firewall, resulting in the configuration shown in Figure 4-17.

Figure 4-17. Typical Proxy Deployment

[View full size image]

Beyond the access control weakness, there are other drawbacks to the proxy approach. The
introduction of the proxy requires a configuration change on the part of the service users to
redirect their requests to the proxy interface. The use of a proxy also introduces additional
inter-process communications. In high-volume low-latency applications, the increase in
latency caused by these additional communications can be an issue.

When asynchronous result delivery is required, there is additional work that must be done.
To control access to the results delivery interface, either the existing proxy must be
extended to also be proxy for the service user or a second proxy must be introduced. Since
every proxy is dependent upon the location of the interfaces it is guarding, it becomes
increasingly difficult to manage this approach as the number of services and service users
increases. Every deployment change to every interface requires a proxy update.

Access Control with a Mediation Service

The use of a messaging service for communications between the service user and the
service provider presents yet another possible location for policy enforcement (Figure 4-18).
Because of the extended functionality, this expanded service is more appropriately termed a
mediation service. The mediation service contains within it both the messaging service and
the policy enforcement.

Figure 4-18. Access Control Policy Enforcement with Message-Based Access

[View full size image]

As with the messaging service, the mediation service provides the interfaces for both the
service user and service provider. Since the mediation service provides both interfaces,
there are no dependencies on the location of either the service user or service provider. The
symmetric nature of the sending and receiving interfaces makes it easy to support all of the
basic service interaction patterns.

The mediation service can enforce policies governing access to its own interfaces. It can
authenticate the component trying to gain access and check that component's authorization
to use the mediation service. Beyond this, it can check the component's authorization to
send or receive from a particular messaging destination. It can require encrypted
communications at both interfaces, perhaps using SSL. This ability to secure the connection
to the service provider overcomes one of the shortcomings of the proxy approach, which
cannot protect the service provider's interface from direct access.

Service Request Routing

The discussion thus far has talked about both messaging and mediation services as if each
were a single monolithic entity. But in reality any physical component has finite capacity
limitations, so the implementation of the mediation service may require more than one
component to spread the load. The service user may not be at the same location as the
service provider, so the mediation service must be present at each location. There may also
be more demand than can be satisfied by a single service provider, so the mediation service
must be capable of distributing service requests among multiple service providers. For all of
these reasons, the mediation service must be considered a logical service whose
implementation can involve more than one component.

Load Distribution

Perhaps the simplest routing task is simple load distribution (Figure 4-19). In this situation
there are two or more service providers residing in the same location, and all of them are
equivalent from a functional perspective. The routing problem is to determine which service
provider should get each request. But even this can get complicated. What criteria do you
use to select the service provider for the next request? Consider IP-redirectors, proxies that
distribute incoming requests. Early redirectors used a round-robin approach, feeding each
request to the next service provider in a sequence. Unfortunately, with this approach a
"dead" service provider still gets its fair share of requests, which thus go unserved. More
recent IP redirectors employ some form of liveness testing to avoid this kind of problem.

Figure 4-19. Routing Requests for Load Distribution

With the proxy-based approach, the proxy must make the decision as to which service
provider should get each request. Making an assignment to an inoperable service provider
runs the risk of the request going unserviced. Message-based mediation services avoid this
problem. Message-based services hold the requests in a queue until a service provider
retrieves them. Since the service provider takes the initiative in retrieving the request, the
service provider must be operational to some extent. Dead service providers will not ask for
more requests!

Location-Based Routing

Another routing challenge arises when you have service users and service providers
residing at different locations. A request originating at one location may need to be routed
to a service provider at a different location (Figure 4-20). While this could be handled with

a single mediation service component serving both locations, the result generally leads to
some very inefficient communication patterns. Service users and providers at the remote
location that need to intercommunicate must do so via the remote mediation service. From
a communications perspective, it is far more efficient to have a local component of the
mediation service and then let the mediation service take care of routing requests to other
locations as required.

Figure 4-20. Routed Service Requests

[View full size image]

Content-Based Routing

A third routing challenge arises when there are multiple service providers of the same
service at different locations. Now the mediation service must determine which provider
should get which request (Figure 4-21).

Figure 4-21. Routed Requests Requiring Logic

[View full size image]

This routing can get complicated because different situations may call for different routing
strategies.

The simplest situation is again the one in which the service providers are all identical. While
you could leave the requests in a single queue and let both service providers pull from the
same queue, this does not necessarily make optimum use of the bandwidth between the
two sites. You may want to implement a strategy that weights requests for local servicing
as long as the local service provider has the capacity. Only when the demand exceeds the
local capacity and the other site has idle capacity would requests be routed to the remote
service provider.

Life gets more complicated when the service providers are not all equivalent. You have your
North American customer data in one database; your European, Middle Eastern, and African
customers in a second database; and your Asian and Pacific-Rim customers in a third. Each
database is located in the region it serves. For uniformity, you want to provide a single
generic interface at each location through which all customer information can be accessed,
regardless of where it is located. In this case, the mediation service must determine which
service provider (database) can handle each request.

What makes this type of routing, commonly referred to as content-based routing, complex
is that there is rarely enough information in the incoming request to do the routing.
Determining the appropriate routing generally requires some form of reference data. When

you place a phone call, the country code, area code, and telephone exchange are the keys
to routing the call to the correct telephone exchange. However, to do the actual routing you
need information that relates each combination of codes to the actual telephone exchange
to which the call must be directed. Furthermore, the service needs to know how to extract
the relevant data from either the message itself or its destination name.

Content-based routing makes the design of the mediation service dependent upon certain
application-specific characteristics. The mediation service needs to know how to extract the
key information from the request. It needs to know how to access the reference data and
perhaps cache it for efficient access. It needs to know the correspondence between the
reference data and the service providers. And it needs to know the rules for deciding which
service provider gets which request.

The bottom line is that content-based routing is a service. As such, it needs to be treated
with the same rigor as any other service. In particular, the stability of the interfaces to this
service is a key concern. There is a tendency to think of content-based routing as being
loosely driven by rulesâ!”rules that can easily be changed. But if changes to the rules
require additional input data or reference data, interfaces change and there is a lot more
work to be done. Thus any proposal for content-based routing must be evaluated in terms
of its ability to support future as well as current needs.

Service Composition

Services are only of value when they are employed in a business process. While some value
is provided when a service is first employed as part of one business process, additional
valueâ!”the added value that justifies making the functionality into a serviceâ!”is provided
when the service is employed in other business processes as well. The service makes it
possible to create, modify, or extend other business processes faster and at a lower cost
than would be possible without it. The ultimate goal of a service-oriented architecture is to
enable the low-cost assembly of business processes from existing services, and the process
of combining the services together is referred to as composition.

Composition is often discussed as a technique for combining services together to form a
new higher-level service. Such a service is referred to as a composite service. However, the
idea of composing services together is distinct from the idea of turning the resulting
composite into a new service. The majority of composites you are likely to encounter are
not servicesâ!”they are business processes. The core value provided by SOA is the ability to
quickly and inexpensively create these composites. Turning a composite into a service is
gravy.

Hard-Wired Composition

The simplest way to compose services is to hard wire them together so that the result of
one service becomes the input to the next (Figure 4-22). This type of composition is
termed hard-wired because there is no explicit embodiment of the overall process. To
determine what this overall process actually is, you have to trace the sequence of
interactions between the participants. While this type of composition may not strike you as
being particularly service-oriented, it is the most commonly found composition technique in
use today, although the participants in such compositions are often not designed as
services.

Figure 4-22. Hard-Wired Composition

In hard-wired composition, the result produced by one service may not be in the proper
form to serve as the input to the next, or the component producing the result may not be
configured to direct it to the next service. In such cases, intermediate components can be
used to transform the results and deliver them to the appropriate destinations. Part IV of
this book explores these components and their attendant design issues.

Nested Composition

Service-oriented architectures lead to a very natural style, modularizing functionality into
request-response service operations and then building composites that invoke these
services (Figure 4-23). This compositional style is an excellent first thought in terms of
organizing functionality, but it must be examined from a performance perspective to
determine whether the modularization is adequate for the task. The performance
examination must explore both response latency and the downstream service capacity
limitations.

Figure 4-23. Nested Composition

[View full size image]

When requests are nested in this manner, the accumulated latency resulting from the
nested request-response calls may result in unacceptable overall response time from the
user's perspective. For each service call, there is a communication delay in each direction.
On top of this, there is the time it takes the service provider to respond to the request, and
the additional time it takes the service provider to perform the work. These delays add to
the time required for the user to interact with the composite and the time it takes the
composite to do its own work. When the underlying services are themselves composites,
additional latencies are introduced. Depending upon the needs of the user, the accumulated
composite latency may become unacceptable.

You also need to consider the load being placed on the lower-level service. The service may
not have been designed to handle the volume of requests coming from the composite. One
hotelier with multiple properties in the same location decided to change the service its
customers use to locate hotel rooms in a city. Instead of having the customer first select
from a list of hotels and then check room availability in that hotel, they implemented a new
composite service that checked the availability of all hotels in the city for each customer

request. The impact was that the volume of queries increased dramatically on all the
hotelsâ!”by a factor of eight! During peak periods (the most important times for hotel
bookings), the resulting demand exceeded the capacity of the individual hotel systems. As a
result, the majority of the queries timed out and provided no response. Instead of delivering
a new and improved service to customers, many room availability queries went
unanswered.

Performance evaluation for any use of a service should be a routine part of the design
process. Chapter 39 shows how to perform this type of analysis.

Cached Composites

The nested composition performance lesson is one that was first learned when businesses
first started adding customer-facing web self-service front-ends. These web sites allowed
customers to check the status of their orders and shipments. However, the underlying
back-office production systems that processed these orders were never designed to handle
this kind of dynamic query load. Early web site implementations that simply queried the
back-office production systems not only performed poorly, but their query load often had an
adverse impact on the back-office system's ability to perform its work.

To cope with this type of situation, an architectural style evolved in which status information
is extracted from the production system and cached for convenient access by the web
application server. In service-oriented terms, the style of interaction with the underlying
service changed from a request-reply interaction to a subscription interaction (Figure 4-
24).

Figure 4-24. Cached Composite

Note that this architectural change impacted not only the composite, but the underlying
service as well. Interaction with the underlying service changed from a request-reply to a
subscription, and the composite changed from a nested composition to a cached
composition. Once again, you can see the importance of understanding the intended
utilization of a serviceâ!”particularly the volume of activity and the required response
times. This understanding will impact the architecture of both the composite and the
service, and will deeply influence the operation interfaces.

Locating Services

You can't use a service unless you are aware of its existence. A significant challenge in SOA
is helping architects and designers locate the services that are appropriate for their needs.
UDDI registries provide a mechanism for sharing some information about services (primarily
interface details and information about service providers and users), but there is a wealth of
additional information required to support the use of services, including (but not limited to):

Service requirementsâ!”how the service specification is derived from its intended
utilization

Service specificationâ!”the interface (WSDL), including operations and data
structures, the information managed by the service, the externally observable
behavior, the characterization of intended utilization, and supported SLAs

One-line description of the serviceâ!”for quick weeding out of services

Abstract (paragraph)â!”for a second-pass weeding

Service user's guideâ!”everything a user needs to know to use the service, from an
introduction to its capabilities and intended utilization to the details of best practices
in employing the service

Service operation and maintenance guide

Service operational support procedures

This information must be created, organized, archived, and made accessible to the
community of service users. Services need to be categorized and indexed for easy access
(some of which can be done in the UDDI registry), and the one-line descriptions and
abstracts should be searchable as well.

Enterprise Architecture for Services

Except in the most unusual of circumstances, you will not be constructing your SOA in one
mammoth project. Instead, your enterprise will evolve its existing architecture in a series of
projects. However, to reap the benefits of SOA, you must make sure that design decisions
are made consistently from project to project. The role of maintaining this consistency is
typically given to the enterprise architecture group. With respect to services, this group's
responsibilities are:

Selecting the service interface standards to be followed and selecting the supporting
infrastructure to be used

Defining service interaction patterns and their preferred technology implementations

Defining the criteria to be used in determining when standardized data
representations (common data models) should be employed in operation interfaces

Defining the selection criteria for proposed services and the procedures for validating
their appropriateness

Defining the preferred architectural styles for implementing services and the criteria
to be used in selecting a style

Defining the service mediation architecture and selecting the supporting
infrastructure to be used

Establishing the preferred design patterns for content-based routing and the criteria
to be used in selecting a pattern

Establishing the capacity planning procedures for services and ensuring that these
procedures are followed

As an enterprise architect, you should be aware that it is difficult to formulate an efficient
and practical set of guidelines without a bit of trial and error. You must make every effort
to observe the guidelines and procedures you have defined being put into practice. Are the
guidelines easy to follow, or do they constantly require interpretation? Interpretation opens
the door for variation and therefore inconsistency from project to project. Such variation
may work against your SOA objectives. Observe the level of effort required for project
teams to comply with the guidelines and weigh this effort against the benefit you expect
from the guideline. Is the effort justified? Be particularly vigilant for signs of excessive
administrative complexity, making records that are never used or whose accuracy is never
validated. Such complexity not only increases the level of effort, but it can also be a
significant source of error.

Summary

When incorporating services into a business process, there are a number of ways in which a
service user and service provider may interact. The synchronous request-reply style is
perhaps the most common, but many business processes require asynchronous responses,
subscription services, and unsolicited notifications as well. Determining the appropriate style
of interaction requires an understanding of how the service will be employed in business
processes.

Your choice of service access mechanisms directly impacts the ease with which you can
access services, your ability to provide the different interaction patterns that may be
required by the business processes, and the amount of work required to change the location
of both service users and service providers. While direct or proxy-mediated access to
services provides good support for synchronous request-reply, it makes implementation of
other interaction patterns complex. Direct and proxy-mediated approaches are always
dependent on the location of the service provider, and the use of interaction patterns other
than synchronous request-reply makes them dependent upon the location of the service
user as well.

Message-based service access provides more flexibility for interacting with services. It has
no dependency on the location of the service users and providers, and it provides simple
support for all of the service interaction patterns. It provides the most flexible service
access.

Many services require some form of access control to manage who has access to which
service. Access control can be implemented by the service provider, but this approach
requires the modification of the service provider and can be expensive. Alternatively, access
control can be implemented by either a proxy or a mediation service (an extended
messaging service). Once again, the proxy approach is convenient for synchronous request-
reply, but awkward for the other interaction patterns. The mediation service approach works
well for all interaction patterns.

Accessing services may require the routing of service requests. The need for routing may
arise from the need to distribute load across multiple service providers, the need to route
specific requests to specific providers, or the placement of users and service providers at
different geographic locations. Routing may also require some introspection into the
message, the access of reference data, and the evaluation of routing rules. A mediation
service provides a convenient architectural home for this functionality. Geographic routing
generally requires the presence of mediation service components at each geographic
location.

Services provide value when they are actually utilized in business processes. Combining
services to form business processes is referred to as composition. Optionally, the resulting
composite may, itself, be offered as a higher-level service.

The architecture of composites must be carefully evaluated for performance. Nested
synchronous request-reply interactions can lead to excessive latency and unacceptable
loads on back-end services. In such cases, architectural alternatives such as caching

information in the composite may be more appropriate. Choosing such alternatives may
impact the architecture of the back-end service as well as that of the composite,
transforming a synchronous request-reply interaction between them into a subscription
interaction. Thus, to achieve the service interface stability that is required to justify the
service development cost, potential service usages must be thoroughly explored before the
service is specified and implemented.

Achieving the benefits of a service-oriented architecture requires consistent decision making
across many projects. The enterprise architecture group plays a key role not only in
establishing standards and best practices for building services but also in ensuring that
these guidelines are practical for routine day-to-day usage by project teams.

Key Service Utilization Questions

1. Does your SOA infrastructure support the common service interaction
patterns: synchronous request-reply, asynchronous request-reply,
subscription, and unsolicited notification?

2. How does your SOA infrastructure control access to services? Does the
access control work for the four common service interaction patterns?

3. How does your SOA infrastructure route requests to the service provider(s)?
Does it support the routing of requests between geographic locations? Does
it support content-based routing?

4. Who reviews the proposed architecture of new services from a performance
perspective?

5. Has your enterprise architecture group established standards and best
practices for the development of services and for the supporting
infrastructure? Has the group followed up to determine whether these
standards and best practices are practical and being used?

6. Do you have an archive for service-related information? Does it contain
one-line descriptions, abstracts, and user documentation? Is it searchable?

Suggested Reading

W3C (World Wide Web Consortium). March 2004. "Web Services Description Language
(WSDL) Version 2.0, Part 2: Message Exchange Patterns," W3C Working Draft 26.
www.w3.org/TR/2004/WD-wsdl20-patterns-20040326.

Chapter 5. The SOA Development Process
What Is Different about SOA Development?

The Overall Development Process

Architecture Tasks

Architecture in Context

Total Architecture Synthesis (TAS)

Beware of Look-Alike Processes!

Manage Risk: Architect Iteratively

Summary

Key Development Process Questions

Suggested Reading

What Is Different about SOA Development?

Scope differentiates SOA (and other distributed systems) development projects from
conventional development projects. To achieve SOA goals, the services and other
components being developed must fit smoothly into all the business processes they are
intended to support. Thus, building a service (or any distributed system component)
requires a certain level of understanding about those business processes. The challenge is
that your current project is most likely focused on a subset of these processes. To create a
widely usable service, you need to have an understanding of all of the business processes
the service will participate inâ!”both present and future. That understanding must
encompass the patterns of interaction between the business process and the service, the
volumes of activity that can be expected, and the response times that are required.

SOA development commonly involves multiple development teamsâ!”both present and
future. Typically one team is developing the business service while another team
implements the business process that uses the service. In the early stages of your SOA
initiative, there may be a third team working on SOA infrastructure and infrastructure
services. And, since the true benefits of SOA are realized when the service gets reused, the
needs of future development teams using the services being developed must also be
considered.

The companion book, Succeeding with SOA, explores these SOA development issues from
an organizational perspective. This book, in the remainder of this chapter, explores SOA
development from a technical perspective. It focuses on the critical development activities
that must be performed to achieve a successful result.

Chapter 5. The SOA Development Process
What Is Different about SOA Development?

The Overall Development Process

Architecture Tasks

Architecture in Context

Total Architecture Synthesis (TAS)

Beware of Look-Alike Processes!

Manage Risk: Architect Iteratively

Summary

Key Development Process Questions

Suggested Reading

What Is Different about SOA Development?

Scope differentiates SOA (and other distributed systems) development projects from
conventional development projects. To achieve SOA goals, the services and other
components being developed must fit smoothly into all the business processes they are
intended to support. Thus, building a service (or any distributed system component)
requires a certain level of understanding about those business processes. The challenge is
that your current project is most likely focused on a subset of these processes. To create a
widely usable service, you need to have an understanding of all of the business processes
the service will participate inâ!”both present and future. That understanding must
encompass the patterns of interaction between the business process and the service, the
volumes of activity that can be expected, and the response times that are required.

SOA development commonly involves multiple development teamsâ!”both present and
future. Typically one team is developing the business service while another team
implements the business process that uses the service. In the early stages of your SOA
initiative, there may be a third team working on SOA infrastructure and infrastructure
services. And, since the true benefits of SOA are realized when the service gets reused, the
needs of future development teams using the services being developed must also be
considered.

The companion book, Succeeding with SOA, explores these SOA development issues from
an organizational perspective. This book, in the remainder of this chapter, explores SOA
development from a technical perspective. It focuses on the critical development activities
that must be performed to achieve a successful result.

The Overall Development Process

Most development projects are incremental in nature. You generally don't build an entire
enterprise of systems from scratch, and only occasionally will you build or acquire a
complete system. Instead, most projects make incremental improvements to one specific
system. For the most part, such projects assume that the architecture of the system will
remain untouched, and the typical development process looks something like that shown in
Figure 5-1. In this style of project, there is generally an IT group dedicated to the
maintenance of the system, and the development team is drawn from this group. The
development team is either given a set of requirements or is asked to elicit those
requirements from the business community. It makes the changes to the system, which are
then tested and placed into production.

Figure 5-1. Typical Incremental System-oriented Development Process

This incremental system-oriented development process falls short when it comes to SOA
developmentâ!”or any other form of distributed system design for that matter. It assumes
that there is a single development team, which is rarely the case for SOA and distributed
systems development in general. It assumes that the architecture has already been
determined, when actually SOA is introducing architectural changes. Finally, it assumes that
a satisfactory business process definition already exists when in fact SOA requires
rationalization and realignment of business processes in order to share services.

What is required for SOA development is a process that looks something like the one shown
in Figure 5-2. The primary difference here is the presence of an explicit architecture
definition step prior to development. This step determines both the business process and
systems architecture changes that are required. It not only ensures that the business
process and systems architectures blend to achieve the business objectives, but it also
determines what each of the development groups needs to do.

Figure 5-2. SOA Development Process

[View full size image]

This architecture step is not a new idea. In fact, it is a primary best practice for developing
systemsâ!”from scratch. The problem is that this step has, in many IT shops, disappeared
entirely. In many cases, if architects participate at all, they do an after-the-fact review of a
design, often after the implementation is well under way. By then, significant changes have
become cost-prohibitive. After-the-fact reviews will not suffice to evolve your systems to a
service-oriented architecture.

The SOA development process in Figure 5-2 adds two additional steps: an explicit charter
and an integration test step. The charter sets forth the business expectations for the
project. It quantifies the expected benefits and establishes the cost and schedule constraints
for the project. This information provides objective criteria for determining what is
important to the business, and thus provides an objective means of making architectural
tradeoff decisions for both business processes and systems.

The integration test step is a concession to reality in building distributed systems. A service-
oriented architecture is assembled from many components and services. Making changes to
multiple components and then just turning them all on at once can lead to chaos. It is
difficult to diagnose a distributed system until a certain level of working dialog has been
established between the components and services. The integration test step simply
executes a planned order of assembly for the components and services. With this approach,
a few components are assembled and tested to ensure that they are interacting properly.
After this has been established, a few more components can be added and interactions
once again tested. This process is continued until the entire system has been assembled.
Integration testing establishes that there is sufficient working dialog in place that you can
monitor the execution of the business processes and effectively diagnose problems as they
occur. At this point more complete testing of the business processes and systems can
commence.

Architecture Tasks

The work within the architecture step breaks down into three major tasks: defining the
business process architecture, defining the systems architecture, and finally specifying the
components and services of the systems architecture (Figure 5-3). The business process
architecture defines the participants in the business process along with their roles and
responsibilities. For a new business process, this will be the first time that the architecture
of the process has been defined. For an existing process, the task is to refine the business
process architecture so that the revised business process produces the desired business
results. Since some of the business process participants will be systems, the business
process architecture essentially defines the systems requirements.

Figure 5-3. Architecture Tasks

The systems architecture refines the business process view of systems, which is pretty
coarse, into the structure of system components and services, culminating in the
specification of those components and services and the physical environment in which they
will be deployed.

For new components and services, these will be new specifications. For existing components
and services, these will be revisions to the existing specifications.

For efficiency, the development of these specifications is decomposed into two tasks:
defining the systems architecture and specifying the components and services. The
architecture definition task identifies each of the components and services. It decomposes
the systems activities defined by the business process into individual activities that are
performed by the components and services. Finally, it identifies the communications
between the components and services required to execute the business process.

The purpose of the systems architecture definition task is to efficiently explore possible
architectural alternatives: alternative decompositions of systems into components and

services, and alternative assignments of roles and responsibilities to these components and
services. To make this process efficient, the architecture definition task intentionally stops
short of fully specifying the components, services, and communications. It identifies the
components and services and determines the categories of data that will be managed by
each, but does not detail that data. It identifies the activities being performed by each
component, along with their inputs and their results in terms of information content, but
does not detail the interfaces or data structures. Finally, it roughly characterizes the level of
effort required to execute each activity in terms of the system resources that will be
required.

Completing the specification for a component or service is a painstaking and time-
consuming task. By deferring this task and roughly characterizing the components and
services, it becomes practical to explore different architectural alternatives. Only after an
alternative is selected is the investment made in developing the specifications for the
components and services.

Architecture in Context

If you insert these additional steps to the development process, you end up with a
sequence of project tasks similar to the one shown in (Figure 5-4). You charter the project,
clearly spelling out the expected business benefit and the cost and schedule guidelines. You
embark on a requirements definition phase and a business process synthesis phase that
result in well-defined business processes. You then architect the system and move on to
specifying the individual components and services. These are then implemented, integrated,
tested, and deployed. But there's a lurking problem here: efficiency.

Figure 5-4. Architecture in Context

The problem with this approach is that it does not deal well with the complex relationship
between business process architecture and systems architecture. There are many possible
business process designs, each of which will assign different responsibilities to the systems.

There are many possible system component and service designs for each of the system
responsibility assignments. Some of the business process designs will assign systems
responsibilities that turn out to be infeasible or impractical in terms of being able to
implement the design within the project's cost and schedule guidelines.

The dilemma this produces is that you will not know whether a given business process
architecture is feasible (i.e., can be implemented within the cost and schedule guidelines)
until you have designed the supporting system. That's a lot of throw-away work if the
design turns out to be infeasible. Furthermore, if it ends up that you can't find any
combination of business process and systems architecture that produces the expected
benefit within the project's cost and schedule guidelines, you won't discover this until you
are deep into the project lifecycle.

Total Architecture Synthesis (TAS)

From the outset of a project, you face the challenge of determining whether a project is
feasible and having to define an appropriate architectureâ!”all without burning up excessive
time and resources. What makes this challenging is the combination of a large number of
possible designs and the fact that you can't estimate cost and schedule until a design is at
least partially completed. Deferring the specification of the components and services solves
part of the problem, but you are still left with a large number of design alternatives to
explore. You need a way to simplify this search through design alternatives.

The key to simplifying this search lies in a fundamental observation: Most business
requirements are relatively easy to satisfy. Only a small portion of the business
requirements will present real challenges to the architecture of your business processes and
systems. Furthermore, these difficult business requirements will not present a challenge to
all of the business processes and systems impacted by the project, only a few. So, if you
concentrate your efforts initially on those difficult requirements, and confine your
explorations to the specific business processes and systems whose architecture they
challenge, you will have fewer designs to explore. This simplifies your search for suitable
architectures. Since the remaining business requirements are, by definition, easier to
accommodate, addressing them is less likely to require alterations to the architecture you
have already established. In fact, whatever architecture you select that satisfies the
challenging requirements will, most likely, be readily extensible to support the less-
challenging requirements. This is the guiding principle behind Total Architecture Synthesis
(TAS).

TAS takes an iterative approach to gathering requirements, defining business processes,
and defining the systems architecture (Figure 5-5). The TAS approach is a variation of
Barry Boehm's spiral development approach. The difference is that the TAS approach is
narrowly focused on just the business process and systems architecture, whereas Boehm's
spiral development addresses the entire development life cycle. TAS can be used for the
architecture activities within a larger spiral development process.[1]

[1] Boehm, Barry. 2000. "Spiral Development: Experience, Principles, and Refinements." Spiral
Development Workshop February 9, 2000 Special Report CMU/SEI-2000-SR-008. Pittsburgh, PA:
Carnegie Mellon University.

Figure 5-5. Overview of Total Architecture Synthesis

[View full size image]

The technique begins with an initial breadth-first inventory of all the business processes that
appear to be impacted by the project. This inventory is based on the business goals set
forth in the project charter and is the first cut at defining the full scope of the project. A
minimal amount of data is gathered in order to rank the business processes according to
their perceived level of design difficulty and business importance. Once the initial ranking is
complete, the iterations of synthesizing the architecture begin. The first iteration begins
with a small number of what appear to be the most challenging business processes. Each
iteration comprises requirements gathering, business process definition, systems
architecture definition, and a concluding evaluation.

From the perspective of determining project feasibility, the first iteration is the critical one.
You begin by selecting a small number of the most challenging business processes based on
their difficulty and importance ranking. You gather the requirements for just these business
processes, identifying the changes to business process results, benefits, and operating
constraints that are required to achieve the business objectives. You next explore possible
business process architectures and select one or two promising ones for further exploration.
You then explore the possible system architectures that can support the chosen business
process architectures. You select one or two of these system architectures, and then you
evaluate which combination of business process and systems architectures best achieves the
overall business benefit while remaining within the cost and schedule guidelines. If you have
one or more combinations that work, you select the most promising as the basis for the

next iteration. In this next iteration you select a few more business processes to be
considered, and the process continues until you have completed the architecture of both the
business processes and systems.

You must keep in mind that the first iteration may not produce a combination of business
process and systems architectures that is capable of producing the expected benefits within
the cost and schedule guidelines. Should this occur, it is clearly appropriate to try again and
explore additional design alternatives, but you should keep in mind that you may be looking
at an infeasible projectâ!”one that cannot produce the expected benefits within the project's
cost and schedule guidelines. While this is not your preferred outcome, it is not exactly
unusual either. The good news is that should you reach this conclusion, you have done so
with the bare minimum of time and resourcesâ!”which is the whole point of approaching the
architecture in this manner.

Should you conclude that your project is not feasible, your work leading to this conclusion
will most likely have given you some insight as to which aspects of the project charter have
driven the cost or schedule out of range. Or, perhaps the goal of the project was not
realistic. In any case, you can use this understanding as the basis for proposing changes to
the project charter's goals, schedule, and budgetâ!”changes that would yield a feasible
project.

Most importantly, if you conclude that the project is not feasible you should take this
conclusion to the project oversight team. Your conclusion should be accompanied by some
alternatives, such as less ambitious goals or an extended set of cost and schedule
guidelines. If none of these alternatives is acceptable, the project oversight team may
choose to abandon the project altogether and apply the resources to another project.
Regardless of the outcome, you and the business have reached this conclusion with a
minimum expenditure of time and resources, and have therefore maximized the time and
resources available to pursue other opportunities.

Standing back from these iterations for a moment and considering how this activity fits into
the overall project flow, you can see that TAS impacts the organization of the work in the
earliest stages of the project (Figure 5-6). With TAS, requirements gathering is no longer a
distinct activity, separated from business process and systems architecture. These three
activities are now iteratively intertwined and must be executed by a cross-functional team
consisting of business experts, business process architects, and systems architects. At the
conclusion of TAS, there is still some architectural work to be done: finalizing the
specifications for the various components and services whose design is impacted by the
architectural changes. But this work is not undertaken until you have stabilized the
architecture and determined that the project is feasible.

Figure 5-6. The Scope of Total Architecture Synthesis

Figure 5-7 details the TAS approach. TAS begins with the assumption that the project has
been chartered with clearly identified and quantified business benefits along with cost and
schedule guidelines. The quantified business benefits provide objective criteria for deciding
whether or not a proposed architecture can deliver those benefits. The cost and schedule
guidelines allow the architects (along with the project manager) to select architectures that
fit these constraints. The charter as a whole serves to focus the TAS efforts on those
aspects of the project that are most important to the business. The details of the project
charter are covered in the companion volume, Succeeding with SOA.

Figure 5-7. Details of Total Architecture Synthesis

[View full size image]

Defining the Initial Scope

TAS begins by defining the initial scope of the project in terms of business processes. An
inventory is made of those business processes that will clearly be impacted by the project
based on the project charter's statement of project goals. Once these business processes
are identified, a small amount of information is gathered about each process. The
stakeholders involved in the business process are identified. A brief dialog with the
stakeholders ensues to obtain a rough estimate of the peak rate at which the process
executes and the volume of information being carried through each execution along with
the business significance of the process. The degree of automation in the existing process is
determined, and the level of automation required to meet the business objectives is
identified.

This collection of information is sufficient to determine a relative ranking of the business
processes in terms of their anticipated level of design difficulty and business importance.
Note that errors in rankings will not lead to an inappropriate architecture. They merely
impact the efficiency of the process. The worst that can happen is for a less important
business process to be considered before a more important one. The scoping task is

detailed in Chapter 6.

Defining the Requirements

Once you have completed the initial scoping, the iterative part of TAS begins. To begin each
iteration, you select a small number of business processes from the ranked list. These
become the focus of the current iteration. In the first iteration you may only consider one or
two business processes, anticipating that these will be challenging enough to motivate
significant architectural exploration without adding the complexity of additional business
processes.

Once the business processes have been selected for the current iteration, you gather their
requirements by interviewing the stakeholders for each process. What you are seeking is a
"black box" view of the business process, focusing on the inputs, results, milestones, and
constraints. Functionally, what does the process accomplish? What results does the process
produce for the business, and what inputs does it require from other processes? What are
the constraints on the performance of the process? What are the key progress milestones?

It is essential that you relate the business process requirements back to the project's
business objectives. You need to determine which requirements (or changes to
requirements) will enable the process to produce the expected business benefits. Very often
the key requirements will be the constraints on the business process execution: the length
of time or the level of effort it takes to reach a milestone or produce a result. Identifying
these requirements helps to keep the project focused on achieving the project goals.

In addition to gathering these business-process specific requirements, you will also be
gathering more generic requirements. These usually take the form of compliance
constraints on how business is conducted or how technology is to be used. Compliance with
corporate security standards, audit requirements, and technology best practices are
common examples. These compliance requirements are generally discovered during the
requirements gathering for specific business processes, but they apply to all of the business
processes in the project inventory. Requirements definition is covered in Chapters 9 through
11.

Designing the Business Process Architecture

Once the requirements have been gathered, you begin architecting the business process.
This is the high-level design of the business process that focuses on identifying the
participants in the process (people and systems), the activities being performed by the
participants, and the dialog between them needed to bring the business process to life.
Unless the requirements mandate that specific activities are to be performed by specific
systems, the actual system that will perform the activity is intentionally left unspecified at
this point.

It is now that you explore the various business process alternatives and business rules that
can satisfy the requirements. You explore various combinations of participants in the
proposed processes and various activity assignments, paying particular attention to the
information being communicated between participants and the complexity of this
communication. Your goal is to identify a simple and robust process architecture that is
capable of producing the desired business benefit within the given constraints.

Some sources of information required by a business process may originate in another
business process. In such cases you must identify the source business process. If the source
business process requires modification and is not already in the business process inventory,
you must add it. Such additions, of course, constitute a change in scope (or at least a
growing awareness of the actual scope) for your project.

While you are defining these business processes and their alternatives, you are at the same
time capturing the key concepts and relationships involved in the processes in a domain
model. Some of these will be physical in nature (people, companies, products) while others
will be information abstractions (orders, phone numbers, etc.). This domain model
emphasizes the variability in relationships that can occur in the actual application domain
and thus serves as a reference against which proposed data structure and schema
representations can be evaluated. You also ensure that the milestone status is clearly
identifiable in the business process design.

The explorations of business processes and the assemblage of the domain model may raise
questions about requirements and thus require reengaging with the stakeholders to seek
clarification. You will refine the requirements based on these discussions and modify the
business process architecture accordingly.

As you conclude the design of the business process architecture, you explore the
advantages and risks of the different business process alternatives and select one or two
promising business process definitions for each process as input to the next step. The
details of business process synthesis are discussed in Part II.

Designing the Systems Architecture

Once you have selected the candidate business processes, you can begin the design of the
systems architecture. Here you are exploring various system design alternatives that could
support the selected business processes. In defining the architecture, you will address a
number of design challenges. Rather than tackle them all at once, it is more productive to
take an iterative approach. You sequence the design issues so that later design issues are
unlikely to require changes to decisions made regarding earlier design issues. You then
tackle the design issues a few at a time. After refining each of the proposed architectural
alternatives to address the selected design issues, you evaluate the overall results. This
evaluation weeds out unsuitable alternatives early in the game and singles out the best
candidates. If you find suitable candidates, then you consider additional design issues. If
you do not find any suitable alternatives, you must explore alternative architectures.
However, you must once again keep your mind open to the possibility that there is no
suitable architecture that will yield the desired benefits within the cost and schedule
guidelines. The details of systems architecture synthesis are discussed in Parts III through
VIII.

Evaluating Architectures

As should be apparent from this discussion of TAS, evaluation is an ongoing process that
tests the suitability of business process and system designs as needed. As with the design
issues in systems architecture synthesis, there are a number of evaluation questions to ask
about the overall design. These questions are also ranked, with the show-stopper questions
such as performance feasibility placed high on the list. When the early design issues are

being addressed, you consider only a few of the most fundamental evaluation questions.

As the design becomes more complete (with respect to the business processes being
considered), you consider more of these evaluation questions. In the end, however, there is
really only one question to be answered: Does it still appear feasible that you can achieve
the desired business benefit within the cost and schedule guidelines? If the answer is yes, it
is time to move on with the architecture and consider more design issues or business
processes. If the answer is no, it is time to work with the business executive sponsor and
project oversight team to rethink the project. Evaluation is discussed in Chapter 39.

Beware of Look-Alike Processes!

Iterative development processes and agile development have become quite popular in
recent years. These techniques, TAS included, all seek to reduce risk by quickly trying out
ideas as a means of validating them and obtaining feedback. But I must urge some caution
here.

Agile development that attempts to quickly produce a working system often tackles the
simplest aspects of a problem first. These aspects generally do not pose any particular
architectural challenges. Consequently, in the early stages of the project, virtually any
architecture may appear to be adequate. Yet if an inappropriate architecture is selected (by
accident), by the time the difficult requirements are addressed, a considerable investment
will have already been made in the inappropriate architecture. Changing the architecture at
this point will be costly and time consumingâ!”and may even be cost prohibitive. Whoops!

Barry Boehm sums the issue up nicely: "As in life, if you marry your architecture in haste,
you and your stakeholders will repent at leisure."[2] Care should be taken in this
methodology to consciously select the architecture and evaluate its suitability before
making a commitment to that architecture. As you are considering it, you should interpret
architecture broadly as being inclusive of the business process design as well. Total
Architecture Synthesis aims to do exactly this for the design of distributed information
systems, testing and reviewing the design of both the business process and supporting
systems on paper before committing to an implementation effort.

[2] Barry Boehm. 2000. "Spiral Development: Experience, Principles, and Refinements" Spiral
Development Workshop February 9, 2000 Special Report CMU/SEI-2000-SR-008, Pittsburgh, PA:
Carnegie Mellon University, p. 15.

The use of Total Architecture Synthesis is not necessarily inconsistent with agile
development methodologies that seek early implementations. At any point in the TAS
iterative business process and architecture development, a subset of the business processes
and supporting systems can be driven to implementation. However, to maintain risk at
acceptable levels, it is imperative that even if the more difficult business processes and
supporting systems are not implemented in these early iterations, they are still designed to
avoid accidentally implementing an inappropriate architecture.

Manage Risk: Architect Iteratively

A question you need to always keep in focus is whether the project is feasible. Can you
actually deliver the expected project benefits within the cost and schedule guidelines? The
question may be easy to ask, but it is hard to answer truthfullyâ!”especially when you are
well into the project. The problem is that the further you are into the project, the greater
the investment and the more difficult it becomes to report that the project (at least as
chartered) is not feasible.

Generally, by the time you have finished the design work in a project, it is too late.
Promises have been made, career reputations staked; money has been invested, critical
time has elapsed. But this problem is avoidable by restructuring the early phases of the
work as just outlined. Instead of making a large investment in requirements gathering
followed by a large investment in architecture (the point at which a definitive answer
becomes possible), you focus instead on exploring only those business processes that are
likely to pose a feasibility challenge. By focusing on those business processes and their
associated systems architecture, you can provide an early answer to the feasibility question
with minimal investment.

Total Architecture Synthesis can thus be seen as a risk management technique. In fact, it is
entirely appropriate to introduce a few project oversight team reviews and project go/no-go
decisions into TAS's iterative cycles of expanding business process coverage. This gives the
oversight team the opportunity to identify, at minimal cost, the projects whose unfolding
costs or schedules are becoming inconsistent with project expectations. This early exposure
affords maximum flexibility in terms of re-scoping the project, increasing the budget, or
reassigning the resources to more beneficial projects.

Total Architecture Synthesis provides an efficient means of attacking a business problem
and delivering the desired benefits within cost and schedule guidelines. Its initial focus on
the difficult aspects of a problem leads to a quick determination as to whether these
benefits are, indeed, achievable within the given constraints. This focus also leads to the
efficient exploration of design alternatives and thus a lower-cost development process. It
also ensures that both the business process and system designs are up to the task before
the detailed specification of system components and services is undertaken. The use of UML
standard notation creates documentation that enables a common understanding of both
business process and system design that can be shared between the business and technical
communities.

Summary

Incremental IT development methodologies do not adequately address enterprise-scale
projects or interdependencies between business process design and systems design.
Waterfall-style approaches assume that the resulting business process designs will permit
reasonable system designs, while in reality some give-and-take is required to arrive at
effective business processes with reasonable supporting system designs. Agile development
does not address the multiple-organization challenge of enterprise projects, and can lead to
early commitment to an architecture before the challenging aspects of the problem have
necessarily been addressed.

The Total Architecture Synthesis approach provides an effective alternative. Its iterative
approach efficiently blends requirements gathering with business process and system
design, and it provides an early assessment of project feasibility. It quickly identifies the
business processes that are most likely to present feasibility challenges and addresses them
first. Business process by business process, it guides the architecture team through
gathering requirements, designing the business process and supporting systems, and
evaluating the design. Its evaluations provide both cost and performance feasibility
assessments before a commitment is made to implementation. Its artifacts, based on
industry-standard UML notation, promote efficient and effective cross-communication
between the business process and systems communities. TAS keeps the project focused on
delivering business value.

Key Development Process Questions

1. Does your development process include an explicit architecture step that
covers the design of both business processes and supporting systems? Is
this design completed and reviewed prior to the start of any significant
development?

2. Does your development process explicitly identify and resolve architectural
challenges before a commitment to the architecture has been made?

3. Does your development process begin with an explicit charter that sets forth
quantified business objectives along with cost and schedule constraints?

4. Does your development process have an explicit integration test step to
promote efficient initial assembly of the completed system?

Suggested Reading

Boehm, Barry. 2000. "Spiral Development: Experience, Principles, and Refinements" Spiral
Development Workshop February 9, 2000. Special Report CMU/SEI-2000-SR-008.
Pittsburgh, PA: Carnegie Mellon University.

Part II: The Business Process Perspective

Chapter 6. Processes
Any discussion of processes must begin with a basic understanding of what a process is.
The dictionary defines a process to be a series of actions leading to a goal. This definition,
however, is a bit vague with respect to marking the beginning and ending of the process
and the nature of the steps in between. Business processes, at least the repeatable ones
supported by information systems, have discrete starting points and discrete ends. They
have discrete steps, and produce discrete results. These processes fall into the category of
processes known as discrete processes.[1]

[1] Sowa, John F. 2000. Knowledge Representation: Logical, Philosophical, and Computational
Foundation. Pacific Grove, CA: Brooks/Cole Publishing Co.

A discrete process is a sequence of discrete activities whose performance is triggered by a
discrete external event and whose execution produces (or attempts to produce) discrete
countable results and may require one or more discrete countable inputs (Figure 6-1). Since
all of the processes discussed in this book are discrete processes, they will generally be
referred to as just processes.

Figure 6-1. Discrete Process

Triggers, Inputs, and Results

Processes begin with the recognition that some event has occurred that warrants the
execution of the process. This recognition is really a determination that the process's
expected results are desired. The triggering event for a process is most often the arrival of
an input to the process. Consider the "Withdraw Cash via ATM" example shown in Figure 6-
2. The triggering event for this process is the arrival of the transaction request from the
customer (i.e., the customer entry indicating that Withdraw Cash is the desired type of
transaction).

Figure 6-2. Withdraw Cash via ATM

In addition to the trigger, other inputs to the process may be required as well. The PIN, the
ATM card, the current account balance, the cash to be dispensed, and the paper to print the
receipts are also required inputs. All inputs to a process, including those whose arrival
constitutes a triggering event, originate outside the process. Anything that originates within
the process should be considered an internal design detail of the process itself. The
specification of the amount to be withdrawn, for example, is an internal detail of the
process and not an external input. You might be tempted to place the PIN and ATM card in
this category. What makes them inputs is that both originated outside the scope of this
process.

There are many sources of inputs for triggering processes. The input may be a user input, a
message arriving from a business partner, or the arrival of a result from another business
process. Although you often don't think of time (i.e., the tick of a clock) as an input, time
can also be used as a triggering input. The tick of the clock is used to update a timer, and
the expiration of this timer becomes the triggering event that causes the execution of the
business process.

It may seem a bit pedantic to talk about the details of triggering events, but the fact is that
if you want robust business processes you must be aware of every aspect of the process
that might cause a failure. The failure to recognize a triggering event (e.g., that the
customer has requested a withdraw cash transaction) will cause that transaction to fail as
surely as anything else that can go wrong with a process. From a design perspective later
on, this recognition of the triggering event is an activity that must be assigned to a
participant in the business process.

The purpose of the process is to produce results. It is not unusual for processes to produce
multiple results. The bank's Withdraw Cash business process produces cash, a receipt, and
an updated account balance. The goal of the process is to generate these results, even if a
particular execution of the process is unsuccessful in achieving the goal. The Withdraw Cash

business process, for example, will not produce cash if there is an insufficient balance in the
bank account. But regardless of the outcome, it is still the Withdraw Cash business process.

To bring closure to the execution of a process, the results of a process must be discrete and
countable. Withdraw Cash is not some nebulous ongoing activity that distributes funds held
in bank accounts to the account holders. It is a focused, repeatable process that takes a
specific request for funds withdrawal and attempts to produce specific discrete countable
results, namely the requested amount of cash, a receipt, and an update to the account
balance. Requiring those results to be discrete and countable provides a clear means of
determining, for each execution of the process, whether the process goal has been achieved
and whether the process execution is complete.

Part II: The Business Process Perspective

Chapter 6. Processes
Any discussion of processes must begin with a basic understanding of what a process is.
The dictionary defines a process to be a series of actions leading to a goal. This definition,
however, is a bit vague with respect to marking the beginning and ending of the process
and the nature of the steps in between. Business processes, at least the repeatable ones
supported by information systems, have discrete starting points and discrete ends. They
have discrete steps, and produce discrete results. These processes fall into the category of
processes known as discrete processes.[1]

[1] Sowa, John F. 2000. Knowledge Representation: Logical, Philosophical, and Computational
Foundation. Pacific Grove, CA: Brooks/Cole Publishing Co.

A discrete process is a sequence of discrete activities whose performance is triggered by a
discrete external event and whose execution produces (or attempts to produce) discrete
countable results and may require one or more discrete countable inputs (Figure 6-1). Since
all of the processes discussed in this book are discrete processes, they will generally be
referred to as just processes.

Figure 6-1. Discrete Process

Triggers, Inputs, and Results

Processes begin with the recognition that some event has occurred that warrants the
execution of the process. This recognition is really a determination that the process's
expected results are desired. The triggering event for a process is most often the arrival of
an input to the process. Consider the "Withdraw Cash via ATM" example shown in Figure 6-
2. The triggering event for this process is the arrival of the transaction request from the
customer (i.e., the customer entry indicating that Withdraw Cash is the desired type of
transaction).

Figure 6-2. Withdraw Cash via ATM

In addition to the trigger, other inputs to the process may be required as well. The PIN, the
ATM card, the current account balance, the cash to be dispensed, and the paper to print the
receipts are also required inputs. All inputs to a process, including those whose arrival
constitutes a triggering event, originate outside the process. Anything that originates within
the process should be considered an internal design detail of the process itself. The
specification of the amount to be withdrawn, for example, is an internal detail of the
process and not an external input. You might be tempted to place the PIN and ATM card in
this category. What makes them inputs is that both originated outside the scope of this
process.

There are many sources of inputs for triggering processes. The input may be a user input, a
message arriving from a business partner, or the arrival of a result from another business
process. Although you often don't think of time (i.e., the tick of a clock) as an input, time
can also be used as a triggering input. The tick of the clock is used to update a timer, and
the expiration of this timer becomes the triggering event that causes the execution of the
business process.

It may seem a bit pedantic to talk about the details of triggering events, but the fact is that
if you want robust business processes you must be aware of every aspect of the process
that might cause a failure. The failure to recognize a triggering event (e.g., that the
customer has requested a withdraw cash transaction) will cause that transaction to fail as
surely as anything else that can go wrong with a process. From a design perspective later
on, this recognition of the triggering event is an activity that must be assigned to a
participant in the business process.

The purpose of the process is to produce results. It is not unusual for processes to produce
multiple results. The bank's Withdraw Cash business process produces cash, a receipt, and
an updated account balance. The goal of the process is to generate these results, even if a
particular execution of the process is unsuccessful in achieving the goal. The Withdraw Cash

business process, for example, will not produce cash if there is an insufficient balance in the
bank account. But regardless of the outcome, it is still the Withdraw Cash business process.

To bring closure to the execution of a process, the results of a process must be discrete and
countable. Withdraw Cash is not some nebulous ongoing activity that distributes funds held
in bank accounts to the account holders. It is a focused, repeatable process that takes a
specific request for funds withdrawal and attempts to produce specific discrete countable
results, namely the requested amount of cash, a receipt, and an update to the account
balance. Requiring those results to be discrete and countable provides a clear means of
determining, for each execution of the process, whether the process goal has been achieved
and whether the process execution is complete.

Part II: The Business Process Perspective

Chapter 6. Processes
Any discussion of processes must begin with a basic understanding of what a process is.
The dictionary defines a process to be a series of actions leading to a goal. This definition,
however, is a bit vague with respect to marking the beginning and ending of the process
and the nature of the steps in between. Business processes, at least the repeatable ones
supported by information systems, have discrete starting points and discrete ends. They
have discrete steps, and produce discrete results. These processes fall into the category of
processes known as discrete processes.[1]

[1] Sowa, John F. 2000. Knowledge Representation: Logical, Philosophical, and Computational
Foundation. Pacific Grove, CA: Brooks/Cole Publishing Co.

A discrete process is a sequence of discrete activities whose performance is triggered by a
discrete external event and whose execution produces (or attempts to produce) discrete
countable results and may require one or more discrete countable inputs (Figure 6-1). Since
all of the processes discussed in this book are discrete processes, they will generally be
referred to as just processes.

Figure 6-1. Discrete Process

Triggers, Inputs, and Results

Processes begin with the recognition that some event has occurred that warrants the
execution of the process. This recognition is really a determination that the process's
expected results are desired. The triggering event for a process is most often the arrival of
an input to the process. Consider the "Withdraw Cash via ATM" example shown in Figure 6-
2. The triggering event for this process is the arrival of the transaction request from the
customer (i.e., the customer entry indicating that Withdraw Cash is the desired type of
transaction).

Figure 6-2. Withdraw Cash via ATM

In addition to the trigger, other inputs to the process may be required as well. The PIN, the
ATM card, the current account balance, the cash to be dispensed, and the paper to print the
receipts are also required inputs. All inputs to a process, including those whose arrival
constitutes a triggering event, originate outside the process. Anything that originates within
the process should be considered an internal design detail of the process itself. The
specification of the amount to be withdrawn, for example, is an internal detail of the
process and not an external input. You might be tempted to place the PIN and ATM card in
this category. What makes them inputs is that both originated outside the scope of this
process.

There are many sources of inputs for triggering processes. The input may be a user input, a
message arriving from a business partner, or the arrival of a result from another business
process. Although you often don't think of time (i.e., the tick of a clock) as an input, time
can also be used as a triggering input. The tick of the clock is used to update a timer, and
the expiration of this timer becomes the triggering event that causes the execution of the
business process.

It may seem a bit pedantic to talk about the details of triggering events, but the fact is that
if you want robust business processes you must be aware of every aspect of the process
that might cause a failure. The failure to recognize a triggering event (e.g., that the
customer has requested a withdraw cash transaction) will cause that transaction to fail as
surely as anything else that can go wrong with a process. From a design perspective later
on, this recognition of the triggering event is an activity that must be assigned to a
participant in the business process.

The purpose of the process is to produce results. It is not unusual for processes to produce
multiple results. The bank's Withdraw Cash business process produces cash, a receipt, and
an updated account balance. The goal of the process is to generate these results, even if a
particular execution of the process is unsuccessful in achieving the goal. The Withdraw Cash

business process, for example, will not produce cash if there is an insufficient balance in the
bank account. But regardless of the outcome, it is still the Withdraw Cash business process.

To bring closure to the execution of a process, the results of a process must be discrete and
countable. Withdraw Cash is not some nebulous ongoing activity that distributes funds held
in bank accounts to the account holders. It is a focused, repeatable process that takes a
specific request for funds withdrawal and attempts to produce specific discrete countable
results, namely the requested amount of cash, a receipt, and an update to the account
balance. Requiring those results to be discrete and countable provides a clear means of
determining, for each execution of the process, whether the process goal has been achieved
and whether the process execution is complete.

Related Processes

Processes never live in isolation. The inputs to one process are actually the results from
other processes, and the results of a process are inputs to other processes. Understanding
the sources and destinations of inputs and results lets you understand the relationships
between the process you are examining and other processes. When you are making
changes to a process that require changes to inputs or results, this understanding allows
you to determine what other processes are being impacted.

Consider the inputs required for withdrawing cash from an ATM (Figure 6-3). Some of the
inputs, such as the transaction request, originate entirely outside the enterprise. Others,
such as the ATM card and its associated PIN, originate within the enterprise. If these
artifacts already exist in the form required to execute the primary process and are
accessible by that process, then you can ignore their origins. But if these inputs are not in
the right form or are not readily accessible, then you must determine the process that
produced them and the nature of the required changes to those processes. This discovery
process is the primary means of discovering the true scope of the project.

Figure 6-3. Inputs, Results, and Related Business Processes

[View full size image]

Process Maturity

Everything you do with information systems is in some way related to business processes.
But the nature of the relationship between the systems and the business process varies
greatly with the level of maturity of the process, as does the level of detail that you need
about the process itself.

Paul Harmon suggests the process maturity levels shown in Figure 6-4, which are derived
from the Software Engineering Institute's Capability Maturity Model.[2] At the Ad Hoc level
(which Harmon calls Initial), each execution of the process is different. A marketing analysis
of sales data looking for new trends or market opportunities might take this form as the
analyst examines some initial data and then lets the findings drive the remainder of the
analysis process.

[2] Harmon, Paul, "Evaluating an Organization's Business Process Maturity," Business Process Trends,
Vol. 2, No. 3, March 2004, pp. 1â!“11.
http://fac.ceprin.gsu.edu/welke/CIS9240/Papers/BPM/Business%20Process%20Maturity%20Assessment.pdf.

Figure 6-4. Process Maturity Levels

From an information systems perspective, you don't care so much about the process itself
as you do the kinds of information that the process will require, and the interfaces needed
to retrieve and analyze this information. The difficulties in supporting such processes lie
primarily in their ad hoc nature. You can speculate about what the process might require,
but you can never be completely sure.

At the repeatable level, the processes have a conscious organization to them, and there is

some basic level of management that tracks cost, schedule, and functionality. Most business
processes that have information systems associated with them are at least at this level of
maturity. At this level, information systems are generally directed at assisting or performing
individual activities in the process.

At the defined level, processes have been documented and standardized. In the information
systems, the process (or significant portions of the process) may be automated. This
automation may take the form of hard-wired relationships between systems in which the
results of one system's activities become the inputs to another's activities, or there may be
a component that explicitly directs the activities of other systems.

At the managed level, detailed measurements of the process itself and the quality of its
results are being made. Information systems are generally involved in the gathering and
dissemination of this data as well as the execution of the process itself.

At the optimizing level, the measurements of the process are themselves inputs to a
separate optimization process that focuses on improving the basic process. This
optimization process itself can be at any one of these maturity levels. Information systems
may be involved in the analysis of the measurement data but may also be involved in the
optimization response, such as the dynamic deployment of additional resources to handle
increasing demands made of the basic process.

Understanding the level of maturity of the process will help you understand the kind of
information that you need about the process. Also keep in mind that many projects seek to
move business processes further up this maturity chain. As such, the level of information
that you will need to achieve that next step is likely to exceed the level of information
currently available about the process. If you are seeking to make a repeatable process into
a defined process, the process definition has to be created, socialized, and approved. This is
all part of the business process architecture task.

Continuous Processes

While most business processes are discrete by nature, you may be called upon to deal with
real-world processes that are continuous. Managing the distribution of electrical power over
the power grid and managing the operation of an oil refinery are examples of processes in
which the process inputs and results are continuous, as are the activities of the process
itself.

While the process being managed may be continuous, the information systems used to
manage them are not. Computers are discrete machines, and the manner in which they
interact with the continuous process is itself discrete. Information systems do not take
measurements and read inputs continuously. Instead, they sample these values at discrete
points in time. The measurements themselves are discrete digital representations
(approximations) of the actual real-world continuous values. Systems take discrete actions
changing the settings on controls and providing other outputs. The process itself is
composed of discrete activities that take discrete inputs and produce discrete results. The
control process is a discrete process.

So how does a discrete process manage a continuous process? The trick is to execute the
management process frequently enough that the process being controlled does not have a
chance to change significantly between executions of the management process. With this
approach, the discrete management process actually simulates the operation of a
continuous management process.

The design of this type of process follows most of the principles outlined in this text, but
with a few significant differences. The biggest difference is that the ability to control the
continuous process requires precise and predictable timing of the input process
output cycle. A few milliseconds difference in response time can make the difference
between a well-behaved system and one that vacillates wildly out of control. Thus the
precise scheduling of work tends to dominate the technical design. The techniques for this
type of design are the core topics of digital control systems design and are beyond the
scope of this text.

The other major characteristic of control processes is that the consequences of a process
failure tend to be catastrophic. Widespread power outages, oil refinery leaks and fires, and
plane crashes are the kinds of consequences that can be expected. These consequences
lead to investments in fault-tolerant design that are well beyond what is typically warranted
for information systems. Failures must be compensated for within the sub-second response
time required for control systems, which generally requires a significant degree of
redundancy combined with a voting system to determine the final result. The space shuttle,
for example, not only has four redundant control computers operating simultaneously and
voting on the results, it also has a fifth computer of a different type that is programmed by
a different team performing the same functions and alerting the crew to discrepancies
between its results and those of the other four computers.[3] Such designs are extremely
expensive and are warranted only when the consequences of failure are extreme. This type
of fault-tolerant design is beyond the scope of this text.

[3] Alfred Spector and David Gifford, "The Space Shuttle Primary Computer System," Communications of

the ACM, Vol. 27, No. 9, September 1984, pp. 872â!“900.

Aside from these two areas (which are admittedly significant), the processes and techniques
discussed in this text are generally applicable to the design of control systems. However,
the criteria for prioritizing processes and the sequencing of design considerations require
some adjustment to make them appropriate for control systems design.

Structured Processes

The characterization of a process in terms of its inputs, triggering events, and results is also
applicable to the individual activities within a process. Thus you can view any activity as a
process in and of itself. In other words, every process that involves more than one activity
can be viewed as a composite of subprocesses.

This view of activities as subprocesses sets the stage for the modularization of processes
into subprocesses. This is an essential step in recognizing service opportunities, since the
operations of a service must eventually be used as activities in a process in order to provide
value. It also gives you some insight as to what is required in a service specification. To
achieve reusability, the interactions with the service must be clearly defined and easy to
understand. Defining the inputs, triggering events, and results of a subprocess, along with
its operating constraints, provides the basis for specifying services.

Summary

A process, or more specifically a discrete process, is a sequence of distinct activities that
produces (or attempts to produce) discrete countable results. Every discrete process
requires at least one input, and the trigger for performing a process is the recognition of
the arrival of one or more of these inputs. From an external perspective, a process can be
characterized by these inputs and results, the triggering event, and the constraints under
which the process operates.

The activities of a process can be characterized in the same manner as the overall process:
inputs, triggers, results, and constraints. Recognizing this, it becomes clear that each
activity is a process unto itself, and thus a process can be viewed as a composition of
subprocesses.

When you employ services, the operations of the service are used as activities in a process.
Thus the characterization of activities as subprocesses provides a sound mechanism for
specifying the service operations in terms of their inputs, triggers, results, and constraints.

A process's inputs and outputs do not come out of thin air. Inputs are the results of other
processes, and results are the inputs to other processes. This flow of inputs and results
identifies dependencies between processes. When a project requires changes to inputs and
outputs, these dependencies serve to identify other processes that are impacted by the
project.

Processes exist at many maturity levels. Some are totally ad hoc: The required activities
and their sequencing are determined as the process unfolds. As processes mature, their
definitions become standardized and their executions become managed and then optimized.

The maturity level of a process significantly influences the manner in which information
systems participate in the process. Ad hoc processes employ systems to perform individual
activities. As the processes mature, systems become involved in coordinating activities and
in measuring, managing, and optimizing the execution of the overall process.

Some real-world processes are continuous in nature, but discrete processes can be used to
manage these processes. Real-time process management requires control system design
techniques and fault tolerant design techniques that are beyond the scope of this text.

Key Process Questions

1. What is the maturity level of the process you are examining? What does the
maturity level imply concerning the nature of the information system's
involvement in the process?

2. What are the inputs and results of the process? What triggers the execution
of the process?

3. What are the constraints on how the process executes? How do these
constraints relate to the inputs, triggering event, and results?

4. What processes produce the inputs for the process you are examining?
What processes consume the results of the process you are examining?

Suggested Reading

Ahern, Dennis M., Aaron Clouse, and Richard Turner. 2004. CMMI Distilled: A Practical Introduction to
Integrated Process Improvement. Boston, MA: Addison Wesley.

Harmon, Paul, "Evaluating an Organization's Business Process Maturity." Business Process Trends, Vol. 2,
No. 3, March 2004, pp. 1â!“11.
http://fac.ceprin.gsu.edu/welke/CIS9240/Papers/BPM/Business%20Process%20Maturity%20Assessment.pdf.

Sowa, John F. 2000. Knowledge Representation: Logical, Philosophical, and Computational Foundations.
Pacific Grove, CA: Brooks/Cole Publishing Co.

Chapter 7. Initial Project Scoping
It is day one for your new project. You have your project charter, and now you need to
figure out exactly what needs to be done to meet the business objectives. This exercise is
commonly referred to as scoping the project.

The intent of initial scoping is to identify those business processes that must be created or
modified to realize the business goals. Once these processes have been identified, a small
amount of information is gathered about each identified process to aid in understanding
which of the process improvements is likely to present the greatest challenge. This
information is used to then rank the processes by the anticipated difficulty, and this ranking
is used to determine the sequence in which the process requirements will be gathered and
the architecture of the process and supporting system defined.

To do this ranking you need to arrive at an overall understanding of the nature of the
changes that must be made in order to achieve the business objectives. Your understanding
needs to be broad enough to identify all of the work that will eventually need to be done,
with just enough detail to ensure that there is no ambiguity concerning what is in scope or
out of scope for the project.

Defining the scope of the project in terms of business processes enables iterative
architecture development. Once you have the inventory, you gather a small amount of
information about each process to help you understand which processes are likely to
present the greatest architecture challenges at both the business process and systems level.
This level of detail will not enable you to estimate the level of effort for the project, but it
will steer you towards the processes that are the most likely to demand high levels of effort
so that you can investigate them first. This will help you focus on those processes that are
most likely to challenge the project's cost and schedule constraints, and thus lead you to an
early understanding of project feasibility.

This focus on business processes also makes it easy for the business side of the house to
understand and manage the scope of the project. Once the required time and level of effort
for a project is well understood, it is not uncommon for the scope of the project to be
altered to remain within the project's guidelines. Defining the scope of the project in terms
of business processes makes it easy to understand the business impact of various scoping
alternatives. This understanding simplifies the process of making scoping decisions, and it
clarifies the impact of scoping decisions on the business benefits that can be expected from
the project.

Assembling the Business Process Inventory

Assembling the process inventory is an iterative process (Figure 7-1). It begins by
interviewing the key project stakeholdersâ!”generally the people who chartered the project.
From these initial stakeholders, you discover some of the business processes that will be
impacted and, equally important, discover other stakeholders that must be interviewed.
Stakeholder initial interviews focus on seven key questions:

1. Which business processes will require changes in order to either directly
achieve the project goals or to support the required changes in other
processes that lie within the project scope?

2. For business processes that require changes, what is the nature of the
change that is required? How can these changes be characterized in terms
of inputs, results, process triggers, and operating constraints? Note that
these questions apply to both newly identified processes and processes that
have been previously identified.

3. For each business process requiring change, what is the consequence to the
business if the process does not execute properly?

4. For each business process, what is the peak rate at which this business
process must execute? What volume of data moves through the process?
What is the required completion time for executing the process? These
answers should take into consideration future growth plans.

5. For each business process, what is the current maturity level of the
process? What is the desired maturity level upon completion of the project?
What level of system participation is expected upon completion of the
project?

6. For each business process, are there any variants of the process in the
enterprise (i.e., different processes that achieve the same results)?

7. For each business process, who are the key stakeholders involved?

Figure 7-1. Initial Scoping Process

[View full size image]

Chapter 7. Initial Project Scoping
It is day one for your new project. You have your project charter, and now you need to
figure out exactly what needs to be done to meet the business objectives. This exercise is
commonly referred to as scoping the project.

The intent of initial scoping is to identify those business processes that must be created or
modified to realize the business goals. Once these processes have been identified, a small
amount of information is gathered about each identified process to aid in understanding
which of the process improvements is likely to present the greatest challenge. This
information is used to then rank the processes by the anticipated difficulty, and this ranking
is used to determine the sequence in which the process requirements will be gathered and
the architecture of the process and supporting system defined.

To do this ranking you need to arrive at an overall understanding of the nature of the
changes that must be made in order to achieve the business objectives. Your understanding
needs to be broad enough to identify all of the work that will eventually need to be done,
with just enough detail to ensure that there is no ambiguity concerning what is in scope or
out of scope for the project.

Defining the scope of the project in terms of business processes enables iterative
architecture development. Once you have the inventory, you gather a small amount of
information about each process to help you understand which processes are likely to
present the greatest architecture challenges at both the business process and systems level.
This level of detail will not enable you to estimate the level of effort for the project, but it
will steer you towards the processes that are the most likely to demand high levels of effort
so that you can investigate them first. This will help you focus on those processes that are
most likely to challenge the project's cost and schedule constraints, and thus lead you to an
early understanding of project feasibility.

This focus on business processes also makes it easy for the business side of the house to
understand and manage the scope of the project. Once the required time and level of effort
for a project is well understood, it is not uncommon for the scope of the project to be
altered to remain within the project's guidelines. Defining the scope of the project in terms
of business processes makes it easy to understand the business impact of various scoping
alternatives. This understanding simplifies the process of making scoping decisions, and it
clarifies the impact of scoping decisions on the business benefits that can be expected from
the project.

Assembling the Business Process Inventory

Assembling the process inventory is an iterative process (Figure 7-1). It begins by
interviewing the key project stakeholdersâ!”generally the people who chartered the project.
From these initial stakeholders, you discover some of the business processes that will be
impacted and, equally important, discover other stakeholders that must be interviewed.
Stakeholder initial interviews focus on seven key questions:

1. Which business processes will require changes in order to either directly
achieve the project goals or to support the required changes in other
processes that lie within the project scope?

2. For business processes that require changes, what is the nature of the
change that is required? How can these changes be characterized in terms
of inputs, results, process triggers, and operating constraints? Note that
these questions apply to both newly identified processes and processes that
have been previously identified.

3. For each business process requiring change, what is the consequence to the
business if the process does not execute properly?

4. For each business process, what is the peak rate at which this business
process must execute? What volume of data moves through the process?
What is the required completion time for executing the process? These
answers should take into consideration future growth plans.

5. For each business process, what is the current maturity level of the
process? What is the desired maturity level upon completion of the project?
What level of system participation is expected upon completion of the
project?

6. For each business process, are there any variants of the process in the
enterprise (i.e., different processes that achieve the same results)?

7. For each business process, who are the key stakeholders involved?

Figure 7-1. Initial Scoping Process

[View full size image]

Conducting Interviews

The questions listed above comprise a discovery process whose purpose is to identify the
processes that require change, roughly characterize their needed changes, and identify the
stakeholders who can provide more detail. To discover the business processes, you ask
stakeholders for their perception of which business processes must be modified to achieve
the project's goals. You ask them to characterize the nature of the change they foresee and
how that change contributes to achieving the project's goals. By tying the proposed changes
back to the project goals, you will avoid the kind of scope creep that occurs when
stakeholders perceive the project as an opportunity to make unrelated business process
alterations.

Ask stakeholders to characterize the needed change in terms of the process's inputs,
results, triggers, and constraints. This will focus the conversation on the requirements (i.e.,
what needs to be accomplished) rather than on the means by which the changes will be
implemented. By abstracting the requirements from the implementation mechanisms, you
retain flexibility in how the change will be implemented. You will need this flexibility to
define services that are truly reusable and to adjust processes to share these common
services.

Be aware that many stakeholders will find it difficult to separate the nature of the change
from the mechanisms by which the change is accomplished. In such cases, adjust your
interview style. Let the stakeholder describe proposed changes to the process. Then ask:
What is there about the proposed process changes that achieves the business goals? This
will lead to a discussion of inputs, results, triggers, and constraints. Remember that the
more abstract the characterization of the process changes, the more flexibility you will have
in considering business process and system design alternatives.

One of the goals of the interview process is to identify those business processes that are
liable to present architectural challenges. Business significance is one indicator of potential
design complexity since higher levels of business importance tend to drive designs towards
high availability and fault tolerance.

You can arrive at an understanding of business significance by asking what the impact on
the business would be if the business process failed to execute. There are primarily two
cases of interest. In the first, you want to understand what would happen to the business if
a single execution of the business process failed. In the second, you want to understand
what would happen if the business process was unable to execute for some period of time.
It is likely that the impact will vary with the length of time that the process is unavailable,
so you should explore a range of outage periods.

In assessing business significance, try to quantify the impact of process failures, expressing
it in terms such as the loss of revenue or the cost of regulatory penalties. This quantification
will help to identify those processes that are most critical to business operations and are
therefore likely to require fault tolerance or high availability.

Stringent performance requirements also contribute to complexity and cost. Ask about the
peak rates at which the process will execute, their required completion times, and volume of

data being moved through the process. This information will help you understand the
demand for capacity that the business process will present on the people and systems
involved in the process. Capacity demands that are large enough to require distributing load
across multiple participants (whether people or systems) or scaling up system resources
add complexity and cost to the project.

Another significant driver of complexity and cost is the degree of automation in the business
process. Understanding the maturity levels of both the current and desired processes will
help you understand the level of system participation in the processâ!”i.e., the degree of
automation involved. The more deeply involved the systems are in the collaboration,
monitoring, and management of the business process, the more complex the design will be.

It is not unusual to find a variant of a business process in the enterpriseâ!”another business
process that seeks to produce the same results. Since these processes require similar
functionality, they represent opportunities for sharing services. Ask your stakeholder to
identify process variants and add them to your inventory.

To assemble the information you need, you must talk to all the key stakeholders associated
with a process. They are the sources of both requirements and current state knowledge for
the project. In these initial interviews, they are helping you to define the scope and nature
of the project. In subsequent interactions they will become both the providers of
requirements and the reviewers of proposed changes.

You must make a conscious effort to identify all of the stakeholders with an interest in your
project. You must ask each stakeholder you are interviewing to aid you in identifying other
stakeholders. The consequence of failing to identify a stakeholder at this stage will be the
delayed discovery of some requirements. If the discovery occurs after a substantial
architectural commitment has been made and necessitates architectural changes, it will
play havoc with the project cost and schedule. A bit of due diligence in stakeholder
discovery up front will reward you with a smooth and predictable project execution.

Your understanding of the scope of your project will evolve during these interviews. Each
stakeholder may identify new business processes that are impacted and additional
stakeholders to be interviewed. You need to periodically consider these changes, assessing
the completeness of your effort and revising your schedule of stakeholder interviews. The
scoping process will be complete when you have interviewed all the identified stakeholders
and are no longer uncovering additional business processes or stakeholders.

Your expectations about the discovery process need to be tempered with a dose of reality.
Despite your best efforts, it is unlikely that you will discover all the business processes that
impact your project. As you later dig into individual process requirements, you are likely to
discover inputs and results that are associated with business processes that were not in
your inventory. This is to be expected. A well-done scoping exercise will reliably identify all
the primary business processes, those with changes that directly contribute to achieving the
project's business goals. Many of the related processes will not be discovered until you
begin the requirements gathering for the primary business processes.

Documenting the Inventory

You are going to gather a lot of information in the process of scoping your project. To aid in
understanding what you have learned, it is good practice to summarize your findings in
graphical and tabular form. These representations not only provide a quick overview of the
project, but also serve to show the degree of completion of the scoping exercise.

Goals and Stakeholders

Table 7-1 provides a summary of the business processes. It is a quick overview of the
project scope and goals along with a list of the stakeholders for each business process. Be
sure to include variant processes even if you do not anticipate changing them. If your
project is building a new variant, you will want to know about the existing process as well.

Table 7-1. Goals and Stakeholders for the ATM Project Example

Business Process Required Change Stakeholders

Withdraw Cash via
ATM

Create the process Marketing; Retail Banking Operations;
Accounting; Enterprise Architecture;
Project Team; System Operations;
Account Management System Owner

Withdraw Cash via
Teller

None Retail Banking Operations; Accounting;
Enterprise Architecture; System
Operations; Account Management
System Owner

Make Deposit via ATM Create the process (Same as Withdraw Cash via ATM)

Make Deposit via Teller None (Same as Withdraw Cash via Teller)

Transfer Funds via
ATM

Create the process (Same as Withdraw Cash via ATM)

Transfer Funds via
Teller

None (Same as Withdraw Cash via Teller)

Check Balance via ATM Create the process (Same as Withdraw Cash via ATM)

Check Balance via
Teller

None (Same as Withdraw Cash via Teller)

Maintain Retail Bank
Account

Modify the process to
incorporate issuing
ATM cards and PINs

Retail Banking Operations; Accounting;
Enterprise Architecture; Project Team;
System Operations; Account
Management System Owner

Issue ATM Card Create the process Marketing; Retail Banking Operations;
Accounting; Enterprise Architecture;

Project Team; System Operations;
Account Management System Owner

Issue PIN Create the process Marketing; Retail Banking Operations;
Accounting; Enterprise Architecture;
Project Team; System Operations;
Account Management System Owner

Maintain ATM System Create the process,
including triggering the
installation and
servicing of ATMs

New ATM Operations group; Marketing;
Retail Banking Operations; Accounting;
Enterprise Architecture; Project Team;
System Operations; Account
Management System Owner

Install ATM Create the process New ATM Operations group; Marketing;
Retail Banking Operations; Accounting;
Enterprise Architecture; Project Team;
System Operations; Account
Management System Owner

Service ATM Create the process New ATM Operations group; Marketing;
Retail Banking Operations; Accounting;
Enterprise Architecture; Project Team;
System Operations; Account
Management System Owner

Primary Processes

The scoping exercise focuses on identifying the business processes that must be changed to
achieve the business goals. These constitute the primary business processes for the project.
Their modification or creation directly contributes to generating the expected benefits.

Looking at the ATM example, the goal of the project is to reduce per-transaction costs from
the present $3 per transaction to $1 or less. The primary processes involved are the
transactions that the bank wishes to have performed through the ATM machine: withdraw
cash, check balance, make deposit, and transfer funds.

A UML composite structure diagram provides a convenient graphical means of presenting an
overview of the business process inventory (Figure 7-2). It presents a concise at-a-glance
summary of the project's scopeâ!”an overview of the details that have been gathered in the
interview process.

Figure 7-2. Primary Business Processes for ATM Example

In this overview diagram, each business process is shown as a UML collaboration,
graphically represented by an oval with a dashed outline. It is good practice for the name of
the business process to be a short descriptive phrase. This phrase should reference the
most obvious result of the process (e.g., the "cash" in withdraw cash) and a verb that
reflects the most obvious action being taken (e.g., "withdraw" in withdraw cash). You also
want to make sure that your phrase covers the entire scope of the business process and
not just the beginning of the process. For example, if you are describing a business process
for selling goods, "place order" would not be a good descriptive term for the process, since
it only describes the start of the process. "Sell goods" would be a more appropriate name.

An additional information element you must capture is the source of the triggering events
that initiates each process. In the ATM example, the bank customer initiates each of the
primary business processes by requesting a transaction. The relationship of this participant
with the business process is indicated by adding the participant to the composite structure
diagram and creating an association (represented by a solid line) between the participant
and the collaboration. The importance here lies in clarifying that the full scope of the
process includes the recognition of the triggering event. By identifying the source of the
triggering event and referencing the primary result in the process name, you have provided
an easy-to-understand overview of the complete scope of the process.

If you are familiar with UML notations, it may strike you that the diagram in Figure 7-2
looks very much like a UML use case diagram. This similarity is intentional, since both use
cases and collaborations to represent units of behavior. In fact, the only observable
difference in the diagram is that the oval representing the collaboration has a dashed
outline instead of a solid outline. The difference, however, is more substantial. A use case
represents the behavior of a single participant, whereas a collaboration represents the
behavior of a group of participants. Since business processes are, by definition,
collaborations between business process participants, the collaboration notation is the
appropriate one to use.

Another observation that you may make is that the composite structure diagram is capable
of representing the collaboration's relationships to other participants as well. While this is
true, there is benefit in keeping these initial inventory diagrams as simple as possible. Their
intent, after all, is simply to convey the breadth of scope for the project. The details will
come later.

Keep Diagrams Simple

The diagrams you are creating are communications vehicles. Their primary
intent is to help stakeholders understand the information being represented. To
facilitate this, each individual diagram should focus on making a single point.

Avoid the temptation to create massively comprehensive diagrams. You have
probably seen database schema wall chartsâ!”comprehensive diagrams that
show dozens or hundreds of entities and their relationships. Such diagrams may
be useful to someone already familiar with the database but present a daunting
challenge to someone who is trying to learn about the database.

There is a venerable psychology study that points the way here: "The Magical
Number Seven, Plus or Minus Two: Some Limits on Our Capacity for Processing
Information."[1] This study shows that people are capable of distinguishing
about seven items (plus or minus two) in short-term memory. The implication
for diagrams is that you want to limit the number of major items in a diagram
to around seven in order to make the diagram readily accessible to all readers.

To do this, give each diagram a clear focus. The diagram should make a
particular point, expressed in terms of a handful of concepts and their
relationships. If you need to make a different point, use a different diagram! You
can still create your wall chart diagram if you wishâ!”just don't expect people to
use it as a learning tool.

[1] George A. Miller. "The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for
Processing Information," The Psychological Review, Vol. 63, 1956, pp. 81â!“97.

Related Processes

Processes rarely live in isolation. The primary processes that you have identified are likely to
depend on the results from other processes. Bank customers cannot use ATMs without ATM
cards; some business process must have produced the ATM card as a result. The ATM will
not be there at all unless it has been installed; there must be an installation process. The
ATM cannot produce cash and receipts unless cash and receipt paper are routinely placed in
the machine, and it will overflow if deposits are not regularly removed; there must be a
servicing process. All of these related processes are necessary for the operation of the
primary business processes.

Achieving the project benefits depends as much on the proper execution of these related
processes as it does on the primary processes. For this reason, the related processes must
be included in your business process inventory. This does not necessarily imply that these
processes require changesâ!”only that they must be examined to determine whether
changes are required. In the case of the ATM example (Figure 7-3), many of these
processes don't even exist, so their creation is clearly part of the project. Others, such as
Maintain Retail Bank Account, do exist, but must be modified to incorporate the
Issue ATM Card and Issue PIN processes.

Figure 7-3. Primary and Related Business Processes for ATM Example

[View full size image]

Unlike the primary business processes, the presence of and need for related business
processes cannot be directly inferred from the business requirements. Instead, related
processes are discovered through their exchange of inputs and results with primary
processes. Many of these interactions will not be discovered until the requirements for the
primary business processes have been explored. Nevertheless, if it is obvious during the
scoping exercise that a primary process requires a particular input, the question should be
asked as to what business process produces that input. Similarly, if the primary process
produces a result that is used outside the process, you should ask what process (or
processes) consumes that result. During the scoping exercise, let common sense be your
guide. Later, in requirements gathering, you will become rigorous about identifying all of the
related processes.

Primary business processes, by definition, always require project work. Related processes,
on the other hand, may or may not require work. If the results that are being exchanged
already exist in suitable form and the mechanisms for moving or accessing them are also
suitable, then no related process work is required. On the other hand, if the related
processes do not exist, the results are not in suitable form, or the mechanisms for
transporting and accessing them are not suitable, then the related processes will require
some work.

By the time you have finished gathering the requirements for the processes, you will have
an understanding of the results-driven dependencies between the processes and will know
which ones require significant work. By the time you have completed business processes
and systems architecture, you will have identified all of the work that needs to be done and
will truly understand the full scope of your project.

Business Process Variants

If you think about business processes in terms of the results that they generate, it is not
uncommon to find that there is more than one process that generates the same results.

These variations generally arise from using different channels for accessing or executing the
business process. A bank, for example, typically has at least two different processes for
withdrawing cash, one involving a bank teller and the other involving an ATM. Both of these
business processes have the same intent and produce the same results, and yet they are
distinctly different processes.

When you have variant business processes, understanding the variant process can be
valuable. When you are creating an entirely new process (e.g., the Withdraw Cash Via
ATM process) that produces the same results as an existing process, there is great benefit in
understanding the existing process. For the most part, the new process will perform the
very same activities as the existing process. What is likely to differ between the new and
old processes are the participants that perform individual activities, the sequencing of the
activities, and the communications mechanisms involved. In the existing teller-based
withdraw cash transaction, it is the teller that identifies the customer, determines whether
funds are available, disburses the cash, updates the account balance, and gives a receipt to
the customer. In the ATM variant, the ATM machine will perform these functions.

The inputs to each activity and the results generated by the activity will generally be similar
in both processes, even though they may differ in some details. Both the teller and the ATM
must identify the customer, but the teller will do so using a driver's license or other
identification, whereas the ATM will use the PIN associated with the ATM card. Despite these
differences, understanding the existing business process will provide insight into what the
new process must be capable of doing and what inputs and results are required.

In designing the new process, much time can be saved and many mistakes avoided by
examining the existing process. For this reason, you must also include these related
processes in the process inventory. The generalization relationship in the UML notation
provides the means of indicating exactly this type of relationship. You create a collaboration
that represents all processes seeking to achieve this common goal (e.g., Withdraw Cash
from the bank), and then use the generalization relationship to indicate that the actual
processes are specializations of this abstract process as shown in Figure 7-4. For clarity, you
may want to color or otherwise indicate that the Withdraw Cash via Teller process is
an existing process whose modification is not within the intended scope of the project.

Figure 7-4. Primary Business Process Variants

[View full size image]

There is another deeper benefit to identifying these related business processes: finding
candidate services. If you create the two processes independently, you may well be
duplicating functionalityâ!”and duplicating business rules as well. This will increase both
development and maintenance costs. By examining both business processes, you afford
yourself the opportunity to identify functionality that can be made common between the
two processes. Common functionality presents a service opportunity. At the same time, you
may also identify a barrier to creating the service: In repackaging the functionality as a
service, changes to the existing process may be required. If you decide to turn this
functionality into a service to make it available to the new process, you may be increasing
the scope (and cost) of the project. Of course, the modifications to the existing process may
be postponed to another project, but they must eventually occur to obtain the expected
service benefits.

When these service opportunities arise, a business decision needs to be made as to how to
proceed. The decision will often depend on the position of the decision maker in the
organizational hierarchy. If the decision maker has no authority over the existing business
process and its underlying systems, the decision is likely to be to duplicate the
functionalityâ!”that is, not build the service. The motivation behind making this decision is
that the decision maker actually has control over all of the resources required to complete
the project and can therefore control his or her own destiny. However, such decisions may
not be in the long-term best interests of the enterprise. Here, in a nutshell, you find the
core organizational problem underlying services: How do you get decisions regarding
services made at an appropriate level so that the right decision for the overall enterprise is
made? This issue is explored in depth in the companion volume, Succeeding with SOA.

Process Metrics

Much of the design challenge presented by business processes is related to achieving
performance objectives. To understand which processes are liable to present such
challenges, you need to gather some rough performance metrics for the processes in your

inventory. These metrics are:

The peak (maximum) rate at which the business process must produce results

The variation in peak rate over time (i.e., when the peaks occur)

The allowed completion time for the process

The average rate at which the process will execute

The volume of data that will move through the process

There is a subtlety in defining the peak rate that you need to carefully manage in order to
get useful information. The numerical value for a peak rate is very sensitive to the time
interval over which you measure the peak. Imagine that there are 1,000 ATMs and you
want to know the peak rate at which withdraw cash transactions can occur. You might
argue that it is possible for 1,000 customers to simultaneously initiate 1,000 transactions in
the same second, giving a peak rate of 1,000/second. You might argue that 1,000
transactions could be initiated in one millisecond, giving a peak rate of 100,000/second. In
fact, by choosing appropriate (or inappropriate) time intervals, you can make the peak rate
nearly anything you want! That's not particularly useful, since you want to use this peak
rate to determine the required capacity of machines and networks. How then do you arrive
at a reasonable understanding about peak rate?

The key to solving this problem is to use the allowed completion time for the process as the
time interval for peak rate measurements. The allowed completion time is the acceptable
time interval between the process's triggering event and the production of its last result
(i.e., the completion of the process). The peak rate you are after is the maximum number
of business processes that can be initiated during this interval. The assumption is that it
really doesn't matter when activities occur within this time interval as long as the results
are produced on time. In other words, if the allowed completion time for a transaction at an
ATM is 30 seconds and you have 1,000 machines out there, then the peak rate at which you
need to be able to complete the transactions is 1,000 transactions in 30 seconds, or roughly
33.3 transactions/second. Even if 1,000 customers all initiate their transactions
simultaneously, as long as you can complete those transactions within 30 seconds you have
satisfied the requirements. Note that you still need to be able to accept 1,000 initiating
events simultaneouslyâ!”you just don't have to do the actual work that fast.

The peak rates for different processes often occur at different points in time. If all the peaks
for all the processes occur simultaneously, then obviously you need the capacity to execute
all of the processes simultaneously. But if the peaks occur at different times, you can get by
with less capacity and still satisfy the business requirements. To take advantage of this, you
need to ask when the peak rate occurs and how it varies over time. This understanding will
enable you to more accurately determine the human, machine, and network capacities that
will be required. This information will have a direct impact on the level of investment that
you will make in operational staff, machines, and networks.

Many business processes accumulate data about each process execution. Knowing the
average rate at which transactions will occur gives you an understanding of how rapidly this
information will accumulate. The average rate, taken together with the volume of data, will
then enable you to determine the required record storage capacity.

The volume of data moving through a process will give you a better understanding of the
capacities required for machines, networks, and storage. Taken together with the peak rate,
it will help you understand the network bandwidth required and the amount of work being
done in the machines. Taken together with the average rate, it will help you understand the
storage capacity required to support the business processes.

It is good practice to gather this data together in a form that is readily understandable.
Table 7-2 summarizes the metrics for the ATM System example. Note that the metrics for
the variant business processes involving human tellers have been included. This information
will help you understand the capacities of the existing systems that are used to support
those processes and will thus help you evaluate whether portions of those systems can be
used (without modification) to support the new processes.

Table 7-2. ATM Business Process Metrics

Business
Process Variant

Peak
Execution
Rate

Variation
in Peak
Rate over
Time

Allowed
Completion
Time

Average
Sustained
Rate

Volume
of Data
Moved
per
Execution

Withdraw
Cash

Via Teller 61,000/hr Peaks at
lunch hour

3 minutes 160,000/day 1KB

Via ATM 104,000/hr Peaks
during
morning
and
evening
commute

30 seconds 139,000/day 1KB

Make
Deposit

Via Teller 7,200/hr Peaks at
lunch hour

3 minutes 16,000/day 1KB

Via ATM 3,600/hr Peaks
during
morning
and
evening
commute

30 seconds 4,800/day 1KB

Transfer
Funds

Via Teller 360/hr Peaks at
lunch hour

3 minutes 1,000/day 1KB

Via ATM 3,600/hr Peaks
during
morning
and
evening
commute

30 seconds 4,800/day 1KB

Check
Balance

Via Teller 3,600/hr Peaks at
lunch hour

3 minutes 10,000/day 1KB

Via ATM 11,000/hr Peaks
during
morning
and
evening
commute

30 seconds 14,400/day 1KB

Manage
Retail
Bank
Account

 200/hr Peaks at
lunch hour

15 minutes 1,600/day 4KB

Issue ATM
Card

Via Bank
Branch

100/hour Peaks at
lunch hour

5 minutes 800/day 1KB

Via Mail 10,000/day Peaks
during first
month of
rollout

8 hours 10,000/day 1KB

Issue PIN Via Bank
Branch

100/hour Peaks at
lunch hour

1 minute 800/day 1KB

Via Mail 1,500/day Mid-
morning
and mid-
afternoon

8 hours 1,500/day 1KB

Manage
ATM
System

 TBD TBD TBD TBD TBD

Install
ATM

 1 every 4
hours

Peak
during first
few weeks
of rollout

4 hours 2/month 1.5MB

Service
ATM

 5/minute Uniform
during
working
day, gap
at lunch

2 minutes 333/day 20KB

When you first ask the business community for answers to these metrics questions, you are
unlikely to get very accurate numbers. You will get some initial "guesstimates," and then it
will take some time for the business people to investigate and refine the values. That is OK.
Since the initial use of these metrics will be to rank processes, and the ranking will be based

on order-of-magnitude rates and data volumes, even these guesstimates will be sufficient.
You will not need the more accurate numbers until you begin evaluating your systems
architecture, and it will take you some time to get there. In the meantime, the business
people can be doing their homework refining these numbers. This emphasizes the
importance of asking for metrics right at the beginning of the project, for it will take time to
get accurate answers. Ultimately, inaccurate answers will result in under- or over-
investment in capacity.

You may not get metrics (or at least accurate ones) for the infrequently executed processes.
The less often a process runs, the less likely statistics are gathered for it. That is not a
problem. Unless the infrequent process uses an extraordinary volume of data (like a slice-
and-dice analysis of data in a data warehouse), it will not demand significant system
resources and therefore will not be a factor in your capacity estimates. For these processes
you don't care about the actual rate as long as you know that it is low! However, when
large volumes of data are involved, then you do need to press the business for some rate
numbers and, at the same time, make them aware that their answer will directly impact
investment.

For business processes that are already in existence, it is tempting to go immediately to the
systems that support these business processes and begin to extract rate information. While
this is not a bad place to start, it does not provide the complete picture you need. You must
know whether the data is truly representative of peak periods. Furthermore, the measured
data will not tell you what to expect in the future, especially when there are mergers and
acquisitions afoot. For this understanding, you must go to the business side of the house
and ask for future projections. These projections need to include both organic growth and
step changes (like acquiring your biggest competitor). It will also help the business people
to understand why you are asking these questions. You need to make it clear that the
questions are not really about the numbers. They are a means of determining the level of
capacity investment that needs to be made.

Ranking Business Processes

Once you have created your initial business process inventory, you need to start diving into
their details, understanding their individual requirements, and architecting both the
processes and the systems that will support them. To make this exercise efficient, you want
to first explore those business processes whose implementations are expected to be the
most difficult. To do this, you need to make an initial assessment of each process in terms
of its anticipated implementation difficulty and then rank them accordingly.

This ranking and iteration gives you two benefits. First, because you are examining the
most difficult processes first, you get an early identification of infeasible projectsâ!”projects
whose benefits cannot be achieved within the given cost and schedule guidelines. This gives
you an early opportunity to re-scope the project when there are still many alternatives
available. Second, you gain system design efficiency. Any architecture that is capable of
supporting these difficult business processes will, most likely, be able to accommodate the
remaining business processes without an architectural restructuring. It is unlikely that you
will have to go back and revisit earlier design decisions when you are addressing later
business processes. The ranking and iteration of the TAS methodology improves the
efficiency of the overall development process.

To determine the ranking, you need some rudimentary information about these processes in
four areas: the peak rate at which each process will execute, the volume of information it
uses, the complexity of the interactions between its participants, and the business risks
associated with process failure. Each of these areas is an indicator of potential design
difficulty. You rank each business process in each category and then create an overall
ranking that will determine the order in which they will be explored.

The Ranking Scheme

Process ranking involves two steps. First, you individually score the processes in four
categories: peak rate, data size, complexity, and business risk. Then you combine these
scores to obtain an overall score for the business process. The overall scores comprise the
process ranking.

These rankings are not completely objectiveâ!”they involve some judgment as to what will
truly present a challenge when it comes to business process and system design. However,
getting the ranking wrong will not affect the quality of the resulting business process or
architectureâ!”it merely affects the efficiency with which you arrive at the end result. The
worst-case scenario is that you will consider a process that does not have significant impact
on the architecture before a process that does have significant impact, and that when you
address the latter process some of the design decisions will force some re-design of the
former process. In practice, this rarely happens.

The first scoring, shown in Table 7-3, is driven by the peak rate at which the business
process executes. The score reflects the order of magnitude of the rate. Processes that
happen at a rate of once a second or less are grouped together with a score of 1â!”they
are not very challenging, at least based on rate alone. Similarly, you group processes that
happen 10,000 times a second or more with a score of 5â!”extremely challenging.

Differences in rate above this are irrelevant for ranking purposesâ!”the rank of 5 will push
them towards the top of the overall ranking list, which is where you want them.

Table 7-3. Peak Rate Scoring

Peak Rate/Second Peak Rate Score

1 or less 1

10 2

100 3

1,000 4

10,000 or over 5

You next score business processes on data volume, as shown in Table 7-4. What you are
after here is a characterization based on the volume of information that is being moved
through the business process. For example, an ATM transaction may involve 1 KB of data,
and it would get a score of 1. Such data volumes present virtually no challenge by
themselves. An online order for books moving through the complete process might
accumulate 10KB of data when all of the stock, warehouse, shipping, and billing information
is included, and it would get a score of 2. Processes involving large data setsâ!”10MB or
moreâ!”are grouped together with a score of 5. They will, by definition, be challenging, and
this scoring will push them towards the very top of the overall ranking.

Table 7-4. Data Size Scoring

Data Size (Bytes) Data Size Score

1K or less 1

10K 2

100K 3

1M 4

10M or more 5

The third scoring is based on the anticipated complexity of the overall business process. You
make your assessment of complexity based on the type of work that you expect the
systems to do, specifically in terms of providing data, triggering processes and activities,
monitoring the processes, and managing processes. The resulting rankings are summarized
in Table 7-5.

Table 7-5. Complexity Ranking

Sources of
Data

Source of
Activity and
Process Triggers

Monitoring of
Processes

Management
of Processes

Complexity
Score

Users Users Users Users 1

Users and
Systems

Users Users Users 2

N/A Users and Systems Users Users 3

N/A N/A Users and
Systems

Users 4

N/A N/A N/A Users and
Systems

5

If the users are doing everything in the to-be processâ!”providing data, triggering all the
work, monitoring the process, and managing the processâ!”the system gets a complexity
score of 1. This does not imply that the individual systems are not complexâ!”only that
there is little complexity in the interactions between them, which is the focus of your
distributed system design. At the other extreme, if systems are involved in managing
processes (e.g., process automation or workflow) you assign the highest complexity scoreâ
!”5. If the systems are not managing the process, but are engaged in monitoring the
process, the process is assigned the score of 4.

The final scoring reflects the business impact of the process, expressed in terms of what
would happen to the enterprise should the process not execute properly (Table 7-6). At one
extreme, the consequences of failure are catastrophic. An error in a medical information
system, for example, might result in an incorrect dosage for a medication (or an incorrect
medication), a mistake whose consequences might cause the loss of the patient's life.
Similarly, a mistake in a $20 billion real estate transaction might well result in bankruptcy
for the enterprise. Such catastrophic risks warrant a score of 5. As the consequences
become less severe, you move down in score. Processes whose failure will cause significant
impact on the enterprise's bottom line warrant a 4. Processes whose failure will significantly
impact a departmental bottom line, but will only have a small impact on the enterprise
bottom line, warrant a 3. Processes whose failure will only have a small impact on the
departmental level and no discernable impact at the enterprise level get a 2. Beyond simply
indicating the importance of the business process to the overall success of the enterprise,
the business impact score also reflects the level of investment that the enterprise is willing
to make to ensure that the business process is robust or that performance goals are
achieved.

Table 7-6. Business Impact Scoring

Risk
Category

Impact on Business if Process is Not Successfully
Executed

Business
Impact
Score

None No measurable impact. 1

Minor Barely observable impact on the departmental bottom
line, no observable impact on the enterprise bottom
line.

2

Significant Significant impact on a departmental bottom line,
barely observable impact on the overall enterprise
bottom line.

3

Major The failure of a single execution is survivable, but
inability to execute or errors in the process will result in
failure to comply with regulations and/or a major
impact on the enterprise bottom line.

4

Catastrophic A single process execution failure can result in
unrecoverable business failure and/or physical injury or
loss of life.

5

Combining the Scores

Once you have scored the business processes in each of the four categories, you obtain a
combined score by multiplying together the individual rankings. Table 7-7 shows the
combined scores for the ATM example. Highest scoring is the Withdraw Cash Via ATM
process, as you might expect. The ranking reflects the relatively high complexity and
business impact ranking. This would be the first business process you would address.
Second in the scoring is the installation of the ATM, due to the combination of a large data
volume with modest complexity and risk scores. Note that this is not one of the primary
business processes that directly contributes to the business goal. This underscores the
importance of identifying related business processes in the initial process inventory, as they
may turn out to present some of the more difficult design challenges.

Table 7-7. Summary Business Process Scoring for the ATM Example

Business
Process Variant

Frequency
Score

Data Size
Score

Complexity
Score

Risk
Score

Overall
Score

Withdraw
Cash

Via Teller 3 1 1 4 12

Via ATM 3 1 5 4 60

Make
Deposit

Via Teller 2 1 1 4 8

Via ATM 1 1 5 4 20

Transfer
Funds

Via Teller 1 1 1 4 4

Via ATM 1 1 5 4 20

Check
Balance

Via Teller 1 1 1 4 4

Via ATM 2 1 5 4 40

Maintain
Retail
Bank
Account

 1 2 1 4 8

Issue
ATM Card

Via Bank
Branch

1 1 3 4 12

Via Mail 2 1 5 4 40

Issue PIN Via Bank
Branch

1 1 3 4 12

Via Mail 1 1 5 4 20

Maintain
ATM
System

 TBD TBD TBD TBD TBD

Install
ATM

 1 4 3 4 48

Service
ATM

 1 3 3 3 27

A wild card in this ranking is the maintenance of the ATM system. Not enough is known
about this process at this point to even guess about its characteristics. In addition, what
needs to be done in this process depends to a large extent on the resulting ATM system
architecture. In such cases you should make a conscious effort to flesh out this process as
your architecture emerges. After all, its costs are part of the success equation for the
project.

Finally, note once again that mistakes in this ranking (if you can even call them mistakes) in
no way affect the quality or capabilities of the business processes and systems you are
architecting. You are simply using the ranking as a guide in determining the order in which
you will address the business processes and their supporting systems. If you get the ranking
"wrong," you might spend time exploring a less-important business process before you
address a more challenging process. The worst that could happen is that a business process
or architectural change that is needed to accommodate the more challenging process will
cause you to do some re-work in the architecture of the less challenging process. Ranking is
simply an efficiency issue.

Organizing the Remaining Work

Once you have ranked the business processes, you are ready to begin gathering
requirements and developing the architecture. Total Architecture Synthesis (TAS) takes an
iterative approach, with each iteration beginning with the selection of the business
processes to be addressed and the organization of the stakeholder participation.

Your first iteration is likely to have an exploratory flavor to it as you organize your
understanding of the requirements and the various architectures that might satisfy them. To
keep the scope of this first iteration tractable, it is a best practice to select a very small
number of business processesâ!”often only oneâ!”for this iteration. In the ATM example, it
would be reasonable to select just the Withdraw Cash Via ATM business process for the
first iteration. You've already identified the stakeholders, so now you set up interviews with
them, either individually or in a group.

When selecting business processes for an iteration, it is good practice to include the variant
processes in the same iteration even if their score is significantly lower. The reason for this
is that you want to avoid the duplication of functionality (i.e., create services) wherever
possible, and variant processes are the most likely candidates for sharing functionality.
Therefore, the variant requirements need to be considered when defining the architecture
of the more challenging process. In the ATM example, this means that the Withdraw Cash
Via Teller would also be included in the first iteration.

Your first iteration focuses on identifying the broad range of business process and system
architectures that might be suitable for meeting the business process requirements. You
determine which of these architectures are feasible from a cost and schedule perspective.
You want to end this iteration with at least one viable architecture or the conclusion that
the project is not feasible. If you have identified more than one viable architecture, you
may want to keep two or perhaps three alternatives in the mix for the next iteration. While
the choices between these alternatives may seem arbitrary when considering just the
present business processes, the consideration of subsequent business processes will likely
make the correct choice clear.

Your second iteration should once again focus on challenges, taking on two or three
additional business processes. In the ATM example, the Install ATM and the undefined
Maintain ATM System would be good candidates for this iteration. You have several
alternatives for the architecture as candidates at this point, and now you can explore their
implications in terms of their installation and maintenance. Once again, your focus is on
feasibility and refining the architecture.

In all but the most complex of projects, by the end of your second iteration you should have
one solid candidate architecture and a pretty good idea whether your project is feasible.
Because you are now largely refining the architecture as opposed to considering
architectural alternatives, it is reasonable to consider a larger number of business processes
in each subsequent iteration. At this point the selection of business processes to be
considered in each iteration is driven less by the business process rankings than by the
convenience of organizing the stakeholder discussions. The requirements for the remaining

business processes for the ATM example might all be gathered in the third iteration, for
example, with the exploration of architecture within the iteration still being driven by the
ranking and occurring one business process at a time.

Summary

Defining the scope of a project is a discovery process. You begin with the project goals and
a few stakeholders who have an idea which business processes need to be changed to
achieve those goals. From this starting point, you work with the stakeholders to characterize
the nature of the change that is required, identify related business processes, and identify
other stakeholders. Your exploration continues until you have talked with all the
stakeholders and are no longer identifying additional business processes and stakeholders.
At this point, you have identified the scope of your project.

During the course of your stakeholder interviews you gather enough information to get an
idea of the challenges each business process will present. By asking about the rate at which
business processes will execute and the volume of data moving through the process, you
arrive at a rough understanding of the process's resource demands. By enquiring about the
level of process maturity and the degree of automation expected in the process, you arrive
at an understanding of the complexity of the process. Finally, by asking about the business
consequences arising from a failure to execute the process, you arrive at an understanding
of the degree of fault tolerance and high availability the process will require.

The information gathered is used to score each business process on a one-to-five scale in
four categories: peak rate, volume of data, complexity, and risk. These scores are then
combined to give an overall score for the process. These scores serve to rank the processes
in terms of their likelihood of presenting architectural challenges.

The business process ranking is used to organize the remainder of the project in an iterative
manner. The highest-ranking processes, those most likely to challenge the architecture
(and therefore the project's feasibility), are addressed in the first iteration, which produces
a small number of validated candidate architectures. Successive iterations take on additional
business processes, down-selecting to a single architecture and refining it to support the
additional processes.

Key Scoping Questions

1. What business processes need to be created or altered to achieve the
expected project benefits? How can the required alterations be
characterized in terms of inputs, results, triggers, and constraints?

2. What other business processes are related to the ones whose creation or
alteration is required? These are processes whose results are needed
(directly or indirectly) to enable the primary business processes or are
consumers of primary business process results.

3. Who are the stakeholders for each process?

4. What are the current and target process maturity levels?

5. What are the key metrics for each process? These include the peak and
average execution rates, the variation in peak rate with time, the allowed
completion time, and the volume of data that moves through the process.

6. On a scale of 1 to 5, what is the business risk associated with a failure to
execute each process?

7. On a scale of 1 to 5, how complex is the design of each process expected to
be?

Chapter 8. The Artifice of Requirements
The intent of requirements is to specify the compulsory aspects of a design. The thought is
that you first specify what your project's business processes and systems must do, and
then you design and implement them. However, merely identifying these business
processes and systems reflects a higher-level design. This design differentiates the design
elementsâ!”the business processes and systems your project will build or modifyâ!”from
the context in which they reside. It also defines the required interactions between the
design elements and their context. Thus the requirements for the design elements are
actually reflections of this high-level design. They define the existence of certain design
elements and express the constraints on the design of those elements.

If you think about the ATM example, you can't specify an ATM without first defining the
banking processes in which it will participate and the manner in which it will participate.
That is design! You can't even express the business goal for the project (i.e., a lower cost
per transaction) without talking about how the banking transactions participate in the profit
and loss picture of the bank. That, too, is design. Even the existence of the bank itself is a
reflection of a higher-level design (admittedly, an old one) in which people choose to keep
their funds in a bank as opposed to keeping them under a mattress or in a safe at home.
Requirements always reflect a higher-level design.

To write requirements, therefore, you must understand the higher-level design. It is this
design that defines the design elements involved in your project and the roles they will play
with respect to the context. The process of writing requirements is one of understanding
the higher-level design and then understanding the constraints that this design places on
the design elements that are the focus of your project.

The purpose of every project is to affect changes to the higher-level design. After all, if you
can't see the effect of the changes, what is the point of the project? The project goals
express the desired impact on that overall design. In a perfect world, the so-called
requirements define the minimal changes to that overall design that are needed to achieve
those goals. In the real world, the requirements more often reflect people's perceptions of
the changes that will be required. You and your stakeholders must satisfy yourselves that
these changes will, indeed, achieve the project's goals. In the ATM example, the project's
goal is to reduce the cost of routine banking operations. The larger design characterizes the
banking operations in terms of operational cash flow and the interactions between the bank
and its customers. The design change is not just to replace human tellers with automated
machines, but to do so in a manner that reduces the operating cost from $3 per transaction
to less than $1 per transaction.

Requirements are design constraints. If those constraints completely characterize the
relationships between the design elements and their context, they become the specifications
for those design elements. But if these relationships are only partially characterized, the
design elements are not fully specified. Partial specification may just indicate that you have
not learned enough about the higher-level design to be able to fully specify the design
elementsâ!”you have more homework to do. More often, it indicates that the higher-level
design is not, in fact, complete.

In the ideal case, the higher-level design is, indeed, complete. Your requirements-gathering
process is simply an effort to learn enough about this higher-level design to fully specify the
design elements you are responsible for. Unfortunately, real projects are rarely this simple.
More often than not, the higher-level design is not complete, and the design decisions your
project makes will further change it.

Higher-level design changes arise when changes you make to design elements require
corresponding changes in the interactions between these elements and elements of the
context. The need for such changes alters the scope of your project, and this poses
challenges at both the technical and organizational level. ATMs, for example, require the
issuance of ATM cards. While the process for creating the ATM cards is obviously in scope
for the project, the issuance of ATM cards will alter the business processes for opening and
maintaining bank accounts. It may well be that changes to these processes were not
anticipated in the original project concept. Thus, the ensuing design alters the design of the
context and may even end up altering the original requirements. Understanding and
managing this process is a significant project challenge.

Implementing changes is generally not a one-shot affair. After initial requirements
gathering you probably won't design and implement all of the business processes and
systems in a single step. Instead, you progress through a series of design refinements.
Each refinement adds some structure to the activities, participants, and artifacts of the
process being modified. You decide, for example, that the ATM system should consist of a
number of ATMs and a central ATM server. In the process of defining this structure, you
define the required interactions between the new structural elements. In the ATM design,
you define the interactions between the ATMs themselves and the ATM server. These
interactions comprise the requirements for these newly differentiated structural elements.
This process of adding structural refinements, defining interactions, and defining the
requirements for the new structural elements continues until you have defined structural
elements that can be directly implemented. The design is complete.

With this evolutionary picture in mind, you can see that requirements are not a starting
pointâ!”they are a waypoint in an unfolding design process. Requirements simply capture
the implications of a larger design for an element of that design. If the requirements cover
every aspect of that element's interactions with its context, they comprise a complete
specification. If the requirements only partially specify those interactions, then they only
provide a partial specification for the element. The remainder of the design has yet to be
defined.

Differentiation

The essence of design is a concept that Christopher Alexander refers to as differentiationâ
!”making a distinction where previously there was none.[1] Think of the process a person
goes through in managing his or her money. Taken as a whole and viewed externally, there
is not much you can say about this process (Figure 8-1).

[1] Christopher Alexander. 1979. The Timeless Way of Building. New York: Oxford University Press, pp.
367â!“373.

Figure 8-1. External View of the Manage Money Activity

Differentiating Activities

However, if you differentiate the process into sub-activities, you have more to work with.
You can, for example, differentiate between the activity of managing the cash flow (itself
comprising the activities of making and spending money) and the activity of safekeeping
the money in a repository (Figure 8-2). Once you differentiate these activities, it then
becomes clear that there are interactions between these activities. The acquired money
needs to be put into the repository. The money needs to be removed from the repository
before it can be spent. Planning for expenditures will probably require checking the current
inventory of funds in the repository. Note that there is not, as of yet, any structure to these
interactions, that is, no indication of their possible sequences and the rules governing the
interactions. That detail will come later. The point here is that differentiation exposes
interactions, and there are no interactions without differentiation.

Figure 8-2. Manage Money with Differentiated Sub-Activities

[View full size image]

This example nominally differentiates two activities, but there are other differentiations
present in the artifacts (represented as rectangles) exchanged in the individual interactions.
The artifacts being exchanged between the activities are differentiated from one another:
Different kinds of requests are distinguished from one another, and from incoming and
outgoing assets and reports of available funds. Each of these artifacts plays a different part
in the overall Manage Money activity, as indicated by the labeling of the artifact. Each of
these artifacts in the Manage Money activity also plays its own distinct role with respect to

each of the sub-activities. In other words, the artifact is also a part of each associated sub-
activity. Figure 8-3 shows the artifacts as parts in Manage Secure Repository. Note
that the part names shown in this figure are the same as the association labels in the
previous figure.

Figure 8-3. Managing a Secure Repository

[View full size image]

The Manage Secure Repository activity is itself refined by differentiating between its
sub-activities and the artifacts involved in their interactions. You'll notice that this example
has one part, the repository agent, which plays an active role in the activity as a whole
and in its sub-activities. From this you can see that parts being played in an activity may be
either passive or active in nature. However, the UML collaboration notation does not
distinguish between active and passive parts. This is because the same participant can play
a passive part with respect to one activity and an active role with respect to another. For
example, consider walking into a bank and deciding which teller to use for your transaction.
In the activity of choosing which bank teller to approach, the teller plays a passive role,
whereas in the subsequent banking transaction the chosen teller is an active participant.

Differentiating Participants

Differentiating between parts is a major focus of architecture. You are identifying the
different kinds of passive artifacts and active participants involved in a process. In systems
design, you are proposing new system components and services (i.e., active participants)
and defining their roles with respect to activities. At the end of the day, you are seeking to
define all the participants in a process and the activities that each is performing. These
responsibility assignments determine the required interactions between the participants just
as the required interactions between the assigned activities define the required interactions

between the corresponding participants. All of this is differentiation at work.

Going back to the Manage Money activity, the example thus far has not said anything
about the performers of the Manage Cash Flow and Manage Secure Repository
activities. Making such a statement requires you to differentiate between the different ways
in which these activities might be performed. Picking a trivial example, you might talk about
your own personal management of the money in your pocket, and then end up with the
money management model shown in Figure 8-4.

Figure 8-4. Managing Money in Your Pocket

[View full size image]

This model is, of course, singularly uninteresting because you have now modeled your
internal mental dialog while spending money or putting your newly cashed paycheck in your
pocket. There is a lesson in this. Very often, distinguishing between sub-activities
performed by the same participant is unimportant to the overall architecture. As an
architect, you want to be a minimalist about such differentiation, only diving into details
when they make a difference to the overall design. More specifically, you want to refrain
from specifying these details unless they impact the externally observable behavior of the
participantâ!”the sequencing of interactions, the timing of the interactions, or the qualities
of the artifacts involved in the interactions. Otherwise, leave the details to the designer of
that system service or component, or to the individual participant if this is a person.

On the other hand, if you identify a single activity that has two or more active participants,
it is important to further differentiate the activities being performed by the individual
participants. Without such differentiation, you cannot specify the responsibilities of the
participants. If one participant is the system being designed and the other is a system user,
this differentiation defines what the system does and what the user does. The activity

differentiation leads to the identification of the interactions between the activities, and
hence between the participants. You need to understand what these interactions are before
you can evaluate their reasonableness.

Design Is Differentiation

Differentiationâ!”some would call it decompositionâ!”is not unique. There are many
possible ways the collaboration can be split into sub-activities, and many possible
differentiations between parts and participants. Each alternative decomposition results in a
different pattern of interactions between the sub-activities and between participants.
Evaluating the alternatives and selecting a particular decomposition is design.

For example, the money management activity takes on a very different character when
there are different participants acting as agents for the Manage Cash Flow and Manage
Secure Repository activities. Consider what money management looks like when the
party managing the secure repository is a bank (Figure 8-5). While the basic interactions of
the Manage Cash Flow and Manage Secure Repository activities remain unaltered,
other considerations now come into play. Unless the bank customer has a personal bank
with only his or her money in it, the bank must distinguish between individual customer
accounts. From this, the Identify Account activity emerges. This differentiation of
participants has created the need for new kinds of activities.

Figure 8-5. Managing Money in the Bank

[View full size image]

Along these lines, the Identify Account activity is required so that the customer can
identify the account to be accessed and for the bank to determine which of its accounts the
customer has nominated for the transaction. The element of trust (or distrust) also enters
into the picture. It also becomes necessary for the bank to determine whether the person
walking into the bank is actually the person he or she claims to be, and to further verify that
the person is allowed to access the account in question. This raises the need for the
Identify Customer and Authorize Customer activities. The need for all these
activities is a direct consequence of differentiating between the two partiesâ!”the customer
and the bank. Differentiation drives design.

There are many additional activitiesâ!”entire business processesâ!”that result from the
differentiation between the bank and its customers. Accounts must be opened and closed.
Customers must be added to or removed from existing accounts. There needs to be a

process for reconciling the bank's records of the account with the customer's record of the
account. There must also be a process for resolving disputes between the customer and the
bank. Exploring these activities identifies additional artifacts such as transaction receipts,
monthly statements, and internal bank audit trails. All of this is driven by differentiation.

Chapter 8. The Artifice of Requirements
The intent of requirements is to specify the compulsory aspects of a design. The thought is
that you first specify what your project's business processes and systems must do, and
then you design and implement them. However, merely identifying these business
processes and systems reflects a higher-level design. This design differentiates the design
elementsâ!”the business processes and systems your project will build or modifyâ!”from
the context in which they reside. It also defines the required interactions between the
design elements and their context. Thus the requirements for the design elements are
actually reflections of this high-level design. They define the existence of certain design
elements and express the constraints on the design of those elements.

If you think about the ATM example, you can't specify an ATM without first defining the
banking processes in which it will participate and the manner in which it will participate.
That is design! You can't even express the business goal for the project (i.e., a lower cost
per transaction) without talking about how the banking transactions participate in the profit
and loss picture of the bank. That, too, is design. Even the existence of the bank itself is a
reflection of a higher-level design (admittedly, an old one) in which people choose to keep
their funds in a bank as opposed to keeping them under a mattress or in a safe at home.
Requirements always reflect a higher-level design.

To write requirements, therefore, you must understand the higher-level design. It is this
design that defines the design elements involved in your project and the roles they will play
with respect to the context. The process of writing requirements is one of understanding
the higher-level design and then understanding the constraints that this design places on
the design elements that are the focus of your project.

The purpose of every project is to affect changes to the higher-level design. After all, if you
can't see the effect of the changes, what is the point of the project? The project goals
express the desired impact on that overall design. In a perfect world, the so-called
requirements define the minimal changes to that overall design that are needed to achieve
those goals. In the real world, the requirements more often reflect people's perceptions of
the changes that will be required. You and your stakeholders must satisfy yourselves that
these changes will, indeed, achieve the project's goals. In the ATM example, the project's
goal is to reduce the cost of routine banking operations. The larger design characterizes the
banking operations in terms of operational cash flow and the interactions between the bank
and its customers. The design change is not just to replace human tellers with automated
machines, but to do so in a manner that reduces the operating cost from $3 per transaction
to less than $1 per transaction.

Requirements are design constraints. If those constraints completely characterize the
relationships between the design elements and their context, they become the specifications
for those design elements. But if these relationships are only partially characterized, the
design elements are not fully specified. Partial specification may just indicate that you have
not learned enough about the higher-level design to be able to fully specify the design
elementsâ!”you have more homework to do. More often, it indicates that the higher-level
design is not, in fact, complete.

In the ideal case, the higher-level design is, indeed, complete. Your requirements-gathering
process is simply an effort to learn enough about this higher-level design to fully specify the
design elements you are responsible for. Unfortunately, real projects are rarely this simple.
More often than not, the higher-level design is not complete, and the design decisions your
project makes will further change it.

Higher-level design changes arise when changes you make to design elements require
corresponding changes in the interactions between these elements and elements of the
context. The need for such changes alters the scope of your project, and this poses
challenges at both the technical and organizational level. ATMs, for example, require the
issuance of ATM cards. While the process for creating the ATM cards is obviously in scope
for the project, the issuance of ATM cards will alter the business processes for opening and
maintaining bank accounts. It may well be that changes to these processes were not
anticipated in the original project concept. Thus, the ensuing design alters the design of the
context and may even end up altering the original requirements. Understanding and
managing this process is a significant project challenge.

Implementing changes is generally not a one-shot affair. After initial requirements
gathering you probably won't design and implement all of the business processes and
systems in a single step. Instead, you progress through a series of design refinements.
Each refinement adds some structure to the activities, participants, and artifacts of the
process being modified. You decide, for example, that the ATM system should consist of a
number of ATMs and a central ATM server. In the process of defining this structure, you
define the required interactions between the new structural elements. In the ATM design,
you define the interactions between the ATMs themselves and the ATM server. These
interactions comprise the requirements for these newly differentiated structural elements.
This process of adding structural refinements, defining interactions, and defining the
requirements for the new structural elements continues until you have defined structural
elements that can be directly implemented. The design is complete.

With this evolutionary picture in mind, you can see that requirements are not a starting
pointâ!”they are a waypoint in an unfolding design process. Requirements simply capture
the implications of a larger design for an element of that design. If the requirements cover
every aspect of that element's interactions with its context, they comprise a complete
specification. If the requirements only partially specify those interactions, then they only
provide a partial specification for the element. The remainder of the design has yet to be
defined.

Differentiation

The essence of design is a concept that Christopher Alexander refers to as differentiationâ
!”making a distinction where previously there was none.[1] Think of the process a person
goes through in managing his or her money. Taken as a whole and viewed externally, there
is not much you can say about this process (Figure 8-1).

[1] Christopher Alexander. 1979. The Timeless Way of Building. New York: Oxford University Press, pp.
367â!“373.

Figure 8-1. External View of the Manage Money Activity

Differentiating Activities

However, if you differentiate the process into sub-activities, you have more to work with.
You can, for example, differentiate between the activity of managing the cash flow (itself
comprising the activities of making and spending money) and the activity of safekeeping
the money in a repository (Figure 8-2). Once you differentiate these activities, it then
becomes clear that there are interactions between these activities. The acquired money
needs to be put into the repository. The money needs to be removed from the repository
before it can be spent. Planning for expenditures will probably require checking the current
inventory of funds in the repository. Note that there is not, as of yet, any structure to these
interactions, that is, no indication of their possible sequences and the rules governing the
interactions. That detail will come later. The point here is that differentiation exposes
interactions, and there are no interactions without differentiation.

Figure 8-2. Manage Money with Differentiated Sub-Activities

[View full size image]

This example nominally differentiates two activities, but there are other differentiations
present in the artifacts (represented as rectangles) exchanged in the individual interactions.
The artifacts being exchanged between the activities are differentiated from one another:
Different kinds of requests are distinguished from one another, and from incoming and
outgoing assets and reports of available funds. Each of these artifacts plays a different part
in the overall Manage Money activity, as indicated by the labeling of the artifact. Each of
these artifacts in the Manage Money activity also plays its own distinct role with respect to

each of the sub-activities. In other words, the artifact is also a part of each associated sub-
activity. Figure 8-3 shows the artifacts as parts in Manage Secure Repository. Note
that the part names shown in this figure are the same as the association labels in the
previous figure.

Figure 8-3. Managing a Secure Repository

[View full size image]

The Manage Secure Repository activity is itself refined by differentiating between its
sub-activities and the artifacts involved in their interactions. You'll notice that this example
has one part, the repository agent, which plays an active role in the activity as a whole
and in its sub-activities. From this you can see that parts being played in an activity may be
either passive or active in nature. However, the UML collaboration notation does not
distinguish between active and passive parts. This is because the same participant can play
a passive part with respect to one activity and an active role with respect to another. For
example, consider walking into a bank and deciding which teller to use for your transaction.
In the activity of choosing which bank teller to approach, the teller plays a passive role,
whereas in the subsequent banking transaction the chosen teller is an active participant.

Differentiating Participants

Differentiating between parts is a major focus of architecture. You are identifying the
different kinds of passive artifacts and active participants involved in a process. In systems
design, you are proposing new system components and services (i.e., active participants)
and defining their roles with respect to activities. At the end of the day, you are seeking to
define all the participants in a process and the activities that each is performing. These
responsibility assignments determine the required interactions between the participants just
as the required interactions between the assigned activities define the required interactions

between the corresponding participants. All of this is differentiation at work.

Going back to the Manage Money activity, the example thus far has not said anything
about the performers of the Manage Cash Flow and Manage Secure Repository
activities. Making such a statement requires you to differentiate between the different ways
in which these activities might be performed. Picking a trivial example, you might talk about
your own personal management of the money in your pocket, and then end up with the
money management model shown in Figure 8-4.

Figure 8-4. Managing Money in Your Pocket

[View full size image]

This model is, of course, singularly uninteresting because you have now modeled your
internal mental dialog while spending money or putting your newly cashed paycheck in your
pocket. There is a lesson in this. Very often, distinguishing between sub-activities
performed by the same participant is unimportant to the overall architecture. As an
architect, you want to be a minimalist about such differentiation, only diving into details
when they make a difference to the overall design. More specifically, you want to refrain
from specifying these details unless they impact the externally observable behavior of the
participantâ!”the sequencing of interactions, the timing of the interactions, or the qualities
of the artifacts involved in the interactions. Otherwise, leave the details to the designer of
that system service or component, or to the individual participant if this is a person.

On the other hand, if you identify a single activity that has two or more active participants,
it is important to further differentiate the activities being performed by the individual
participants. Without such differentiation, you cannot specify the responsibilities of the
participants. If one participant is the system being designed and the other is a system user,
this differentiation defines what the system does and what the user does. The activity

differentiation leads to the identification of the interactions between the activities, and
hence between the participants. You need to understand what these interactions are before
you can evaluate their reasonableness.

Design Is Differentiation

Differentiationâ!”some would call it decompositionâ!”is not unique. There are many
possible ways the collaboration can be split into sub-activities, and many possible
differentiations between parts and participants. Each alternative decomposition results in a
different pattern of interactions between the sub-activities and between participants.
Evaluating the alternatives and selecting a particular decomposition is design.

For example, the money management activity takes on a very different character when
there are different participants acting as agents for the Manage Cash Flow and Manage
Secure Repository activities. Consider what money management looks like when the
party managing the secure repository is a bank (Figure 8-5). While the basic interactions of
the Manage Cash Flow and Manage Secure Repository activities remain unaltered,
other considerations now come into play. Unless the bank customer has a personal bank
with only his or her money in it, the bank must distinguish between individual customer
accounts. From this, the Identify Account activity emerges. This differentiation of
participants has created the need for new kinds of activities.

Figure 8-5. Managing Money in the Bank

[View full size image]

Along these lines, the Identify Account activity is required so that the customer can
identify the account to be accessed and for the bank to determine which of its accounts the
customer has nominated for the transaction. The element of trust (or distrust) also enters
into the picture. It also becomes necessary for the bank to determine whether the person
walking into the bank is actually the person he or she claims to be, and to further verify that
the person is allowed to access the account in question. This raises the need for the
Identify Customer and Authorize Customer activities. The need for all these
activities is a direct consequence of differentiating between the two partiesâ!”the customer
and the bank. Differentiation drives design.

There are many additional activitiesâ!”entire business processesâ!”that result from the
differentiation between the bank and its customers. Accounts must be opened and closed.
Customers must be added to or removed from existing accounts. There needs to be a

process for reconciling the bank's records of the account with the customer's record of the
account. There must also be a process for resolving disputes between the customer and the
bank. Exploring these activities identifies additional artifacts such as transaction receipts,
monthly statements, and internal bank audit trails. All of this is driven by differentiation.

Characterizing Processes

Functional differentiation begins with the identification of the process to be modified or
created. The scope of the process may be large or small depending on the nature of the
project, ranging from reengineering an enterprise-scale business process to implementing a
new process for moving messages from one system to another.

Each process is actually a behavior. Viewed from outside the process, this behavior
comprises all the interactions between this process and other processes (Figure 8-6). This is
the functional context for the process. Half of your responsibility as an architect is to make
sure that behavior is well definedâ!”and is the behavior that the business really wants.
Viewed from within the process, producing this behavior is a collaborative effort on the part
of the participants involved. The other half of your responsibility as an architect is to design
this collaboration to ensure that it produces the expected behavior.

Figure 8-6. Functional Context

To define the behavior of a process, you have to describe its interaction with other
processes. This collaboration itself comprises a larger process that we will refer to as the
functional context. Fortunately, you do not need to define behavior of the functional context
(i.e., its interactions with other functional contexts), nor do you need to define the
functional context in its entirety. You only need to define the portion of the functional
context that relates to the process or processes you are modifying.

Collaborations Represent Processes

In this book, a UML collaboration is used to represent each process. Because each process
exhibits behavior, the name of the collaboration provides an identity for that behavior as
well. The collaboration might characterize a complete business process, or it might

characterize the simple exchange of a message between two parties. Just as importantly, it
can characterize the functional context in which the processes being designed reside.

From a notational perspective, the collaboration is represented by a dashed oval with a
dashed horizontal line across it (Figure 8-7). The name of the collaboration goes above the
horizontal line. If this strikes you as being similar to the UML use case notation, the
similarity is not accidental. Both identify behaviors. (Later in this chapter these similarities
will be explored further.)

Figure 8-7. Basic Collaboration Notation

Collaboration Roles

UML collaborations enable you to provide more information about the process beyond its
name. The collaboration enables you to identify the participants in a collaboration, as shown
in Figure 8-8. Each role (called a part in UML) is represented by a rectangle containing the
name of the role and/or the type of the participant.

Figure 8-8. Collaboration Roles

Participants in collaborations may play either active or passive roles in the process. Consider
the Send Message collaboration of Figure 8-9. Here, sendingParty, receivingParty,
and messageService are all active participants in the process, while the message itself
and the address are passive artifacts that are used in the process. As mentioned earlier, no
notational distinction is made between active and passive participants, because a participant
that plays a passive role in one collaboration may play an active role in another. The
distinction is merely one of perspective.

Figure 8-9. Send Message Collaboration Roles

Collaborations can be either abstract or concrete depending on whether or not you choose
to specify the types of participants involved. The previous Send Message example is
abstract: It does not specify the types of participants, only their roles. You can make the
collaboration more concrete by adding the types of the participants. Figure 8-10, for
example, shows the more concrete Send JMS Message process. Specifying the types of
the participants specializes the collaboration. It is no longer a generic Send Message
process, but a more specific Send JMS Message process.

Figure 8-10. Send JMS Message Collaboration Roles

Abstract collaborations are useful for defining interaction patterns that can later be
employed in concrete collaborations. Assume, for the moment, that the interaction pattern
for Send Message has been defined (this will actually be done in the next section). You
can then reference that pattern in the Send JMS Message collaboration as shown in Figure
8-11. The dashed lines connecting the Send JMS Message roles (the labeled boxes) with

the use of the Send Message collaboration are labeled with the role names from the Send
Message collaboration. In this particular case, the two sets of role names are redundant.
However, in many cases you will find that the roles belonging to the outer collaboration are
different than those associated with the collaboration being used.

Figure 8-11. Collaboration Incorporating the Use of Another Collaboration

[View full size image]

Participants May Be Unaware of their Roles

One of the challenges you will face in identifying and defining business processes
(collaborations) is that many of the participants (or the people that design them in the case
of system participants) may be unaware of the larger process. Their view of the process
extends only to the interactions they have with other participants, and they may be
completely unaware of the larger purpose of these interactions.

This is particularly the case for shared infrastructure services such as a messaging service.
From the service's perspective, it delivers messages. From the larger business process
perspective, the service delivers orders in one business process and invoices in another. The
same service can even play multiple roles within the same business process.

Your challenge then is to understand how the individual participants fit into the larger
business processes. The messaging service may be called upon to deliver some small
messages quickly and reliably and at the same time deliver other large messages slowly
and efficiently. Only when you understand the various roles that each participant is called
upon to play will you be able to determine the behaviors that are required to support those
roles.

Patterns of Interaction

Once you differentiate activities, you must characterize the required interactions between
the activities. But simply identifying the interactions is not enough. You need to describe
the required behaviorâ!”the possible sequencesâ!”of these interactions. It doesn't make
sense for a customer to obtain cash from an account before specifying the amount to be
withdrawn, nor does it make sense to withdraw cash before any funds have been placed in
the account. There are patterns of interactions that make sense, and others that don't.
When you differentiate activities, you have to define the interaction patterns that can (and
cannot) occur.

Use Case Descriptions

To define interaction patterns, you need a way to represent them. There are a number of
techniques that can be used for this purpose. One well-established approach is the textual
narrative of a use case description.[2] Use cases describe the pattern of interactions
between a system user and the system itself while attempting to achieve a particular goal.
The use case itself represents the overall interaction pattern, and the text describes the
various scenarios that can occur under different conditions. Each scenario is an example of
a possible interaction sequence that occurs under a specific set of conditions. The remaining
information in the use case describes the constraints on these interactions. These
constraints may include the timing of events, the rates at which events can occur, and the
conditions under which particular scenarios will occur. They also characterize the artifacts
that are exchanged during the scenario.

[2] An excellent reference on this approach is Alistair Cockburn's Writing Effective Use Cases. Boston,
MA: Addison-Wesley (2001).

Use Case Limitations

While the use case approach can be generalized to discuss any interactions between any
participants, they have several disadvantages. Their major drawback is that textual
representations of interactions require a fair amount of study in order to attain an overall
understanding of the interaction pattern, particularly if the pattern is complex. It requires
an even greater effort to assess the completeness and correctness of the pattern's
description. This level of effort presents a problem. The primary reason for documenting the
interaction pattern is to ensure that it is complete and correctâ!”prior to investing in
implementing the pattern. To ensure completeness and correctness, the stakeholders need
to review and understand the descriptions, and the effort involved presents a barrier.

Compounding these use case difficulties are the ambiguities associated with the use of
human language. These ambiguities can render the understanding of a textual description
somewhat dependent on the interpretation of the reader. Two different readers may arrive
at two different perceptions after reading the same written description. Even worse, it may
not be apparent that different people are interpreting things differently. This makes it even
harder to reach consensus about the completeness and correctness of the interaction
patterns.

UML Activity Diagrams

The graphical languages of UML provide an alternative to human languages for capturing
and representing design information. The UML notations have the advantage of being
precise, thus avoiding the ambiguities of human language. The notations are easy to learn
and, once understood, their graphical form makes it easy to quickly grasp what is being
represented.

Up to this point, UML collaborations have been used as a means of identifying business
processes and their differentiation into their constituent parts. Using this notation, Figure 8-
12 characterizes the Withdraw Cash via Teller business process based on the earlier
Manage Money example. In this collaboration you can see the roles being played by the
customer and the bank along with a number of artifacts that are involved in the transaction.
But this representation does not describe the possible sequences of activities and
interactions.

Figure 8-12. Collaboration Diagram of Withdraw Cash via Teller

[View full size image]

The UML activity notation provides a precise graphical mechanism for describing participant
responsibilities and interactions (Figure 8-13). The swimlanes (vertical or horizontal lanes in
the activity diagram) represent the active participants in the collaboration. Activities
(rounded rectangles) placed in the swimlanes represent responsibility assignments for the
participants. Objects (rectangles) represent artifacts that are exchanged between activities
and hence between participants. Note that the placement of objects in swimlanes has no
meaning. It is the object flows (arrows) indicating the source and destination of the objects
that are significant.

Figure 8-13. Activity Diagram of Withdraw Cash via Tellerâ!”Normal Execution

[View full size image]

This particular activity diagram is a bit more concrete than the collaboration it represents,
reflecting the results of some further design work. It provides more detail about the bank,
differentiating it into a teller and a bank system. In keeping, the bank's activities have
been differentiated into teller and bank system activities.

The activity diagram shows other refinements as well. While the collaboration depicts the
amount, account identification, and signature as three discrete artifacts, the actual design
(as reflected in the activity diagram) aggregates these elements into a single

WithdrawalSlip. The information structure of the WithdrawalSlip is shown in the UML
class diagram of Figure 8-14 along with some additional detail about the information
content of a PhotoID.

Figure 8-14. Artifacts for Withdraw Cash via Teller

The distinction between the concrete artifacts (the Withdrawal Slip represented in this
activity diagram) and the abstractions they represent (the amount, account identity, and
physical evidence) is often important when modifying a business process. The ATM version
of withdrawing cash uses entirely different artifacts for the amount (the user enters the
amount on a keypad), account identity (the user selects the account on the screen as
opposed to providing an account number), and physical evidence (the ATM card and PIN).
Furthermore, the ATM does not rely on any third-party form of credentials. Instead, the
bank has a record of the association between a PIN and an ATM card that plays the role of
the credential. As an architect, one of your challenges is reverse-engineering the
abstractions from an existing design in preparation for modifying that design and
maintaining the integrity of the abstractions.

Activity Diagram Strengths and Limitations

Activity diagrams have significant advantages over purely textual representations. First and
foremost, the "big picture" of the interactions between the participants can be grasped at a
glance. This reduces the level of effort required to understand the interactions and thus
facilitates communications between stakeholders. Second, the notation is intuitive. Everyone
is familiar with basic flowcharts, and activity diagrams are just extended flowcharts. Anyone
can learn to read them with just a few minutes of explanation regarding the notation. Third,
and most important, the notation has a precise semantic that is standardized and well
documented. There is only one way to interpret an activity diagram, and this avoids the
ambiguity issues associated with human languages.

The use of UML activity diagrams facilitates the discovery of related processes as well. By
identifying all the inputs and results of activities, you are led to consider where those inputs
came from and where the results go. In the case of the example, the PhotoID, the cash in
the teller's drawer, and initial account balance have to come from somewhere. These
are all clues about the interactions between this process and other processesâ!”interactions
that are easy to overlook early in the design process.

Activity diagrams also clarify when activities are performed, what their triggering events
are, and the circumstances under which those triggering events can occur. This type of
characterization is particularly important when you are trying to understand how activity in
the "real world" is going to impact the system you are designing. Understanding that a

particular user action will trigger the execution of a process will lead you to enquire about
the real-world circumstances that will lead the user to take that action, and thus give you a
better understanding of the rate at which those actions might occur.

However, UML activity diagrams are not a panacea. To begin with, they are not complete
representations. While they characterize the big picture of interactions very precisely, they
do not fully specify all of the details of the artifacts being exchanged. For this they require
augmentation in the form of UML class diagrams. While the activity diagram can identify the
type (class) of the artifact and the role it plays in the process, the definition of that class
requires a class diagram.

You have to pay some attention to complexity as well when creating UML activity diagrams.
While the notation is rich enough to represent all of the possible interaction variations in a
single diagram, doing so can result in a diagram that is complex and hard to understand.
This is a situation you should try to avoid. Avoiding this complexity begins with recognizing
that interaction patterns vary depending upon circumstances. Instead of creating one large
diagram, create a series of diagrams, each showing what happens under a particular set of
circumstances. The activity diagram of Figure 8-13, for example, shows withdrawing cash
under normal circumstances. If the pattern of interaction is significantly different under
different circumstances, create a separate activity diagram showing what happens under
those circumstances. With this approach, each diagram tells a specific story of what
happens under a specific set of circumstances. This makes them easy to understand.

The Interface Perspective

Collaborations and activity diagrams present a broad top-down view of the participants in a
process and the interactions among them. But there is another perspective you can take on
these interactionsâ!”an interface perspective. You arrive at this perspective by defining a
boundary between participants and then looking at the interactions from the perspective of
the participants on one side of this boundary. From this perspective you see the interfaces
of the participants on the other side of the boundary.

Figure 8-12 shows such a boundary in the division between customer responsibilities and
bank responsibilities. You can see the same division in Figure 8-13 in the boundary between
the Customer swimlane and the Bank swimlane. From the customer's perspective, it is
clear that the bank has an interface (provided by the teller) that accepts a Withdrawal
Slip, Photo ID, and visual appearance, and then returns cash and a receipt
(Figure 8-15).

Figure 8-15. Teller Interface

In describing participants, system components in particular, interface descriptions are often
employed as a means of abstraction. The intent is to separate the externally observable

behavior (the interactions defined by the interfaces) from the details of what goes on
behind the scenes of those interfaces.

The intent of interface abstraction is noble, but the reality is that interfaces, individually,
are rarely sufficient to fully characterize observable behavior. In most significant
components (services in particular), there is internal state within the component that is
implicitly or explicitly observable through the interfaces. That state is as much a part of the
observable behavior as the interfaces.

The account balance is an example of this kind of state. If a bank customer attempts to
withdraw more cash than is available in the current balance, the transaction will fail. You
can't explain this failure without referring to this internal state information. Thus an
understanding of the bank's observable behavior (from the customer's perspective) requires
an understanding of the relevant internal state as well as the available interfaces.

The interface perspective also contains an implicit assumption: The participant providing the
interfaces is passive, and all interactions with that participant are initiated by invoking one
of these interfaces. While this may have been an acceptable assumption for systems of the
past, it is in no way representative of the business processes and systems driving today's
enterprise. The bank customer may take the initiative in obtaining a replacement ATM card,
for example, but if the bank changes the design of the ATM cards it may choose to
preemptively send replacement ATM cards to customers. It is no longer safe to assume that
the service provider is passive.

Interaction Patterns Characterize Participants

The interaction patterns that a participant will engage in provide a complete external view
of that participant. For completeness, these patterns must capture all possible sequences of
interactions under all possible circumstances. They must also capture what a participant will
not do as wellâ!”the order that can't be cancelled because it has already shipped, and the
withdrawal that cannot take place because there are insufficient funds in the bank account.
The patterns must also capture the interactions that are initiated by the participant as well
as those that are initiated by other participants.

There is a branch of mathematics that can be applied to characterizing interactions called
process algebras.[3] However, representation of interactions at this level of detail is complex
and is generally used only for proving the correctness of communications protocols and
parallel processing algorithms.

[3] Brown, Paul C. 1993. "Constructive Semantics." In NAPAW92: Proceedings of the First North American
Process Algebra Workshop. Stony Brook, New York. August 28, 1992. New York: Springer-Verlag.

As a practical matter, interactions are usually presented by example. Such representations
generally begin with the characterization of a "typical" scenario. Variations on this scenario
are then developed, each representing a significant deviation from the typical scenario that
occurs under a particular set of circumstances. The challenge you will face as an architect is
to ensure that all of the meaningful variations have, indeed, been identified and captured.

Your reliance on interaction examples, however, does not mean that you have to abandon
precision. The reason that the UML notations in this book are useful is that they have two
important characteristics: They are both intuitive and precise. Once you are familiar with

the notation, it is easy to grasp the meaning of a diagram employing the notation. Your
intuition upon looking at the diagram will guide you to the correct interpretation. At the
same time, the notation is precise. Every aspect of the UML notation corresponds to some
statement about either the composition (or decomposition) of components or the
interactions between those components. Each of these aspects and their relationships with
one another can be uniformly expressed in terms of process algebras.[4] In fact, it is
theoretically possible to automatically generate a process algebra representation from a
UML model.

[4] Ibid.

What does this have to do with your day-to-day work as an architect? It means that the
statements you make using UML notation for the most part have one and only one possible
interpretation. Unlike written text, there is little possibility of ambiguity. Other people
working from your diagrams are much more likely to interpret them in the manner that you
intended. UML notations thus provide a powerful, clear, and unambiguous communications
vehicle for you to use in your work.

Requirements Reflect Design

When you are working on a project, the elements being modified by your project must fit in
and interact with other elements in the context. Whether your project's elements are
processes, participants, or artifacts, these interactions are part of some larger design, the
design of the context. The requirements for the elements you are modifying are simply
reflections of the larger design. The only difference is that you, yourself, did not create that
larger design. You are simply bound by its constraints.

The scope of the context will vary from project to project. The ATM example represents a
major change to a bank, adding an entirely new channel for customers to conduct their
business. The context here is the overall operation of the bank, including all factors that
drive its profit-and-loss position. A smaller-scale project might accommodate a new ATM
machine design or add a new transaction type. The context here comprises just the
business processes in which the ATM participates. An even smaller project might change
some of the underlying implementation technology and leave the business process
unaltered. The context here comprises the processes altered by the technology change. But
regardless of the scope, the project's requirements reflect a design that exists (or is
supposed to exist) at a scale larger than the project itself.

Requirements Specify Interaction Patterns

Every form of requirement is a statement about interactions. Requirements can specify
particular interactions that are (or are not) allowed. The circumstances under which
interactions are allowed can be expressed either indirectly in terms of prior sequences of
interactions or directly in terms of internal state that is the result of those prior sequences
of interactions. Inputs and outputs are simply the artifacts that are exchanged during the
interactions. Timing requirements reflect time intervals between different interactions.
Quality requirements reflect the interactions you can have with the artifacts that are
exchanged during interactions. Profitability reflects the relationship between the interactions
in which money is spent and the interactions in which money is acquired.

The design of the context, expressed in UML collaboration, activity, and class diagrams,
provides a consistent and unifying framework for expressing and understanding
requirements. It is this design that actually determines the requirements. Requirements are
reflections of constraints imposed by this design. Some of these constraints are existential
in natureâ!”they require the presence of certain activities, artifacts, or participants. Simply
expressing the design in UML notation records the required presence of these elements.

Other constraints are qualitative in nature. These express such things as the rate at which
an input arrives or a result is produced. They can constrain the duration between events,
such as the time interval between the arrival of an input and the production of a result.
They can constrain the quality of an artifact that is an input or output. Note that for both
clarity and precision, qualitative constraints must actually be expressed in quantifiable
terms.

In many cases, qualitative constraints can, themselves, be directly expressed in UML. But in
all cases, the element of the design is the thing being constrained, and the UML

documentation of this element and its interactions makes the expression of the constraint
simple and straightforward.

For this reason, rather than focusing on requirements, this book focuses on the expression
of designs and design constraints. It uses the same UML techniques for representing
designs at any level of detail, from the context surrounding the highest level of business
processes down to the details of bits and bytes moving across a network. These same
techniques can be used to describe both the requirements (the existing design) and the
development (the new design). This uniformity renders irrelevant the specific level of detail
of a given project. You start at whatever level of detail is appropriate to establish the
project's context (i.e., its requirements) and work your way down to the solution.

Requirements Are Rarely Complete

The design constraints that constitute the project's requirements rarely provide a complete
characterization of the activities, participants, and artifacts that are involved. If they did,
you would call them specifications instead of requirements. The consequence is that during
the course of the project, completing the design will result in changes that are observable
to the rest of the context. These changes may well require changes to the context that were
not initially thought of as being within the scope of the project. Be on the lookout for this. It
is a major source of scope creep.

The ATM cards in the ATM example are a good case in point. Going back to the basics of the
ATM example, the goal of the project is to reduce the per-transaction cost from $3 per
transaction to less than $1 per transaction. If you had never seen an ATM system, your
initial statement of requirements would probably focus on replacing the human teller with an
automated system as a means of reducing costs. You would specify the banking
transactions to be provided by the system, and you would require account identification,
customer identification, and customer authorization activities as part of those transactions.
However, from a requirements perspective, it is unlikely that the concept of an ATM card
itself would be part of the requirements. It is an artifact of design.

In fulfilling the ATM requirements, the design team would likely conclude very quickly that
the current techniques for account identification, customer identification, and customer
authorization are not practical for an automated system. With currently available technology
(at least at the time ATMs were first conceived), the task of evaluating signatures and
comparing the customer's actual appearance against a prerecorded image are impractical.
Other approaches to the identification and authorization tasks are required.

The concept of the ATM card is a solution for customer identification. The combination of
the physical card and the PIN (a secret supposedly known only by the legitimate card
holder) serves to identify the customer. The activity of account identification then becomes
a process that first associates the ATM card with certain accounts (at the time the card is
issued) and then offers the customer a choice of those accounts on the ATM screen. This
association of the ATM card with accounts also provides a solution to the authorization
problem.

The decision to use ATM cards, however, has far-reaching implications that extend well
beyond simply replacing a human teller with a machine in the banking transactions. ATM
cards need to be manufactured or purchased. They need to be issued to bank customers

and associated with bank accounts in the bank's systems. Procedures for issuing and
changing PIN numbers need to be established, and the corresponding system changes need
to be implemented. Procedures for handling lost ATM cards need to be established as well,
again with corresponding system changes. All of these changes impact business processes
other than the simple banking transactions the ATM is designed to handle.

Projects can introduce changes that have scope extending beyond the project's perceived
boundaries. This is another reason why you want to understand and document the larger
collaborations in which your project's elements play a role. Initially, this serves to help you,
the architect, evaluate the reasonableness of the changes you are proposing. But beyond
that point you need to seek understanding and approval of these changes from those
responsible for the rest of the context. Towards this end, the at-a-glance readability of well-
conceived UML diagrams (once people have become familiar with them) will greatly facilitate
this communication.

Summary

Requirements are conditions that a planned process or system must satisfy. Abstractly,
these conditions are design constraints that reflect the expected collaboration between the
planned processes and systems and their contextâ!”the rest of the enterprise, its partners,
and its customers. These collaborations are actually the enterprise's business processes,
and understanding the requirements requires an understanding of these business processes.

A collaboration comprises the cooperative interactions between a group of participants
collectively seeking to achieve a particular goal. The collaboration, as a whole, represents
this collective activity. The structure within the collaborationâ!”the identification of the
activities, participants, and artifacts involved in the collaborationâ!”is defined through the
process of differentiation.

Differentiation is simply the act of making a distinction where previously there was none.
You differentiate the act of managing money into the activities of managing cash flow and
managing the secure repository of cash. You differentiate between the party managing the
cash flow and the party managing the cash repository.

Differentiation involves more than simply distinguishing among the various activities and
participants. To achieve the goals of the overall collaboration, the distinguished elements
must interact with one another. Characterizing these interactions requires further
differentiation of the artifacts that are exchanged in the interactions.

Differentiation is, in fact, design. There are many different ways in which activities,
participants, and artifacts might be differentiated. Choosing a particular differentiation is a
design decision. Choosing the particular pattern of interactions between the activities and
participants is also a design decision. In fact, architecture can be viewed as a shell game in
which the "shells" are the participants and the "peas" are the activities that are assigned to
the participants. If two activities interact, their assignment to different participants creates a
need for those participants to interact. The architect's task is to find a reasonable
arrangement of participants and activity assignments.

Patterns of interaction are descriptions of observable behavior. Patterns can thus be used to
specify behavior. Such behavioral descriptions comprise a significant part of what are
conventionally referred to as requirements. However, it is important to recognize that these
behavioral descriptions are the result of differentiationsâ!”design decisions. Fully
understanding these behaviors requires an understanding of the design that gave rise to the
interaction pattern.

Use cases and use case descriptions have traditionally been used to define and detail user-
system collaborations. Characterizing business processes and large-scale systems
architectures requires describing large-scale collaborations. Collectively, the UML
collaboration, activity, and class notations provide a rich and effective means for describing
these collaborations, capturing the structure of the business processes and its component
activities, participants, and artifacts. These notations are easy to learn and, once
understood, provide a highly effective mechanism for conveying an understanding of
business process and system designs.

While requirements are the starting point for a project, their origin is always some larger
design of which the project's elements are but a part. This larger design is the context for
the project. Requirements are statements about the constraints that this larger design
imposes on the project's elements. Fully understanding these requirements requires an
understanding of this larger designâ!”the manner in which the project's elements are
expected to collaborate with other elements of the context.

The concept of requirements makes a tacit assumption that the design decisions made
within the project will not impact elements outside the project. This is rarely the case in
practice. Design decisions frequently impact other elements of the context. In such cases,
the impact of design decisions on the larger design must be communicated, reviewed, and
approved as part of the project efforts.

Understanding requirements and communicating the impact of design decisions both require
an understanding of the larger design. Because of this, documenting the relevant aspects of
the larger design is the right starting point for a project. Documenting this design makes
clear the role that the project's elements are intended to play in the context and provides a
framework for understanding the refinements to this context that are supposed to be
created by the project. This approach can be uniformly applied regardless of their scope of
the projectâ!”from massive business process reengineering efforts to tiny rewrite-this-
algorithm code changes.

Key Requirements Questions

1. The requirements you have been given are the consequence of some larger
design that forms the context for the project. What is this design?

What collaborations (business processes) are involved?

How are those collaborations differentiated into individual activities?

What interactions must occur between the activities?

What participants are involved? Which already exist in their final
form, and which are the elements you are supposed to design or
modify as part of your project?

What are the activity responsibility assignments of the participants?

What participant interactions are implied by the activity assignments?

2. How would you restate the requirements as constraints on this design?

3. Requirements often define the expected behavior of the elements you are
building as part of your project in terms of how they will interact with other
participants. What are the interaction patterns that are implied by the
requirements?

4. Behavioral descriptions in requirements are often incomplete. What portions
of the interaction patterns have been left unspecified? Will the completion
of these interaction patterns require changes that are perceived to be
outside the scope of your project?

5. Interactions between the elements you are designing and the rest of the
enterprise involve artifacts, including both information and physical objects.
Are these artifacts defined in the requirements? If not, will the subsequent
definition of these artifacts require changes that are perceived to be outside
the scope of your project?

Suggested Reading

Christopher Alexander. 1979. The Timeless Way of Building. New York: Oxford University
Press.

Alistair Cockburn. 2001. Writing Effective Use Cases. Boston: Addison-Wesley.

Chapter 9. Business Process Architecture
Business processes, like systems, have physical structure, functional organization, and a
collaborative behavior that strives to achieve specific goals. In other words, business
processes have architecture. The components of a business process architecture
(henceforth referred to as participants) are the people and systems involved in the business
processes. The participants have physical structure, which we tend to think of in terms of
both organizational structure and physical location. The participants are functionally
organized, each having specific functional responsibilities. In addition, the participants
collaborate to produce the business process's expected results.

Depending upon how your project is organized, you may or may not be personally
responsible for defining the business process. No matter. Whether or not you are actually
designing the business process, you must understand its architecture to appropriately
architect the supporting information systems. Part of this responsibility is to determine
whether the business process architecture definition is complete. And what better way to
assess the completeness of an architecture than to document it. Whether you are actually
designing the business process yourself or merely evaluating a design that has been given
to you, the techniques that follow are designed to ensure that you have a complete
specification of the business process architecture.

What you will not find in the following sections is a methodology for designing business
processes. Establishing a dialog between groups of people for the purpose of designing
business processes is a topic unto itself and is beyond the scope of this book. If you wish to
learn more about this topic, I refer you to Sharp and McDermott's Workflow Modeling: Tools
for Process Improvement and Application Development[1] and Paul Harmon's Process
Change: A Manager's Guide to Improving, Redesigning, and Automating Processes.[2]

[1] Alec Sharp and Patrick McDermott. 2001. Workflow Modeling: Tools for Process Improvement and
Application Development. Norwood, MA: Artech House, Inc.

[2] Paul Harmon. 2003. Business Process Change: A Manager's Guide to Improving, Redesigning, and
Automating Processes. San Francisco, CA: Morgan Kaufmann.

Results

Business processes, by their nature, are courses of action designed to be repeatedly and
consistently executed to deliver specific results. These results must, in some sense, be
measurable or quantifiable, for it is only through such measurement that you can determine
whether the process successfully reached completion. Most business processes produce
discrete, countable results such as the cash from an ATM or the packaged goods from a
store. Other processes produce results that, while not discrete, are still quantifiable. The
gasoline you purchase for your car and the electricity and water you purchase for your
home are common examples.

Understanding any business process begins with knowing the results it is supposed to
generate. Figure 9-1 shows the multiple results produced by the Withdraw Cash via ATM
process. As with this process, many business processes produce multiple results. To

understand what constitutes the successful completion of the process, you need to make
sure that you have captured all of the process's results.

Figure 9-1. Business Process Results for the Withdraw Cash via ATM Business
Process

In the Withdraw Cash via ATM example, delivering cash without updating the account
balance, or vice versa, is a failure condition for the business process. Unless you understand
all of the expected results, you will not be able to identify this type of failure. Consequently,
you will not be in a position to even ask how this type of failure can be detected, let alone
consider which participants might be in a position to observe the failure and what actions
should be taken as a result. Since your business process must operate in the real world, the
detection and handling of breakdowns has to be as much a part of the business process
design as the sunny-day scenario.

Beyond simply identifying the results, you need some understanding of their types and
quantities. Figure 9-2 shows the Withdraw Cash via ATM result augmented with this
information.

Figure 9-2. Quantified and Typed Business Process Results

The syntax for the information in the collaboration part rectangle is:

roleName : Type [multiplicity]

Generally, when the multiplicity is one, by convention the multiplicity expression is omitted.
If you are concerned at all that there might be ambiguity around the multiplicity, it is never
wrong to explicitly state the multiplicity.

Each Type is actually a reference to a UML class, which gives you the opportunity to provide
more detail about the type (Figure 9-3). Resist the temptation to be drawn into design
details here. Ask yourself what is important in the business process and focus on that. Your
primary task is to determine the nature of the artifact. You should only specify the details
that are relevant to the participation of the result in the business process. The exact
representation of a US Dollar Value is not relevant at this pointâ!”only the fact that the
balance will be maintained in US dollars. The fact that the ATM will dispense US currency is
relevant, and perhaps even the denominations that will be dispensed, but you don't care
that bills have serial numbers and watermarks. Leave the details for the specification stage
or later.

Figure 9-3. Business Process Result Types

You should recognize also that the results of this process are inputs to other processes. In
terms of requirements, what is relevant and important about these results will be
determined by the role that these results play in those other processes. Thus, a full
understanding of results requires investigating each business process that employs them.
This accumulated understanding is added to the UML class defining the results. Since each
collaboration part (and later objects in activity diagrams) references the same UML class
definition, accumulating this knowledge in the UML class enables sharing among all of these
representations.

Chapter 9. Business Process Architecture
Business processes, like systems, have physical structure, functional organization, and a
collaborative behavior that strives to achieve specific goals. In other words, business
processes have architecture. The components of a business process architecture
(henceforth referred to as participants) are the people and systems involved in the business
processes. The participants have physical structure, which we tend to think of in terms of
both organizational structure and physical location. The participants are functionally
organized, each having specific functional responsibilities. In addition, the participants
collaborate to produce the business process's expected results.

Depending upon how your project is organized, you may or may not be personally
responsible for defining the business process. No matter. Whether or not you are actually
designing the business process, you must understand its architecture to appropriately
architect the supporting information systems. Part of this responsibility is to determine
whether the business process architecture definition is complete. And what better way to
assess the completeness of an architecture than to document it. Whether you are actually
designing the business process yourself or merely evaluating a design that has been given
to you, the techniques that follow are designed to ensure that you have a complete
specification of the business process architecture.

What you will not find in the following sections is a methodology for designing business
processes. Establishing a dialog between groups of people for the purpose of designing
business processes is a topic unto itself and is beyond the scope of this book. If you wish to
learn more about this topic, I refer you to Sharp and McDermott's Workflow Modeling: Tools
for Process Improvement and Application Development[1] and Paul Harmon's Process
Change: A Manager's Guide to Improving, Redesigning, and Automating Processes.[2]

[1] Alec Sharp and Patrick McDermott. 2001. Workflow Modeling: Tools for Process Improvement and
Application Development. Norwood, MA: Artech House, Inc.

[2] Paul Harmon. 2003. Business Process Change: A Manager's Guide to Improving, Redesigning, and
Automating Processes. San Francisco, CA: Morgan Kaufmann.

Results

Business processes, by their nature, are courses of action designed to be repeatedly and
consistently executed to deliver specific results. These results must, in some sense, be
measurable or quantifiable, for it is only through such measurement that you can determine
whether the process successfully reached completion. Most business processes produce
discrete, countable results such as the cash from an ATM or the packaged goods from a
store. Other processes produce results that, while not discrete, are still quantifiable. The
gasoline you purchase for your car and the electricity and water you purchase for your
home are common examples.

Understanding any business process begins with knowing the results it is supposed to
generate. Figure 9-1 shows the multiple results produced by the Withdraw Cash via ATM
process. As with this process, many business processes produce multiple results. To

understand what constitutes the successful completion of the process, you need to make
sure that you have captured all of the process's results.

Figure 9-1. Business Process Results for the Withdraw Cash via ATM Business
Process

In the Withdraw Cash via ATM example, delivering cash without updating the account
balance, or vice versa, is a failure condition for the business process. Unless you understand
all of the expected results, you will not be able to identify this type of failure. Consequently,
you will not be in a position to even ask how this type of failure can be detected, let alone
consider which participants might be in a position to observe the failure and what actions
should be taken as a result. Since your business process must operate in the real world, the
detection and handling of breakdowns has to be as much a part of the business process
design as the sunny-day scenario.

Beyond simply identifying the results, you need some understanding of their types and
quantities. Figure 9-2 shows the Withdraw Cash via ATM result augmented with this
information.

Figure 9-2. Quantified and Typed Business Process Results

The syntax for the information in the collaboration part rectangle is:

roleName : Type [multiplicity]

Generally, when the multiplicity is one, by convention the multiplicity expression is omitted.
If you are concerned at all that there might be ambiguity around the multiplicity, it is never
wrong to explicitly state the multiplicity.

Each Type is actually a reference to a UML class, which gives you the opportunity to provide
more detail about the type (Figure 9-3). Resist the temptation to be drawn into design
details here. Ask yourself what is important in the business process and focus on that. Your
primary task is to determine the nature of the artifact. You should only specify the details
that are relevant to the participation of the result in the business process. The exact
representation of a US Dollar Value is not relevant at this pointâ!”only the fact that the
balance will be maintained in US dollars. The fact that the ATM will dispense US currency is
relevant, and perhaps even the denominations that will be dispensed, but you don't care
that bills have serial numbers and watermarks. Leave the details for the specification stage
or later.

Figure 9-3. Business Process Result Types

You should recognize also that the results of this process are inputs to other processes. In
terms of requirements, what is relevant and important about these results will be
determined by the role that these results play in those other processes. Thus, a full
understanding of results requires investigating each business process that employs them.
This accumulated understanding is added to the UML class defining the results. Since each
collaboration part (and later objects in activity diagrams) references the same UML class
definition, accumulating this knowledge in the UML class enables sharing among all of these
representations.

Participants and Their Roles

There is more to the business process than results. Results produced are based upon the
participants' activity in the business process. Thus the architecture of the business process
must include the identification of the participants in that process (Figure 9-4). Note that the
participants are identified in the same manner as the results, indicating both the role and
the type of the participant.

Figure 9-4. Participants and Their Roles in the Withdraw Cash via ATM Business
Process

Distinguishing between the role and the type of participant may seem a bit artificial at first,
particularly in the early stages of conceptualizing a business process. However, the
distinction is important. As business processes evolve, the role may stay the same, but the
type of participant may change. This example illustrates exactly this point: In the old
business process, the role of teller is played by a Person. In the new business process,
the role of the teller is played by an ATM System. Although the type of participant has
changed, the role remains much the same.

Differentiating Participant Types and Roles

Another reason for maintaining the distinction between role and the type of participant is
that the same type of participant might play different roles, either in the same business
processes or different business processes. Consider the Withdraw Cash via Human
Teller example of Figure 9-5. In this variation of the business process, both the teller
and customer roles are played by participants of type Person. A single person might even
play both roles!

Figure 9-5. Participants and Their Roles in the Withdraw Cash via Human Teller
Process

Understanding that the same type of participant might possibly play multiple roles, either in
the same or different business processes, can be very important. In the previous banking
scenario, understanding that the same person might play both the role of customer and
teller provides insight into a potential source of fraud. Documenting the participant type
highlights this possibility, and thus promotes awareness. To avoid such fraud, banks usually
have business rules prohibiting the same person from playing both roles.

Consider now the implications of requiring this rule to be enforced by a system. Enforcing
the rule obviously requires (a) knowing the identities of both of the participants and (b)
being able to correlate a customer identity with a teller identity. Beyond the information
needed to support the rule, there are business process implications as well. Some
participant must be responsible for enforcing the rule, and this activity itself must become
part of the business process. The basic identify information itself must, in turn, have
originated in other business processes (e.g., Add Customer or Add Teller). To be able
to recognize that both participants happen to be the same individual, there must be a
mapping between teller identifiers and customer identifiers (or they must be the same
identifier). Accomplishing this may require changes to the bank's Add Customer and Add
Teller processes. One of the goals of your business process modeling effort is to identify
requirements like this while the business process is still in its formative stages. This will
allow the supporting design changes to be incorporated in a cost-effective manner.

Aside from facilitating an understanding that an individual can play multiple roles in a
business process, separating the concept of role from the concept of participant type gives
you a richer understanding of the business process itself. The existence of a participant type
makes it clear that you can have groups of people (or even groups of system components,
for that matter) who are all capable of playing the same role. You generally don't find a
single bank teller in a bank; instead, you have a staff of bank tellers, any one of whom can
play this role. The same is true of ATMs.

Roles Often Require Role-Specific Activities

The role may determine a subset of participants or the specified type of participants who
are allowed to play that role. Only people who have accounts at the bank are allowed to
play the role of customer. Similarly, only bank employees with the appropriate permissions
are allowed to play the role of teller. You can even have different categories of people
who are allowed to play the same role. When the bank is busy, a branch manager may chip
in and play the role of teller. A significant part of many business processes centers around
authenticating and authorizing participants (both people and systems) with respect to the
roles they are attempting to play. These activities require informationâ!”information that
originates in other business processes. You want to identify these requirements while the
architecture is still fluid and on paper so that the required design changes to both the
business processes and systems can be gracefully accommodated.

Roles and Business Process Evolution

When business processes evolve you will often find that what remains constant is the role
and what changes is the type of participant who will play the role. Today's human activity
becomes tomorrow's system activity. You can see this in the ATM example: The teller
role that is played by the Person in the existing business process will be played by the ATM
System in the new process. While some of the details of the activities may change, very
often the basic structure of the process will remain the same. Because of this, it is often
beneficial to model an existing business process both when that process is being modified
and when a completely new process with the same business goal is being created.

Identifying and Understanding Roles

Process modeling is an exercise in discovery. When you first model a process, it is unlikely
that you will have crisp definitions for both roles and participant types. Consequently, when
you begin you simply label the collaboration parts with whatever seems appropriate at the
time, whether it is a role name or a participant type. For example, when you first model the
existing Withdraw Cash via Human Teller process, you are likely to label the balance
manager simply "bank." Later you will recognize that the activities being performed by this
participant collectively comprise a balance manager role, and you will identify that this
role is being played by the Bank System. Similarly, you are likely to label the other two
roles as "customer" and "teller" without consciously differentiating between the role and the
type of participant playing the role. After that, you will refine this to reflect that both roles
are played by a Person (at least in the human teller version)â!”and potentially the same
person! As you refine your process model, bear in mind that by the time you finish you want
to have crisp distinctions between role names and participant types, and you want to take
every opportunity to clarify this distinction as your design evolves. Toward this end, the use
of a well-engineered UML tool will greatly facilitate making such changes. In such tools,
changing a name or a type in one place automatically updates all the representations with
the new information.

The ease with which you are able to find a simple and descriptive name for a role is itself a
good test of the quality of your design. Complex names, or difficulties in coming up with
good names, are often an indication that the roles are not particularly well defined. When
this occurs, it is often the case that activities that properly belong to a single role have

been distributed among two or more participants. Conversely, it may be that activities
belonging to more than one role have been combined into a single role simply because both
roles are (coincidentally) being played by the same participant.

Role names become increasingly important as business processes and systems evolve. Well-
conceived role names not only summarize a participant's current responsibilities, they also
indicate where future responsibilities ought to reside. Simple and well-defined role names
are a good indication of a robust design that will gracefully evolve into the future.

Activities and Scenarios

A business process is a structured set of activities organized to produce specific results. To
understand the business process, you have to know what these activities are and which
activities interact. You need to understand which roles are responsible for which activities.
Assigning interacting activities to different roles then requires interactions between the
roles. Assigning the roles to individuals, in turn, requires communications among the
individuals.

The previous chapter discussed differentiating activities and the resulting interactions
among the activities. The activity differentiation you are interested in at the architecture
level is among activities being performed by different participants and that require
interactions among the participants. Interactions require communications, a major issue in
any type of distributed design regardless of whether the participants are people or
information systems. Communications take time, and thus can adversely impact the speed
with which a process is able to execute. Communications require resources, which can
adversely impact the operational costs associated with the process. And communications
can fail, which of course can adversely impact the ability to complete the process.
Ultimately, you need to be able to tie these aspects of communications back to the business
process design and determine whether the entire packageâ!”the total architectureâ
!”satisfies the business need.

While you need to differentiate all activities performed by different roles, the level of detail
required within a role is considerably less. A good guideline here is to look at the role from
the perspective of its interactions with other roles. If from this perspective you can't tell
when one activity ends and the other begins, then there is no need to differentiate between
those activities.

Scenarios and Variations

Scenarios provide a simple and expedient means of exploring activities, their interactions,
and their association with roles. A scenario is nothing more than an example of a possible
business process execution under a specific set of circumstances. It describes the
participants in the process (both people and systems), the activities of each participant, and
the interactions between them. It provides a dynamic view of the business process
architecture.

You generally capture business process scenarios by asking a business person or small
group to give an example of how they envision their business process working. If the
process has already been thought out, then you are just asking them to describe their vision
of how it would work. If the process is being designed, then you are asking them for a first-
cut operational concept of how the proposed business process might work. This first
scenario then serves as a straw man for further discussions.

For the Withdraw Cash via ATM Machine process, this first scenario provides the basic
operational concept for how a user would withdraw cash from a bank account using an ATM.
If this were the initial exploration of the concept of using an ATM, at this point you would
explore alternative operational concepts. One alternative concept might be that an ATM
placed in a retail setting would not actually dispense the cash, but would instead dispense a
receipt that would be taken to a retail cashier to obtain the cash.[3] The discussions around
the alternatives serve to weed out the unreasonable ones and home in on a small number of
viable candidates worthy of further exploration. In this way alternative scenarios can be
proposed and explored quickly and inexpensively.

proposed and explored quickly and inexpensively.

[3] Some early ATMs actually worked this way.

Once you have arrived at one or more viable primary scenarios for each business process
being considered, you then ask the business people to envision variations in circumstances
that might alter the business process. Each variation is then illustrated with an example
scenario. For the ATM, these variations would include circumstances such as having
insufficient funds in the account and the entry of an incorrect PIN. Again, the scenarios,
their variants, and possible alternatives are discussed until consensus is reached about each
one.

Finally, you ask the business folks to consider a different category of circumstancesâ
!”breakdowns in the process. You ask what might go wrong in the process and what the
scenarios would be for dealing with these breakdowns. In the ATM example you might
consider a malfunctioning cash dispenser or the failure of communications with the bank
while the transaction is in progress. These considerations may actually lead to the alteration
of the primary scenario. In fact, the consideration of a communication failure in the middle
of the transaction results in a primary ATM scenario involving not one but two interactions
with the bank.

It is interesting to look at the actual evolution of ATMs in terms of business process
scenarios. In some early ATM systems, if the customer entered his or her PIN incorrectly,
the ATM kept the card! This required the customer to go to the bank in person to get a new
ATM card. In other words, every time a PIN was incorrectly entered, some other business
process had to be executed to obtain a new ATM card.

Had the designers of those early ATM systems simply asked how often the PIN might be
incorrectly entered, this design might never have been implemented. An understanding of
the frequency with which customers would have to go through the inconvenience of
obtaining a new ATM card would have emerged. This understanding might have led to the
consideration of an alternative business process design that did not keep the card.

It is exactly this type of process variation discussion that you are trying to motivate through
the exploration of circumstances and scenario variations. You want to make and then
recognize design mistakes while the design is still just a concept and easy to change. You
want to postpone making the investment in detailed design and implementation until you
are reasonably sure that the operational concept and supporting system design are sound.

Project Efficiency

Does the postponement of design and implementation while scenarios are being explored
make the project take longer? Definitely not. In fact, making and resolving architectural
mistakes on paper actually reduces the time and cost required to deploy a working business
process and reap the expected benefits. It leads to the early definition of a comprehensive,
well-considered, and stable set of responsibility assignments and interfaces for each
participant. Thoroughness here significantly streamlines the subsequent design,
implementation, and testing, making the overall project shorter and more efficient.

You should recognize that everything you do in defining scenarios is work that would have
to be eventually done anyway. At some point, every activity will have to be identified,
defined, and assigned to a process participant. Every interaction will have to be identified
and designed. Every variation in circumstances is going to have to be appropriately dealt
with. By defining the scenarios up front, you are making the process more efficient,
identifying the need for changes while the design is still on paper. As noted by Boehm and
Basili,[4] "Finding and fixing a problem after delivery is 5 to 100 times more expensive than

finding and fixing it during the requirements and design phase." They go on to note that
"good architectural practices can significantly reduce the cost-escalation factor even for
large critical systems. Such practices reduce the cost of most fixes by confining them to
small, well-encapsulated modules."

[4] Barry Boehm and Victor R. Basili, "Software Defect Reduction Top 10 List," IEEE Computer, Vol. 34,
No. 1, pp. 135â!“137 (January 2001).

This book is essentially a compendium of architecture best practices for both the business
processes and the systems that support them. It would not be unreasonable to claim that
you can't get to a working system faster. You should be aware, however, that you can
quickly arrive at a system that does not work by avoiding the early consideration of
important business process variations and design issues. In the end, such shortcuts are a
foolish and wasteful (though not uncommon) practice. They give the illusion of quick project
success while forcing the business to find an alternative mechanism for dealing with these
unconsidered business process variations and design issues. Prudence demands that you
consider these variations and issues while the architecture is still in its formative stages.

At the same time, you need to make sure that you do not get trapped in an endless
analysis exercise. So when should you stop exploring scenarios? You should continue to
explore scenario variations until you are no longer discovering either (a) new activities, (b)
new interfaces, or (c) new patterns of interaction between the participants. At this point,
you will have defined a candidate architecture for your business processes that
characterizes its overall structure, organization, and dynamics.

Note that when the architecture has been defined, the business process will not be
completely defined. There will still be design details to be worked out within each
participant's role and within each communication. User interfaces will be identified along
with the information being displayed and captured, but the details of those interfaces will
not be fully specified. System interactions will be identified along with the general
information content of each communication, but the system interfaces will not be fully
specified. Business rules within individual activities will require further detailing, though the
architecture will identify the information needed and generated by those rules.

In general, such incomplete definitions are expected and acceptable as long as you are
satisfied that you have identified all the inputs and results that are required for each activity
(including their interactions with other business processes in the architecture) and you are
satisfied that there are no feasibility issues associated with implementing the activity. If you
have done your job right, these details will be added later without altering the overall
architecture of the business process. Thus you can safely leave these details to be worked
out later.

Modeling Scenarios

Modeling a scenario begins with an abstract understanding the basic activity flow required
to produce the results (Figure 9-6). There are no roles yetâ!”only an understanding of the
activities that are required, the inputs they require that originate outside the process, and
the results they produce that are destined for other processes. Very often this abstract
understanding results from analyzing other business processes that produce the same
results, such as the Withdraw Cash via Human Teller example discussed earlier. This
particular representation employs the UML 2.0 activity notation, which is an enhanced
version of the familiar flowchart.

Figure 9-6. Abstracted Withdraw Cash Process

[View full size image]

In this abstracted process view, the initial focus is on identifying the activities that must
occur to complete the business process. For each of these activities, you need to determine
whether it requires any inputs that come from outside the process and whether it produces
any results that go outside the process.

You also need to determine the required sequencing of the activities and be very careful in
doing so, for whatever sequencing is specified here must be preserved as the process is
refined. Consequently, when it is acceptable for activities to occur at the same time, this
should be clearly indicated in your process representation. The mechanism for doing this in
the activity notation is through the use of fork and join nodes (Figure 9-7). The semantics
of a fork node is that after the preceding activity has completed, then the subsequent
activities are allowed to proceed in parallel. Conversely, a join node indicates that all of the
preceding activities must complete before the subsequent activity can begin.

Figure 9-7. Fork and Join Nodes

Differentiating Participant Roles

The next step in modeling the scenario is to introduce the participant roles into the activity
as shown in Figure 9-8. Each role is represented by an activity partition (commonly referred
to as a swimlane). Each partition is labeled with the name of the participant role it
represents. If you are using a UML tool for the modeling (which is highly recommended), be
sure to use the represents property of the partition to reference the role you defined in
the collaboration. If you do this, should you rename the role (which is highly likely as you
refine the process definition) you only need to edit the name in the collaboration. All of the
partition names will be updated automatically.

Figure 9-8. Participant Roles

[View full size image]

Graphically, partitions can be run vertically or horizontallyâ!”the choice is simply a matter
of graphical convenience. In creating activity diagrams (or any diagram, for that matter), it
is good practice to consider how the diagram will fit on the document page. When there are
many interactions between a relatively small number of participants, generally vertical
partitions will fit better on a portrait-layout page. Conversely, when there are many
participants, each having relatively few interactions, horizontal partitions tend to fit better
on portrait-layout pages.

Assigning Activity Responsibilities

The next step in modeling the process is to place the activities in the activity partitions. The
placement of the activity in a partition is a responsibility assignment. It indicates that the
participant playing that role is responsible for executing the activity. The act of placing
activities in swimlanes forces you to be clear about what each participant is doing in the
process. It forces you to differentiate abstract activities into the individual activities that
individual participants can perform. These activity assignments identify the required
interactions between the participants, and the artifacts involved in these interactions.

The successful withdrawal scenario for the Withdraw Cash via ATM process is shown in
Figure 9-9. This design reflects a number of refinements from the abstract process. The
ATM card, or more specifically the cardID, and the PIN together play the role of the
customer identification and customer credentials in the abstract process.

Figure 9-9. Successful Withdrawal Scenario

[View full size image]

The abstract authenticate customer activity becomes a comparison of the PIN supplied
by the customer with the PIN associated with the cardID in the bank's records. The
abstract verify authorization activity becomes a lookup of the account associated with
the card (this example makes the simplifying assumption that there is only one account
associated with the card).

While the decision making associated with authenticating the customer and verifying the
authorization are performed by the balance manager (i.e., the bank), there are related
responsibilities for the other participant roles as well. The customer must provide the
cardID (by inserting the ATM card) and entering the PIN. The teller (i.e., the ATM system)
must aggregate this information and pass it on to the balance manager.

New activities and artifacts are introduced in this differentiation of roles as well. When a
customer enters a bank in person and deals with a human teller, that teller is only acting on
behalf of one bank. However, when a customer is using an ATM system that services many
banks, the teller (i.e., ATM system) must determine which bank to interact with. This
activity also requires some reference informationâ!”a cardIDâ!”bank association.

Another nuance introduced by the possibility of a breakdown either in the ATM system or
the communications to it is the need for an account hold. With a human teller, the teller
simply attempts to debit the account for the amount of the withdrawal. If the debit

succeeds, then the teller takes cash from the drawer and hands it to the customer. Any
breakdowns in the process after the debit transaction are handled by the human teller.

In the ATM variation, however, the reply to the debit request may get lost, or there may be
a malfunction in the ATM after the debit occurs. To make these situations easier to deal
with from a business process perspective, two interactions occur with the balance manager
(Figure 9-10). In the first interaction, the disbursal of funds is authorized and a hold of the
amount to be withdrawn is placed on the account funds. This hold keeps those funds from
being withdrawn for some other purpose. After the funds have been successfully disbursed,
a second interaction occurs in which the ATM system reports the disbursement and the
balance manager updates the balance and removes the hold. Since there may be other
holds on the account (from other transactions), the disbursal report must be associated with
the specific hold to be removed. In this design, information about the hold is returned to
the ATM system with the disbursal authorization and the identifier of the hold is returned
with the disbursal report. Note also that the account hold is intended to impact the
execution of other business processes. It represents yet another interaction between
processes.

Figure 9-10. Disbursal Authorization and Report

Detailing the scenario has identified additional artifacts that originate outside the business
process and additional artifacts that are produced by this process and used elsewhere.
These artifacts should be added to the collaboration as shown in Figure 9-11.

Figure 9-11. Updated Withdraw Cash via ATM Collaboration

[View full size image]

The authenticate customer activity in this example illustrates that without assigning
activities to participant roles, it is easy to create an activity that is actually a collaborative
effort between two or more participants. Such collaborative activities tacitly assume that the
dialog between the participants is both clear and feasibleâ!”an assumption that often turns
out to be wrong. If you were designing an ATM system for the first time, such vague activity
descriptions might leave the impression that traditional forms of identification (such as
presenting a driver's license) could be used as the basis for identification.

When you assign responsibility for activities by placing them in partitions, you force yourself
to differentiate activities. This makes you explore the nature of these collaborations,
defining the individual participant activities and the required communications between
them. This exploration is generally sufficient to surface and resolve any feasibility issues in
the business process definition.

Modeling Interactions

The manner in which interactions occur has implications for both the sunny-day scenario
execution of a business process and its execution under failure conditions. If your
representations of processes are to precisely indicate their behavior under all conditions, it
is important that you capture and represent interactions clearly in your designs.

Producer-Consumer Interactions

Virtually all interactions take the form of a producer-consumer interaction (Figure 9-12). In
this interaction one activity produces an artifact (referred to as an object in the UML
notation) that is then consumed by one or more activities. This artifact might be something
physical, such as the cash or receipt that is produced by an ATM, or something abstract,
such as a request for funds disbursement from a bank. Of course, when your design is
implemented such abstractions will generally have some concrete manifestation in the form
of a message, a database record, or even a spoken communication.

Figure 9-12. Producer-Consumer Interaction

This notation identifies the activity producing artifact with an arrow (technically known as an
object flow) drawn from the activity to the artifact (technically known as an object) it
produces. Activities that consume the artifact (and there may be more than one) are
identified with arrows from the artifact to each activity that will consume it. It is important
to note that the placement of the artifact itself has absolutely no significance in the
notation. The meaning of the figure would remain the same even if the artifact were shown
in the role A activity partition or entirely outside the partitions.

Strictly speaking, in a distributed system virtually all interactions between participants

should be shown as producer-consumer relationships. This is because in real life,
participants rarely interact directly with one another. Instead, they most often interact
through some medium, be it paper, e-mail, system messages, files, databases, packages,
pipelines, or some other means. The artifact then represents whatever is passed through
the medium from the sender to the recipient. The ATM system, for example, produces a
disbursement request, a message that is transmitted to the bank. The bank, in turn,
generates a response, a message that is transmitted back to the ATM system.

Simultaneous Interactions

Occasionally there is, indeed, a direct interaction between the participants: a true
simultaneous interaction between them. A handshake is an example of such an interaction:
Both parties are doing complementary actions at exactly the same time. Figure 9-13 shows
how a simultaneous interaction would be represented. In reality, it is very rare for the
participants in a distributed system to directly interact simultaneously; for example, even
when one person talks to another, his or her voice produces sound waves (the artifact) that
the other person hears.

Figure 9-13. Simultaneous Interaction

This distinction between interaction styles is important because they have significant
differences in their possible failure modes. In simultaneous interactions, the entire
interaction either happens or it doesn'tâ!”it is essentially a single atomic action. The
completion of the previous activity coincides with the beginning of the subsequent activity;
either both things occur or neither occurs. But if the interaction occurs via a medium, then
the previous activity generates some artifact that is subsequently delivered to the
subsequent activity. This interaction has a failure mode that is not shared by the
simultaneous interaction: The delivery of the artifact might fail. The previous activity might
actually generate the artifact, but something might go wrong with the delivery and the
artifact might never be presented to the subsequent activity. This difference in failure
modes is significant when you are trying to design a process that is robust with respect to

failure.

Notational Shortcuts

Because of the differences in failure modes, it should be clear that if interactions between
participants are producer-consumer interactions, then your process models should reflect
this. The diagram should show the artifact being exchanged between the participants as well
as the activities that produce and consume the artifact. But showing these artifacts can lead
to very cluttered-looking activity diagrams. The graphical presence of the objects in the
diagram can obscure the overall flow of the process. Consequently, shortcuts are often used
when modeling a business process (as opposed to its technical implementation). The
shortcut is to show a simultaneous interaction. Typical usages of this shortcut are illustrated
in Figure 9-14.

Figure 9-14. Shortcuts in Annotating Interactions

[View full size image]

When you use this type of shortcut, you must do so with the full understanding that the
simultaneous interactions that cross swimlane boundaries almost always represent
producer-consumer interactions. You should use the shortcut notation only when you are
documenting the business process. Do not use them when you document the systems
design that supports the business process, because understanding and dealing with the
mechanics of delivering the artifact and the related failure modes is an important aspect of
the technical design.

Scenario Variations

A single execution scenario generally does not represent everything that can happen in a
business process. To further increase your understanding of the process you want to

consider the significant variations that can occur. You are looking in particular for significant
variations, that is, variations involving new activities, new participants, new
communications, new artifacts, and differences in communications patterns. For each
significant variation, you create another activity diagram to capture this variation. Figure 9-
15, for example, shows the insufficient funds scenario for the ATM Withdraw Cash
business process. Note the absence of the second interaction with the banking system in
this scenario and the absence of the account hold. The interaction pattern for this scenario
is different than the primary scenario. Understanding these variations in interaction patterns
will help you to better understand what the expected load will be on individual participants
and upon the networks they use for communications. Different interaction patterns may also
present different symptoms when breakdowns occur. Both considerations will influence your
evaluation of the proposed business process.

Figure 9-15. Insufficient Funds Scenario for ATM Withdraw Cash

[View full size image]

Note that while the UML activity notation is rich enough to allow you to combine these
alternatives into a single diagram, the resulting diagram will be more complex and difficult
to read. While minor variations can be incorporated into a single diagram, significant
variations warrant their own diagrams. With this approach, each diagram represents the

behavior under a specific set of circumstances. Different circumstances, different diagram!
Keeping each diagram focused on a single set of circumstances makes it easy for the
business stakeholders to understand the circumstances and validate the desired behavior.
To facilitate the identification of the differences, it is good practice to graphically highlight
the differences between the variant scenario and the initial scenario.

While you are thinking through and documenting the business process scenarios, you may
well think of alternate scenarios that could produce the same results. This is good! Activity
diagrams provide a simple and inexpensive vehicle for comparing and contrasting
alternative scenarios. They also give you a means of documenting the alternatives that you
have considered and discardedâ!”a record of the rationale behind the business process
design. This type recordâ!”a design note-book, as it wereâ!”can help future maintainers of
the business process and supporting systems understand why the design is the way it is.

At the end of the day, the goal of this entire modeling exercise is to eliminate any possible
ambiguity as to how the business process ought to behave. Any ambiguity in the business
process definition can easily lead to a system that inappropriately and unintentionally
produces (or forces) the business process to diverge from this intent. Well-defined business
process scenarios, documented in the form of activity diagrams, make absolutely clear what
the expected business process behavior should be under various circumstances. If a
sufficiently rich set of variations is considered, this approach provides the level of clarity
required to get it right the first time. Ultimately, it averts the dreaded "that's not what I
really wanted" reaction from the user community after the system has been built.

Exception Handling

One important category of business process variations that you must consider is exceptions.
In these variations you want to explore what can go wrong with the business process and
what the appropriate business process response should be. For each business process and
each type of breakdown you want to determine what the symptoms will be and how (by
what means) the participants in the process will recognize that something has gone wrong.
You then want to consider whether an alternative design might improve the participant's
ability to detect breakdowns in the process.

Beyond simply detecting the presence of problems, you need to consider what the follow-up
actions will be after a problem has been detected. But you do not necessarily need to
design a detailed process for recovering from each possible breakdown. Many breakdowns
will be investigated and dealt with in an ad hoc manner by people participating in the
process. In such cases you need to consider how they will investigate the problem and what
system interactions they will require during investigation and recovery. These interactions
may require additional or extended interfaces to systems. These interfaces then become
requirements on the systems, even though the process that uses these interfaces may not
be defined in detail.

Finally, you need to consider whether there might be alternate business processes
employedâ!”variations on the processâ!”when things go wrong. If an order placement
business process normally calls for a customer credit check and the participants cannot
communicate with the credit service for some reason, is the business going to stop taking
orders? Maybe not. Maybe it will have some alternate process for validating credit, such as
checking the customer's recent credit history in the business's records. If the customer has

a good track record, the business may want to accept the order without a new credit check.
Alternatively, orders from customers for which the business does not have a history may go
through some type of manual approval process, at least until such time as the credit service
becomes available again. Clearly, if you are going to design the systems to support these
alternate business processes, these alternates and the circumstances under which they are
executed must be clearly understood and documented.

How Much Detail Is Enough?

It should be apparent by now that if you continue this design process you will eventually
document every single detail required to actually implement the business process. But you
don't want to go to that level of detail until you are satisfied that the overall architecture of
the process is suitable. So where do you stop? Here are some guidelines.

When you are architecting the business process, you want to identify all interactions
between participants, but you do not want to detail themâ!”yet. Instead, you use the
shortcuts to simply show that the interactions exist. Similarly, you want to identify the fact
that there are artifacts (information, physical objects, etc.) being exchanged during these
interactions. You do this by labeling the control flows to indicate that these artifacts are
being passed. For example, Figure 9-15 shows the customer providing the teller with the
card ID, the PIN, the transaction type, and the amount to be withdrawn. The actual
mechanisms for this communication will be determined when you define the corresponding
system architecture, but you will do this only after you are satisfied with the basic
architecture of the business process.

This distinction in level of detailâ!”showing the existence of something as opposed to
characterizing it in detailâ!”is a good example of the distinction between architecture and
design. Architecture identifies the overall structureâ!”the existence of the artifact, the need
to convey it from one participant to another, and the dynamics of when this occurs. While
you are doing this you also want to identify the characteristics of these artifacts that are
most important to the business process, namely the identifiers and attributes upon whose
values decisions are made. This understanding of concepts and their key attributes is
captured in the domain model (which will be discussed in Chapter 13), in which you will
accumulate this information as you are defining the business processes. But once again, you
are just identifying the basic structure. You will defer detailing the physical form of these
artifacts and the mechanisms by which they will be communicated until such time as you
are addressing the system architecture and component and service specifications.

As you progress more deeply into the design process, through business process
architecture, system architecture, component specification, and component design, you will
find that this level-of-detail boundary moves. When you are architecting the business
process, you are intentionally ignoring all system details below the level of simply
identifying what the systems (as a whole) are expected to be doing and what people are
expected to be doing. Later, when you are architecting the systems, you will be refining the
structure of the systems. At that point you will be identifying the components and services,
and choosing the technologies to be used both for their implementation and for the
communications between them. But once again you will be intentionally ignoring some level
of detail. You will not detail all of the data structures and interfaces, nor will you detail the
internal design of the individual system components. Only after you are satisfied with the
business process and system architecture will you invest in specifying the system
components and services, including their interfaces. Following this, the internal design and
implementation of the components will occur.

Returning now to the consideration of business process architecture, since you have not yet
defined the architecture of the system, you do not yet know the details of which system

components will be performing which activities (unless these responsibility assignments are,
themselves, business requirements). Consequently, in your business process architecture
you should treat the to-be-designed system as a single participant (partition) in the
process. The component-level structural refinement of this system will be defined later in
the system architecture.

There is one significant exception to this treat-the-system-as-a-single-participant
approach. If it is a requirement that specific systems will perform specific tasks, then it is
entirely appropriate to show those systems as individual participants in the business
process. These are design decisions that have already been made, and there is little point in
not showing them in your business process model.[5] You see an example of this in Figure
9-4 in which the Bank Systemâ!”an existing system with mandated responsibilitiesâ!”is
playing the role of balance manager. The remainder of the system activity (the non-bank
functionality) is shown as the teller role being performed by the yet-to-be-defined ATM
System. Bear in mind that at this point you have not yet decided what the architecture of
that ATM system will be!

[5] One exception might be when you wish to illustrate that these preordained responsibility assignments
are, in fact, inappropriate. In such cases, you might want to show the unconstrained business process
and the alternate system architectures that might be used to implement the process.

Guidelines for Using Activity Diagrams

Every business process should have a primary scenarioâ!”a common execution exampleâ
!”that is documented with an activity diagram. This diagram should show all the major
participants in the process and all of the interactions between them. Even if you are
narrowly focused on improving a fragment of the overall process (i.e., a single activity or
small group of activities), this overall diagram will help you to understand the impact your
work will have on the overall process. In particular, by including all of the major
participants, you are identifying all of the participants who could, potentially, drop the ball
and cause the process to fail. Major variations on this primary scenario should similarly be
documented with activity diagrams that also show the full scope of the process.

These full-scope activity diagrams show all of the major participants along with their
activities and communications between them. This gives you a view of the patterns of
interaction among the participants and an understanding of how responsibility is handed off
from one participant to another. This perspective is essential to understanding what might
go wrong with the process and which participants are in a position to identify process
breakdowns. This identification of breakdowns is the key to maintaining the process
availability.

The high-level scenarios you assemble do not detail the mechanisms used to communicate
between the major participantsâ!”they simply show that a particular body of information is
communicated. This is appropriate when you are defining the business process, for the
details of the communications have not yet been designed. Even if they were, adding
swimlanes to represent communications intermediaries and objects to represent the
exchanged artifacts would complicate these overview diagrams, obscuring the
understanding of who the major participants are and what they are doing.

However, there will come a time in the design process when you will need to understand
and document exactly how communication occurs. When you introduce additional
participants to carry out the communication, these participants need to be identified and the
details of their interactions documented. To accomplish this, you should document the
communications details in supporting activity diagrams. Each diagram will document a
specific pattern of communication. Once these patterns have been documented, the control
flow on the high-level activity diagram can be labeled with the name of the pattern being
used. This approach is detailed in Chapters 17 and 18.

Another form of top-level diagram simplification is to aggregate a number of a participant's
activities into a single activity. The details of this composite activity are then shown in a
supporting activity diagram. When you do this, however, you must be sure not to mask the
existence of communications, for this will in turn mask potential sources of failure in the
overall business process. All communications between participants must be shown in the
high-level diagram, and it is desirable to show the decision making that affects
communications as well.

When you are documenting a business process, you should continue to explore the details
of the process until you are satisfied that you have identified all possible communications
between participants. In particular, you want to identify any inputs that may be needed by

activities that come from other processes. These other processes must be added to the
inventory of collaborations that impact the project. In some cases these other processes
must themselves be designed. In others, they will already exist but will need to be modified
to make their results available. All of this contributes to a fuller understanding of project
scope and of the work required to achieve project success.

Summary

Understanding a business process begins with knowing the results that the business process
is intended to generate and the inputs the business process requires. You also need to
understand the participants in the process and the roles that they play. Roles define the
responsibilities of the participant in terms of the activities they are expected to perform.
UML collaboration notation provides a means of documenting the business process and its
constituent parts.

Differentiating a business process into its constituent activities exposes the interactions
between the activities. Assigning the responsibility for interacting activities to different
participants requires communications between those participants. Scenarios provide a useful
mechanism for identifying activities, interactions, and roles. UML activity diagrams provide
unambiguous and readily understood scenario documentation.

Comprehensive analysis of the business process requires exploration of all the important
business process variations. Both normally expected variations and exception handling
variations need to be explored. The exploration of variations should continue until new
participants, artifacts, activities, interactions, and patterns of interactions are no longer
being discovered.

The business process architecture should focus on identification and structureâ!”not detail.
Artifacts that are produced and consumed should be identified, but not necessarily detailed.
Activities should be identified and roughly characterized but, again, not detailed. These
details are dependent on the structure and organization of the business process. You don't
want to make the investment in detail until you are somewhat comfortable with the
structure and organization of the business process. Avoiding this detail in the early stages
lowers the cost of exploring alternate business process designs.

Key Business Process Architecture Questions

1. Have all of the participants in the business process been identified? Have all
of the artifacts that are produced or consumed by the business process
been identified?

2. Has the primary (common case) scenario been defined for the process? This
scenario illustrates the basic operational concept of how the business
process is supposed to operate.

3. Have all significant variations on the primary scenario been defined,
particularly those that introduce new participants, activities, artifacts, or
communications?

4. Has the business handling of exceptions been defined for each process?

Suggested Reading

Harmon, Paul. 2003. Business Process Change: A Manager's Guide to Improving,
Redesigning, and Automating Processes. San Francisco, CA: Morgan Kaufmann.

Rumbaugh, James, Ivar Jacobson, and Grady Booch. 2005. The Unified Modeling Language
Reference Manual, Second Edition. Boston, MA: Addison-Wesley.

Sharp, Alec, and Patrick McDermott. 2001. Workflow Modeling: Tools for Process
Improvement and Application Development. Norwood, MA: Artech House, Inc.

Chapter 10. Milestones
Whenever you have a business process, it is to be expected that people will want to know
its status. Reporting status, particularly of complex processes, can be tricky. Generally,
what people want to know is what business-meaningful state the process has reached.
These are commonly referred to as the milestones in the business process. Unfortunately,
simply reporting the last completed activity of the process may not provide this information.

Basic Process Milestones

In a simple process, there may not be a great deal of distinction between the individual
process steps and the process milestones. But as process complexity increases, this
distinction becomes more pronounced. Consider the Catalog Sales Order Process for
a mail-order catalog business shown in Figure 10-1. The New Order milestone corresponds
in a fairly obvious way to the actual receipt of the order.

Figure 10-1. Catalog Sales Order Process Showing Milestones

[View full size image]

The correspondence of the Order Accepted milestone, on the other hand, is less obvious.
This milestone marks the formal commitment on the part of the business to fulfill the order.
It reflects the fact that the items in the order have been verified to be known catalog items
and that payment authorization has been received. In this process design, the activity
whose completion marks the achievement of the milestone is the obtain payment
authorization, but that correlation is simply an accident of the process design. Should
the sequence of the obtain payment authorization and validate order items
activities be reversed, it would be the completion of the validate order items activity
that would mark the achievement of the milestone.

Technically, the Order Shipped milestone reflects the actual shipment of the goods.
However, in the actual process design, this may be an event that cannot be directly
observed. In such cases, a surrogate event such as the receipt of the shipment report
by either the warehouse system or the sales order system may have to be used. In
other cases, such as the Order Complete milestone, some of the events may not be
observable at all. As shown, this milestone occurs after the close order activity, but one
might justifiably question whether this truly marks the completion of the order when the
receipt of the goods by the customer has not been verified.

The meaning of a milestone is a reflection of the conditions that must be met to reach the
milestone. By using the UML state machine notation, you can represent both the milestones
and the conditions under which a transition to the next milestone can occur (Figure 10-2).
The states represent the milestones, and the transitions are labeled with the events and
conditions that cause the transition to the next milestone. This diagram represents the
typical lifecycle for a successful catalog order.

Figure 10-2. Partial Catalog Order Lifecycle

The syntax of the transition labeling is:

event[condition]

The meaning is that if the event occurs under the specified conditions, then the transition to
the next milestone will occur.

Chapter 10. Milestones
Whenever you have a business process, it is to be expected that people will want to know
its status. Reporting status, particularly of complex processes, can be tricky. Generally,
what people want to know is what business-meaningful state the process has reached.
These are commonly referred to as the milestones in the business process. Unfortunately,
simply reporting the last completed activity of the process may not provide this information.

Basic Process Milestones

In a simple process, there may not be a great deal of distinction between the individual
process steps and the process milestones. But as process complexity increases, this
distinction becomes more pronounced. Consider the Catalog Sales Order Process for
a mail-order catalog business shown in Figure 10-1. The New Order milestone corresponds
in a fairly obvious way to the actual receipt of the order.

Figure 10-1. Catalog Sales Order Process Showing Milestones

[View full size image]

The correspondence of the Order Accepted milestone, on the other hand, is less obvious.
This milestone marks the formal commitment on the part of the business to fulfill the order.
It reflects the fact that the items in the order have been verified to be known catalog items
and that payment authorization has been received. In this process design, the activity
whose completion marks the achievement of the milestone is the obtain payment
authorization, but that correlation is simply an accident of the process design. Should
the sequence of the obtain payment authorization and validate order items
activities be reversed, it would be the completion of the validate order items activity
that would mark the achievement of the milestone.

Technically, the Order Shipped milestone reflects the actual shipment of the goods.
However, in the actual process design, this may be an event that cannot be directly
observed. In such cases, a surrogate event such as the receipt of the shipment report
by either the warehouse system or the sales order system may have to be used. In
other cases, such as the Order Complete milestone, some of the events may not be
observable at all. As shown, this milestone occurs after the close order activity, but one
might justifiably question whether this truly marks the completion of the order when the
receipt of the goods by the customer has not been verified.

The meaning of a milestone is a reflection of the conditions that must be met to reach the
milestone. By using the UML state machine notation, you can represent both the milestones
and the conditions under which a transition to the next milestone can occur (Figure 10-2).
The states represent the milestones, and the transitions are labeled with the events and
conditions that cause the transition to the next milestone. This diagram represents the
typical lifecycle for a successful catalog order.

Figure 10-2. Partial Catalog Order Lifecycle

The syntax of the transition labeling is:

event[condition]

The meaning is that if the event occurs under the specified conditions, then the transition to
the next milestone will occur.

Variations in Milestone Sequences

The states and transitions shown in Figure 10-2 represent only the sunny-day scenario for
an order. They do not, for example, represent the milestones associated with cancelled
orders or what happens when payment is not authorized. To be useful, the state diagram
must represent all the possible milestones and the events and conditions that lead to them.
Figure 10-3 shows a more complete set of milestones for the catalog ordering process,
indicating some of the alternative outcomes.

Figure 10-3. Extended Order Lifecycle

[View full size image]

Grouped Milestones

While this lifecycle example provides a richer understanding of the process milestones, it
still lacks a certain level of clarity surrounding one very high-level milestone, namely the
completion of the order processing. While there is a Complete milestone that marks the
end of a successful order, Unrecoverable Loss, Cancelled, and Declined also mark
possible outcomes for an order. There is no single milestone that indicates that the order is
"done," regardless of the outcome. The UML state machine notation provides a composite
state for grouping states together. This grouping can be used to aggregate all of the
outcome states together into a single Closed state, as shown in Figure 10-4. This type of
grouping can greatly simplify the mechanics of reporting, monitoring, and managing
processes.

Figure 10-4. Extended Order Lifecycle with Summary States

[View full size image]

Recognizing Milestones Requires Design

Milestones provide a useful abstraction of a business process. However, just because a
milestone has been abstractly defined in terms of events and conditions, this does not mean
it is readily observable in the actual business process. In fact, some milestones may never
be observable. In the catalog business, one milestone the business would very much like to
mark is the delivery of the goods to the customer. Depending on the delivery mechanism
used and its reporting capability, this milestone may not be observable at all. As a result,
the business may have to compromise on a related milestone that it can actually observe,
such as the shipment of the goods.

Marking the achievement of a milestone requires both recognizing an event and determining
whether specific conditions have been met. Sometimes the event itself is not readily
observable, as in the package delivery just mentioned. There is another example in the
catalog order process as well. In a technical sense, the order has been received when the
mail is delivered. However, there is no practical means of observing this event, i.e., realizing
that a particular order happens to be in the mail that was just delivered. Not until the order
is opened and entered into the system does the business even become aware of the order.
Once again, a compromise has been made. The New milestone, in reality, marks the entry
of the order into the sales order management system, not the actual receipt of the
order.

Because of this potential discrepancy between the milestone definition that the business
would like and the actual information available in the systems, it is very important to
understand the desired milestone definitions (events and conditions) before embarking on
the systems design. Armed with this understanding, you can design the systems to identify
the requisite events, check the appropriate conditions, and record the achievement of the
milestone. It is significantly less expensive to design these capabilities into the system than
to attempt to retrofit an existing design.

Recording individual milestones, however, is of limited value. It will enable you to determine
which processes (e.g., orders) have reached that particular milestone, but it will not enable
you to determine the milestone status of a given process (e.g., order). To accomplish this,
you need to be able to gather all of the milestone information. If the achievement of
different milestones is recorded in different systems, this involves a fair amount of work
gathering the milestone information and correlating it. In other words, if milestone
information is scattered, determining the status of processes is an expensive operation.

To be useful, milestone information needs to be readily available. It is good practice to
designate a particular system as the holder of milestone status information. Since the
achievement of individual milestones may still occur in different systems, this will require
additional communications between the system recognizing the milestone and the system
maintaining the record of its achievement.

Using Milestones to Reduce Inter-Process Coupling

Processes often need to know the status of other processes. This creates a design
dependency between the processes, as one process must know enough about the other
process to determine its status. Milestones provide a means of simplifying these interactions
and keeping them stable over time as the underlying processes evolve. Milestones tends to
be far more stable over time than the underlying business processes. Thus the milestone
lifecycle of a process represents a point of stability in the design. This is exactly the type of
stability you are looking for in service design.

Once you recognize that milestone lifecycles rarely change, you can create more stable
designs by ensuring that milestone status information is readily accessible and using this as
the basis for inter-process communications. The process that reaches the milestone updates
the milestone status when the milestone is reached, and then the milestone status change
is communicated to the other process. By doing this, you make overall system design
independent from the design of individual business processes. This makes it easier to
evolve those processes, and thus facilitates the evolution of the business. The business can,
for example, evolve the process without having to modify process reporting. Service-level
agreements and key performance indicators can also be defined with respect to milestones,
rendering their definitions independent of the process design.

For all but the most trivial processes, the clear identification of process milestones is a basic
requirement for each business process. It then becomes a process design requirement that
these milestones are clearly identifiable. This approach also makes it possible to have
common reporting on different business processes that produce the same results. This can
be very useful in businesses that provide the same goods and services through different
channels.

Summary

Milestones mark key events in a business process. The possible sequences of milestones
and the conditions for transitioning from one to the next represent an abstracted lifecycle of
the business process. Grouping milestones provides a means of identifying similarities
among milestones while at the same time preserving their uniqueness.

A milestone represents an event that occurs under a particular set of circumstances.
Recognizing a milestone therefore requires recognizing the event and determining whether
the circumstances have been satisfied. Sometimes the actual event of interest is not
observable, and some related event must be used as a surrogate.

There is design work involved in recognizing events, and the recognition of different events
often occurs in different systems. When this occurs, the milestone status of a given process
ends up being distributed across a number of systems. This makes the determination of
process status an expensive activity.

To make status reporting convenient, milestone-level status must be gathered in a single
system. This necessitates communications between the systems recognizing the events and
the system aggregating the milestone status. These needs constitute additional design
requirements for the systems.

Milestones present an opportunity to reduce inter-process coupling. Because milestones
represent an abstraction of the underlying process, their use in communicating process
status decouples the consumer of the process status from the details of the underlying
process design. This facilitates the evolution of the underlying process without necessitating
changes to the consumers of process status. It also makes it possible to have a common
abstracted view of different business processes that produce the same results.

Key Milestone Questions

1. Have the business-relevant milestones been defined for the process? Have
the events and conditions they mark been identified?

2. Have milestone similarities been represented with groupings of milestones?

3. Have the points in the business process that correspond to the milestones
been clearly identified?

4. Has a process participant been designated as the repository for milestone
status? Has the business process been updated with the communications
between the participants recognizing the events and the participant
recording the milestone status?

5. Are milestones being used for inter-process communications regarding
business process status?

6. Are milestones being used for process status reporting and monitoring?

Chapter 11. Process Constraints
Almost all business processes have constraints that they must satisfy. The rate at which a
process must be able to execute and the allowed completion time for its execution are two
examples of constraints discussed in earlier chapters. These happen to be performance
constraints, but there are other categories of constraints pertaining to availability, fault-
tolerance, security, monitoring, management, and exception handling, to mention a few. To
complete the architecture of a business process, you need to comprehensively specify its
constraints.

The subject of constraints (often referred to as nonfunctional requirements) is somewhat
open-ended. You should consider the categories of constraints discussed here, but you
should not let your thinking be limited to these categories. Any constraint that the business
process must satisfy is valid, regardless of whether or not it fits into one of these
categories. You might need to specify the allowed error rates for decisions or the accuracy
of a financial computation. In general, any characteristic of the business process is
potentially subject to constraints.

It is essential that you understand the constraints on a business process before you
undertake the design of its supporting systems. Accommodating the business process
constraints will require certain system participants to satisfy derived constraints. Satisfying
these constraints can significantly alter the systems architecture.

Discovering business process constraints after system design commitments have been
made may require expensive and time-consuming architecture changes. Rest assured that
eventually all important business process constraints will surface! The only question is
when. To avoid expensive rework with associated cost and schedule overruns, you want to
make a conscious effort to learn about constraints up front, when the design is still
conceptual and can be easily altered. You certainly do not want to learn about constraints
during user acceptance testing or, even worse, after the system is in production.

Business Process Constraints Drive System Constraints

System constraints are derived from business process constraints. If you have a 300-
millisecond allowed response time for a business transaction and three system components
are sequentially involved, the response times of the individual components combined with
expected communications delays must add up to no more than 300 milliseconds. It is your
responsibility as an architect to determine what combination of individual component
constraints will be used to satisfy each business process constraint. Without such design
thought, you may well end up with a set of components that, collectively, are incapable of
satisfying the business process constraint. Sad to say, this actually happens in real projects.

Case Study: Late Identification of Performance Requirements

A large multinational firm specified and purchased a very expensive document
image management system. The system allowed the viewing of document
images at workstations distributed over an entire continent. Any document could

be retrieved and displayed anywhere within five seconds. Given the geographic
distribution and the communications delays involved, the five-second system
response time constraint seemed quite reasonable.

Unfortunately, the real business process constraint did not come to light until
after the document management system had been purchased. It turns out that
in the existing business process (the one being "improved" by the new system)
the workers literally flip through piles of physical documents, spending less than
a second on each one. This short time reflects the worker's familiarity with the
document formats, that they are only looking at one or two data fields, and just
the exceptional values in those fields. Essentially, they are browsing for
exceptions.

What would a five-second response time do to these workers? Given that each
worker examines thousands of documents every day, a five-second response
time for retrieving each document would literally add hours of nonproductive
wait time for each worker every day. The resulting productivity losses would
have cost the business more each year than the purchase price of the imaging
system! Not exactly a good business investment.

The result of this inappropriate system specification was that the user's
workstations had to be redesigned to pre-fetch the needed documents and
cache them locally. This work-around enabled the workstations to present the
documents with sub-second response time. Unfortunately, the image viewers
that came with the document retrieval system could not be adapted to utilize a
local cache. New viewers had to be developed. Logic had to be added to guess
what documents would be required and get them into the cache. More logic had
to be added to retrieve needed documents when the guessing was wrong and
they were not already in the cache. Still more logic was required to get late-
arriving documents (a common occurrence) quickly into the cache.

All tolled, the update of the workstation turned out to be a complex and
expensive undertaking. The cost of redesigning the workstations nearly equaled
the cost of the document retrieval system, thus doubling the cost of the project.
And all of this happened because the real business process constraints were not
understood before the document retrieval system was specified! Had the real
requirements been known, most of the functionality could have been built into
the document retrieval system, and the overall project cost (not to mention
schedule) would have been substantially reduced.

As this case study illustrates, before you design a system you need to first understand the
business process constraints and derive the appropriate system constraints. Determining
system constraints this way will also help you avoid over-engineering the system by putting
more stringent requirements on components than are warranted by the business process.
There is no point in implementing a high-performance printing system for occasional use in
printing short reports that are not time critical. As you design the business processes and
supporting systems, bear in mind that you are making investment decisions on behalf of the

business. Every constraint you specify is a potential cost driver. You want to make sure that
the level of investment you are requiring is commensurate with the business benefits and
risks involved. In other words, you want to be confident that you are making sound
investment decisions.

So with this goal in mind, let's take a look at some common categories of constraints. Keep
in mind though that these categories are not exhaustive. Your business process may have
constraints that do not fall into one of these categoriesâ!”don't forget them. Talk to the
business people and understand what constraints are truly important to their business
process. Learn enough to make sound investment decisions on their behalf. And make sure
they understand that constraints can drive cost.

Chapter 11. Process Constraints
Almost all business processes have constraints that they must satisfy. The rate at which a
process must be able to execute and the allowed completion time for its execution are two
examples of constraints discussed in earlier chapters. These happen to be performance
constraints, but there are other categories of constraints pertaining to availability, fault-
tolerance, security, monitoring, management, and exception handling, to mention a few. To
complete the architecture of a business process, you need to comprehensively specify its
constraints.

The subject of constraints (often referred to as nonfunctional requirements) is somewhat
open-ended. You should consider the categories of constraints discussed here, but you
should not let your thinking be limited to these categories. Any constraint that the business
process must satisfy is valid, regardless of whether or not it fits into one of these
categories. You might need to specify the allowed error rates for decisions or the accuracy
of a financial computation. In general, any characteristic of the business process is
potentially subject to constraints.

It is essential that you understand the constraints on a business process before you
undertake the design of its supporting systems. Accommodating the business process
constraints will require certain system participants to satisfy derived constraints. Satisfying
these constraints can significantly alter the systems architecture.

Discovering business process constraints after system design commitments have been
made may require expensive and time-consuming architecture changes. Rest assured that
eventually all important business process constraints will surface! The only question is
when. To avoid expensive rework with associated cost and schedule overruns, you want to
make a conscious effort to learn about constraints up front, when the design is still
conceptual and can be easily altered. You certainly do not want to learn about constraints
during user acceptance testing or, even worse, after the system is in production.

Business Process Constraints Drive System Constraints

System constraints are derived from business process constraints. If you have a 300-
millisecond allowed response time for a business transaction and three system components
are sequentially involved, the response times of the individual components combined with
expected communications delays must add up to no more than 300 milliseconds. It is your
responsibility as an architect to determine what combination of individual component
constraints will be used to satisfy each business process constraint. Without such design
thought, you may well end up with a set of components that, collectively, are incapable of
satisfying the business process constraint. Sad to say, this actually happens in real projects.

Case Study: Late Identification of Performance Requirements

A large multinational firm specified and purchased a very expensive document
image management system. The system allowed the viewing of document
images at workstations distributed over an entire continent. Any document could

be retrieved and displayed anywhere within five seconds. Given the geographic
distribution and the communications delays involved, the five-second system
response time constraint seemed quite reasonable.

Unfortunately, the real business process constraint did not come to light until
after the document management system had been purchased. It turns out that
in the existing business process (the one being "improved" by the new system)
the workers literally flip through piles of physical documents, spending less than
a second on each one. This short time reflects the worker's familiarity with the
document formats, that they are only looking at one or two data fields, and just
the exceptional values in those fields. Essentially, they are browsing for
exceptions.

What would a five-second response time do to these workers? Given that each
worker examines thousands of documents every day, a five-second response
time for retrieving each document would literally add hours of nonproductive
wait time for each worker every day. The resulting productivity losses would
have cost the business more each year than the purchase price of the imaging
system! Not exactly a good business investment.

The result of this inappropriate system specification was that the user's
workstations had to be redesigned to pre-fetch the needed documents and
cache them locally. This work-around enabled the workstations to present the
documents with sub-second response time. Unfortunately, the image viewers
that came with the document retrieval system could not be adapted to utilize a
local cache. New viewers had to be developed. Logic had to be added to guess
what documents would be required and get them into the cache. More logic had
to be added to retrieve needed documents when the guessing was wrong and
they were not already in the cache. Still more logic was required to get late-
arriving documents (a common occurrence) quickly into the cache.

All tolled, the update of the workstation turned out to be a complex and
expensive undertaking. The cost of redesigning the workstations nearly equaled
the cost of the document retrieval system, thus doubling the cost of the project.
And all of this happened because the real business process constraints were not
understood before the document retrieval system was specified! Had the real
requirements been known, most of the functionality could have been built into
the document retrieval system, and the overall project cost (not to mention
schedule) would have been substantially reduced.

As this case study illustrates, before you design a system you need to first understand the
business process constraints and derive the appropriate system constraints. Determining
system constraints this way will also help you avoid over-engineering the system by putting
more stringent requirements on components than are warranted by the business process.
There is no point in implementing a high-performance printing system for occasional use in
printing short reports that are not time critical. As you design the business processes and
supporting systems, bear in mind that you are making investment decisions on behalf of the

business. Every constraint you specify is a potential cost driver. You want to make sure that
the level of investment you are requiring is commensurate with the business benefits and
risks involved. In other words, you want to be confident that you are making sound
investment decisions.

So with this goal in mind, let's take a look at some common categories of constraints. Keep
in mind though that these categories are not exhaustive. Your business process may have
constraints that do not fall into one of these categoriesâ!”don't forget them. Talk to the
business people and understand what constraints are truly important to their business
process. Learn enough to make sound investment decisions on their behalf. And make sure
they understand that constraints can drive cost.

Performance Constraints

One of the most common categories of constraint is that of performance. This type of
constraint was touched upon lightly when discussing the ranking of business processes in
Chapter 7. There the performance-related ranking focused on the allowed completion time
for the process, its peak rate of execution, and the volume of data being handled. But these
characterizations were rough approximations made before examining the business process
in detail. As such, their correlation with the actual business process execution was unclear.
In contrast, at this point in the design process you have a process definition to use as a
framework. You can (and should) take advantage of the process definition to be far more
precise about what the performance constraints really are.

Rates and Response Times

Activity diagrams provide a solid framework for clearly defining constraints. The business
process ranking referenced the allowed completion time for the Withdraw Cash via ATM
business process, but it did not precisely define the time interval referenced by the
constraint. Figure 11-1 shows how the definition of this time interval can be made precise
by referencing the specific interactions that mark the start and end of the time interval. It
now becomes clear that the allowed completion time is the time interval between when the
user provides the last piece of information required for the transaction and when the ATM
dispenses the cash (assuming a successful transaction).

Figure 11-1. Response Time Measurement Specification

[View full size image]

Using activity diagrams and other UML notations in this manner enables you to be very clear
about constraints. The precision of these representations enables business people to verify
that you have captured their expectations and gives the technical people their first clear
look at the challenges facing them. Even at this point in the project cycle it is not too early
to be sketching system architectures, doing research, and perhaps even performing
feasibility experiments to determine whether the performance constraints can be
realistically met. It is much cheaper to deal with issues now, before any design
commitments have been made, than after investments have been made.

Performance measurements always reference events that are occurring in the business
process. But identifying the event often requires a bit of thought. For example, you might
want to specify the rate at which withdraw cash transactions are occurring. What event
does this correspond to? Is it the rate at which sessions are being started? Is it the rate at
which receipts are being printed? Or is it the rate at which cash is dispensed?

In identifying the events, it is often useful to reference the milestones associated with the
process. Using the milestones, you can work with the business people to clarify what is
being counted or the two milestones that mark the boundary of a time interval. Figure 11-2
shows the milestones for the Withdraw Cash via ATM process. Using this perspective
you may determine that you want to count the rate at which the Successful
Completion state is being reached. From this, you can go back to the activity diagram and
identify the specific event that corresponds to the milestone. Once again, discrepancies
between the ideal milestone definitions and the practical realities of the observable events
in the business process may become an issue.

Figure 11-2. Withdraw Cash Milestones

[View full size image]

There are other performance constraints you might want to impose on a business process
other that simply specifying the rate of an event or the time interval between events. You
might want to specify the variability in the number of line items in an order or the expected
range of values for a field in a transaction. Do you measure the dollar value of the order at
the time it is placed, or do you wait until the possible edits have been completed and the
items shipped? Once again, to be precise you need to indicate the specific point in the
business process to which the constraints apply.

Key Performance Indicators

The existence of a performance constraint does not automatically lead to that constraint
being satisfied. Ensuring that the constraints are being met often requires measurement not
only during testing but during actual operation. A runtime measurement that is a leading

indicator of the health of a business process is often referred to as a key performance
indicator (KPI).

Implementing the required KPI requires capture of the raw data and the performance of the
associated computation. Both of these activities must be performed either as a part of the
business process being measured or by another process. In either case, architectural
decisions are required. If the process being measured will implement the KPI measurement,
then the data capture and computational activities need to be added to the process
specification. If another process is to implement the KPI, then the mechanism for capturing
the data must be determined along with the means of getting the captured data to that
other process. In many cases, the raw data will be captured by the process being measured
and then passed to the process performing the computations.

When a KPI goes out of tolerance, there is an ensuing process by which the out-of-
tolerance condition is brought to the attention of some process participant and acted upon.
In some cases the participant will be a person, and in others a system or service, but in all
cases there is a process that defines the possible responses to these conditions. This is yet
another process that needs to be added to the project inventory.

Performance Service-Level Agreements

A performance service-level agreement (SLA) is a key performance indicator that has been
turned into a contractual commitment. This commitment requires that specific performance
goals be attained with respect to that KPI. For example, consider the hotel chain's service
promise that your room-service meal will be delivered within 30 minutes or your meal is
free. This is a service-level agreement. The KPI is the length of time it takes to get your
meal. The SLA contract states that if the KPI exceeds 30 minutes, your meal is free.

Generally service level agreements consist of three parts: (1) the specification of the key
performance indicator (KPI); (2) the specification of the performance goal with respect to
the KPI; and (3) the specification of some form of penalty or reward based upon whether or
not the performance goals are actually achieved. In the room-service example, the KPI is
the time interval between placing the order and receiving the meal. The performance goal is
to keep the KPI under 30 minutes. The penalty is that if the meal is not delivered within 30
minutes, it is on the house. Note that some SLAs actually reward exceptional performance
in addition to penalizing poor performance. In large construction projects, for example, it is
not uncommon for a bonus to be paid if the project comes in significantly ahead of schedule
or under budget.

As simple as the room-service example is, it illustrates some of the problems that can arise
with service-level agreements. Each part of the SLA has its own potential problems. Which
participant will make the actual KPI measurement, and what (exactly) are the events being
measured? Which participant captures the time at which the room-service order is placed,
and which one captures the time at which the order is delivered? The hotel guest? A hotel
employee? The computer system that the hotel uses to manage room-service orders? Who
will make the determination as to whether or not the SLA goal was achieved? And finally,
who will actually implement the reward/penalty actions?

In the room-service example, there is not a lot at stake, and therefore such details are
often not fully specified. For room service, the measurement and SLA compliance

determination is often left up to the hotel guest, and the hotel manager makes the final
decision as to whether the meal should be free. When the stakes are low, imprecision in
gathering data and enforcing penalty/reward terms can be tolerated. But often the stakes
are much larger. Let's look at another real-world example.

Case Study: Failing to Monitor SLA Performance

A large telecommunications firm provides contracted telecommunications
services to customers. These contracts include service-level agreements related
to the time it takes to restore service once a problem is reported by a customer.
There are cost penalties if the repairs are not accomplished within the specified
time.

The company was losing moneyâ!”many millions of dollars every yearâ!”due to
failures to satisfy these contracted service-level agreements. Even worse, the
company was unable to determine whether it was in compliance with its own
service-level agreements!

The problem was that the complexity of the telecommunications operations
made it nearly impossible for the firm to determine the actual status of a repair.
There are many aspects to the firm's operationsâ!”long distance trunks, central
switches, local switches, local loops to customer premises, and on-premise
customer equipment and wiring. Each of these operational aspects is managed
by a different organization, each with its own information systems and problem-
resolution processes. Furthermore, the provisioning of many of the services is
subcontracted to other companiesâ!”companies that have their own
organizations, information systems, and processes. No system had ever been
put into place to measure actual repair times. Customers would report outage
times in excess of the SLA and demand compensation, and the company had no
way of verifying whether or not the SLA had been met.

Fixing thisâ!”making it possible to measure actual performance and compliance
with the SLAâ!”required three distinct steps. Interestingly, these are the same
exact steps used for evolving business processes and systems: model, measure,
and evolve. The first step is to map out the processâ!”in this case, the overall
report-diagnosis-repair processâ!”with a particular emphasis on understanding
the interactions between the organizations and the milestones of the process.
When this first step was completed it became very clear why the company could
not determine whether it was meeting its service-level agreements. The
relevant status information was distributed all over the place in different
organizations, systems, and companies. Milestones were not well defined. Status
feedback was poor. There was no monitoring of work-in-progress, and in
particular there was no ability to identify that intermediate milestones had been
missedâ!”a leading indicator that the SLA was in jeopardy. Making this task
even more difficult was that the recovery process for a particular problem could
not even be defined until the problem was diagnosed, which was itself a hard-
to-track distributed activity! All this analysis led to the definition of diagnosis
and recovery milestones that provided a consistent view of the process despite
the variability.

The second step was to determine which of these milestones could be identified
in existing systems. Where milestone information was present in systems and
actually available (many of the systems were not under the control of the
communications company), it was captured and brought to a centralized site.
Here the progress of the process was compared against standard deadlines for
the intermediate milestones. A failure to meet one of these early deadlines then
indicated a need for action to avoid missing the SLA. Even though many of the
milestones were still not measurable (either because they were not easily
identified in the current design or the status information was located in
subcontractor's systems), the improved visibility into the existing process was
sufficient to enable the company to begin to identify major problem areas, take
corrective action, and reduce the resulting losses due to SLA noncompliance.

The third step was to begin to improve the process itself, beginning with
improving the ability to recognize the occurrence of milestones. Much of this
improvement was accomplished by simply adding responses to requestsâ
!”responses that improved the visibility of the process status. The process was
further improved when subcontractors were required to provide promise dates
for completing requested work and timely feedback on actual progress. Further
improvements were made in aggregating fragmented status information to
determine when milestones were actually reached. All of these improvements
enhanced the ability to understand how the process was behaving, and thus set
the stage for continuous process improvementâ!”finding and fixing the real
problems with the process.

This case study illustrates the risks associated with SLAs that have business processes for
which progress cannot be readily observed and measured. This company lost many millions
of dollars because it could not manage its own processes, and then it spent many additional
millions fixing the problem. But these costs were avoidable. Had management of the
business process been thought out when the service-level agreements were established, the
necessary reporting and feedback mechanisms could have been put in place from the start.
This is the point of seeking out SLA requirements as you design the business processes. You
want to ensure that the relevant milestones are identifiable and measurable when the
process is deployed.

High Availability and Fault Tolerance

Availability and fault tolerance are a means to an end, and that end is to limit the risk to
the enterprise arising from breakdowns in the business process. The real constraint is the
level of risk that is acceptable in the business process. It is the acceptable level of risk that
determines the required levels of fault tolerance and high availability.

Definition of Terms

A process is highly available if it has a high probability of being able to provide its
functionality on time, but interruptions in the availability of the process are acceptableâ
!”within limits. With high availability, there are two distinct service-level agreements. One
SLA specifies the percentage of time that the process is available for useâ!”the availability
of the process. The other SLA specifies the maximum amount of time that the process can
be out of service. This limit is the maximum allowed outage time or recovery time objective.
When you specify high availability, you need to specify both of these SLAs.

A process (or service) is fault tolerant if it continues to function properly within its service-
level agreement (SLA) even when one of its participants ceases to function. Such an event
is known as a fault. What the definition implies is that the process is (a) completed on time
as specified by its service-level agreement, and (b) there is no loss of any work in progress
at the time of failure. If you were to examine the detailed execution of the process, you
might be able to observe a pause in the execution, but as long as the process completes on
time, the process is considered to be fault tolerant. Thus when you are considering fault
tolerance, it is very important to understand the service-level agreement specifying the
allowed completion time for the process. This represents the time available for failure
recovery.

When you are considering fault tolerance and high availability, you need to consider the fate
of the work in progress at the time a failure occurs. Implicit in the definition of fault
tolerance is that this work will not be lost. The process will continue as if nothing happened.
The definition of high availability, on the other hand, does not tell you what happens to the
work in progress when a failure occurs. You thus have three possible strategies for handling
participant failure:

1. Fault tolerance

2. High availability without loss of work in progress

3. High availability with loss of work in progress

Note that these definitions characterize a process or service, not an individual participant in
the process. This is because handling the complete failure of a participant involves more
than just that lone participant. Fault tolerance and high availability both involve coordinating
the failed participant's work with the rest of the process and redirecting communications to
the participant taking over the role of the failed participant. Achieving fault tolerance and
high availability is a process architecture issue, not a component design issue. This is why
you must consider it as part of your architecture.

It's All Relative

Adding fault tolerance or high availability to an architecture yields an incremental
improvement over an architecture that makes no special provisions for increasing these
measures. As such, it is important to have some idea of what can be expected of the
individual components in your architecture with respect to their availability and fault
tolerance.

The best way to do this is to collect data. One (admittedly old) study found that certain
Internet hosts were available 92.6 percent of the time, with a recovery time (mean time to
repair) of 1.2 days.[1] Chances are that your operations center collects similar availability
statistics on the systems in your environment. For fault tolerance statistics (data loss, in
particular), it is sufficient to keep track of the rate at which disks (or other persistent
storage devices) fail. While it is theoretically possible to analytically compute expected
availability, such computations are complex, tedious, and error prone. It is generally simpler
and more accurate to use measured statistics.

[1] D. Long, A. Muir, and R. Golding. September 13â!“15, 1995. "A longitudinal survey of Internet host
reliability," 14th Symposium on Reliable Distributed Systems. Bad Neuenahr, Germany. Proceedings,
IEEE Computer Society, 1995, p. 2 (ISBN 0-8186-7153-X).

This component availability and failure data provides a basis for your thinking about fault
tolerance and high availability. It tells you what you can expect if you do not take any
extraordinary measures with respect to fault tolerance and high availability. You can then
evaluate the risks and make a determination as to whether an investment in improving
availability and fault tolerance is warranted.

Investment versus Risk

When you consider fault tolerance and high availability you must begin with two concessions
to reality. You must first recognize that there are no guarantees. No process is ever 100
percent fault tolerant, and high-availability percentages and maximum outage intervals can
never be guaranteed. No matter what investment you make, there will always be some
combination of participant failures that will result in these reliability and availability
objectives not being met.

Second, you must realize that fault tolerance and high availability require investmentâ
!”they are not free at either design time or runtime. A comprehensive fault tolerance
solution that encompasses site disaster recovery (failover from one data center to another)
can increase the investment in hardware and software by a factor of four and require
significant communications bandwidth between data centers. These are not inexpensive
solutions.

Taken together, these two observations lead to the practical conclusion that you must weigh
the contemplated investment in fault tolerance or high availability against the business risks
associated with the nonavailability of the business process. The result of this tradeoff will
likely be different for different business processes. You are likely going to treat the business
process that takes online customer orders differently from the process of generating
monthly office supply inventory reports. If you can't take orders, you immediately impact
the cash flow and profitability of the enterprise. This warrants at least considering some

level of investment in fault tolerance or high availability to mitigate these risks. On the
other hand, if the office supply inventory monthly report is delayed by the amount of time it
routinely takes to restore a failed participant, who would notice? The delay would most
likely have no measurable impact upon the enterprise. In such cases, no investment in fault
tolerance and high availability is warranted.

So how should you go about determining what the business process availability and fault
tolerance constraints ought to be? You need to determine the risks (costs) arising from
different types of failure scenarios, including:

The failure of a single execution of the business process

The failure of a number of process executions

The unavailability of the process for various periods of time

The delay of process completion beyond its SLA

The impact of these different scenarios will vary according to the type of business and the
specific business process. A more detailed discussion of this risk assessment can be found in
Chapter 12 of the companion volume, Succeeding with SOA.

Business Process Design Impacts Systems Investment

It is tempting to say that a fault-tolerant process requires the underlying systems to be
fault tolerant, but that is not necessarily trueâ!”and it is a very expensive thought.
Consider how the phone company deals with the risk of not getting paid for its services.

Case Study: Fault Tolerance through Process Design

Consider how a phone company collects payment for its services and the impact
of breakdowns in this process. There is certainly an impact if the company does
not get paidâ!”it loses part of its revenue stream. But you do not receive your
phone bill via an expensive registered mail or courier service, nor do you make
payments using such services. Instead, the process employs the inexpensive
standard mail service, despite the fact that this service can (and does) misdirect
or lose a small percentage of the bills and payments.

How is this loss risk mitigated? Through clever but simple process design. If one
month's bill is not paid, the amount overdue is simply added to the next
month's bill. This simple, elegant, and low-cost solution does not place
extraordinary fault tolerance and high-availability requirements on any of the
participants in the process except for the system that keeps track of the
payment status. Clever process design has eliminated the need for expensive
infrastructure.

As this case study illustrates, achieving a fault-tolerant business process does not
necessarily require reliance upon fault-tolerant systems. Consequently, once you
understand the risks, you need to consider different design alternativesâ!”combinations of
business process design and systems designâ!”for reducing these risks.

Availability can also be impacted by process design. Availability is simply the percentage of
time that a business process (or whatever you happen to be talking about) is available to
perform its task. You can express availability in terms of the time that the process is
operating normally and the time taken to restore the process to normal operation. In terms
of statistics that you can gather, the normal operation time can be represented by the mean
time between failures (MTBF), and the time to restore normal operation can be represented
by the mean time to repair (MTTR). Thus availability can be expressed as:

[View full size image]

From this formula, you can see that there are two ways to increase availability. One is to
increase the amount of time that the process is operating normally, that is, decrease the
probability of failure. This is generally accomplished by increasing the investment in the
system components, potentially employing fault-tolerance techniques so that a failure of
one system component does not impact the availability of the business process. The other
approach is to reduce the amount of time that it takes to restore the system to normal
operation. This may be as simple as bringing the failure of the process to someone's
attention in a timely manner. Either approach results in increased availability, but there may
be a significant difference in cost between the two. An effective recovery process may turn
out to be less expensive and more effective than an increased investment in system
components.

Focus on Risk

The cost implications tell you that you need to be careful when you are determining what
the availability requirement should be for a business process. In particular, you have to be
careful how you phrase the question. Ask a business person what the availability of a critical
business process ought to be and you are liable to get an answer like "24 x 7, 365 days a
year"â!”in other words, continuously available with no interruption. Or you'll get an answer
like "99.999 percent available"â!”down less than six minutes a year. Achieving goals like
these can be very expensiveâ!”often more than the business is willing to invest. On the
other hand, if you ask "How much extra are you willing to invest to improve the process
availability from 99 to 99.999 percent?" you are liable to get a very different answerâ!”one
that more realistically reflects the needs of the business.

How you ask this question can have a huge impact on the success of the project. If you ask
the availability question in the naive way and get an answer that does not reflect an
understanding of costs, you are (most often) in for a rude awakening. You will take the
availability specification and design a system to support it. You will manage somehow to
achieve the required availability (whew, was that tough!) and proceed with the design and

implementationâ!”until the resulting cost of the system becomes apparent. At this point
sticker shock and rage are often followed by an audit (a.k.a. a witch hunt) of the project
and system costs. This audit culminates in an ultimate reckoning in which you will be
challenged to justify the cost of the system. In defense, you reference the specification,
which is now re-examined in a more realistic light. The result is often a relaxation of the
availability requirement and a directive to redesign the system in order to lower costsâ!”but
it may be too late! Depending upon how far you are into the project lifecycle, a redesign at
this point may actually increase costsâ!”not to mention introduce further delays into the
project.

This unpleasant scenario arises from a failure to realistically consider the cost of meeting
availability and fault tolerance requirements at the time that availability and fault tolerance
are specified. You absolutely need to consider these costs when you are determining what
the availability and fault tolerance constraints ought to be for the business process. The
prudent level of investment should reflect the enterprise's risk exposure. Bear in mind that
a fully fault-tolerant infrastructure with a no-loss-of-data site disaster recovery capability
can easily require four times the investment in hardware, software, and network capacity.
You need to be a good business person and ask whether and when such investments are
warranted.

As the telephone billing example illustrates, reducing the impact of failures does not
necessarily require reliance upon expensive system infrastructure. Clever business process
design can often create a process that is tolerant of such failures without requiring
expensive infrastructure. Such designs reduce business risk without calling for extraordinary
system investments.

Risk-Related Service-Level Agreements

Ultimately what needs to be constrained for each business process is the level of risk
resulting from various process breakdowns. The level of risk is determined by the business's
tolerance for risk. Your task as an architect is to combine this level with your understanding
of the investment required to increase availability and reliability to establish three service-
level agreements for the process: the recovery point objective, the process availability, and
the recovery time objective.

Recovery Point Objective

Data loss is a significant contributor to risk. The recovery point objective (RPO) establishes
the point in time to which you want to restore data after a failure occurs. This is specified as
a time interval before the moment of failure. An RPO of one hour means that the data
would be restored to the state that it was in one hour before the failure occurred. The most
stringent RPO has a time interval of zero, meaning that the data would be recovered to its
state at the exact moment of failureâ!”that is, no data loss. Less stringent requirements
might allow for a few seconds or minutes of data to be lost. Very relaxed requirements
might allow the loss of a day or a week's worth of data.

The time period for the recovery point objective will drive the strategy for duplicating the
data for safekeeping. A 24-hour or 7-day recovery point objective can be met by making
daily or weekly backups of data and keeping them in a safe place. Shorter time periods
require increasing investments in replicating the data.

A recovery point objective in the seconds-to-minutes range requires a near-real-time
replication of stored data. Because some loss is allowable, the replication of data can be
asynchronous. The entries in the transaction log of one database instance can be used to
update another copy of the database with a short time lag. Similarly, changes to a disk in
one file system can be used to asynchronously update a disk in another file system.

The moment-of-failure recovery point objective requires the concurrent update of two or
more copies of the data. No longer are you storing the data in one place and then updating
another: You have to update both before the business process can conclude that the data
has been successfully stored.

Business processes often have two different recovery point objectives: one covering
recovery within one data center and the other covering recovery at a remote data center.
Typically the in-data-center recovery point will be the moment of failure, while the
between-data-center recovery point will allow for some amount of data loss.

Regardless of what the recovery point objective is, the strategy for recovery relies on the
duplication of data. In this, there is a tacit assumption that the duplication renders the
likelihood of data lossâ!”losing all copies of the dataâ!”very remote. But for business
processes in which the failure of a single execution can cause grave damage to either the
enterprise or an individual, you should invest some time in analyzing the probability of total
data loss and convincing yourself that the likelihood presents an acceptable risk.

Availability

Another risk the business faces is that the business process will not be available when
needed. The availability SLA specifies the percentage of time that the business process
must be available in order to meet the business need.

Recovery Time Objective

Once a failure occurs, there is risk associated with the length of time it takes to restore
service. In many business processes, the risk associated with nonavailability increases as
time goes on. A five-minute outage for a web site might just annoy a customer, while a
one-hour outage might lose the order to a competitor, and an eight-hour outage might lose
the customer altogether. The recovery time objective (RTO) establishes the length of time
allowed to restore the process after a failure occurs. As with the recovery point objective, it
is not unusual to have different SLAs for in-data-center failover and between-data-center
failover.

Security

Your consideration of security must begin with an understanding of the business rules
regarding the handling of information in your enterprise. Most enterprises have a corporate
security policy that categorizes information and specifies the business rules for handling
each category. Generally there are at least three information categories. At the low end of
the spectrum lies unrestricted information. This is typically information about the products
and services offered by the enterprise and public information about the enterprise itself.
There are generally no restrictions on either accessing or transporting information in this
category. In other words, there are no security requirements for information in this
category.

At the other end of the spectrum lies a category of extremely sensitive information.
Typically this is information regarding sensitive intellectual property, pending mergers and
acquisitions, or private information about individuals and companies. The inappropriate
disclosure of this type of information potentially has serious implications for the enterprise
or individual. To guard against such consequences, information in this category generally
has very stringent handling requirements. In the extreme, every access to such information
must be authorized and logged. The business rules often require such information to be
encrypted in transit or on disk, even in a database. Compliance with such requirements is
expensive, impacting the design of every system that comes in contact with the
information.

Between these two extremes there are generally one or more intermediate categories of
information that require some level of protection, but not to the extremes required by the
sensitive information. These somewhat relaxed requirements may, for example, allow
information to remain un-encrypted within enterprise data centers, but still require
encryption when information is moved across a public network. The rules may allow trusted
systems to access the data using their own system credentials rather than the actual end
user's credentials. But even though the requirements are less stringent, they still impact
every system coming in contact with the information in these categories, and there is cost
involved.

Since security requirements potentially impact every system involved in the business
process, it is essential that you identify the category of information being used in each
business process. Based on the category, you can then determine what the security
requirements are. To do this, you must first acquaint yourself with the enterprise security
policy that categorizes information and specifies the handling rules. After you have
understood the categorization and handling rules, you can then determine their impact on
the business process. You can determine whether you need to authenticate and authorize
participants in the process, both human and system, and decide where in the business
process you are going to do this. You can understand which data requires encryption and
where in the business process encryption and decryption need to occur. And you can
understand the requirements for audit logs and the specific points in the business process at
which log entries need to be made.

You should also take this opportunity to document other audit and logging requirements
that must be met even though they are not strictly the consequence of security policies. You
need to update the business process design to reflect these decisions and document the
requirements so that you are appropriately prepared to design the underlying systems.

Reporting, Monitoring, and Management

The reason you implement business processes is to standardize how particular things are
done in the enterprise. The goal is to create a manageable and predictable means of
achieving the desired end. People in the enterprise are going to want to know how well the
business process is executing. Determining this requires information about the business
process execution and a process for reporting on the process. The processes for reporting
must, themselves, be designed. Even an ad hoc query regarding process status requires a
user interface with access to process status information.

Reporting

We have already discussed some aspects of the process that may be involved in reportsâ
!”milestones, key performance indicators, service-level agreements, availability, and so on.
Now it is time to broaden the question and ask what other kinds of information are needed.
What you are looking for is an understanding of the operational characteristics of the
business process that are important to the enterprise. Does the enterprise need to measure
error rates or decision outcomes? Does it need to track response times or throughputs?
Does it need to know about (and act upon) processes that have broken down or been
delayed?

Once you understand the information that is required, you need to determine how to go
about capturing it. You want to make sure that what is being captured is well-definedâ
!”and actually available in the systems. Such information requirements are more easily
accommodated if they are understood prior to designing the systems. They are often
cumbersome and expensive to retrofit onto an existing implementation.

As part of the process design, you need to determine which participant will be responsible
for capturing each required data element and at what point in the process. You need to
determine which participants will accumulate, report, and act on the data. This reporting
and reaction may itself be a new business process, requiring its own process design. If so,
you need to update the business process inventory to reflect these decisions.

Monitoring

Reporting is an after-the-fact activity. Reporting will not fix a problem that is occurring right
now. Reporting will not warn the enterprise that a deadline related to a service-level
agreement is about to be missed so that action can be taken to correct the situation. For
that you need to actively monitor the process.

Monitoring generally involves at least three activities: gathering information (as with
reporting), comparing that information against benchmark standards to identify out-of-
tolerance conditions, and then triggering the response to the out-of-tolerance condition.
You need to ask yourself what this means for the business process design. You need to
decide which participant will perform each of these activities. You must determine what
measurements to make and what benchmark values to compare them against.

The purpose of monitoring is to trigger an appropriate response to out-of-tolerance
conditions. Often that response is outside of the normal business process. It is a separate
and distinct exception handling process. These exception handling processes are discussed
in the next section.

Management

Note that when you treat an out-of-tolerance condition as an exception, you are basically
saying that the business process is not designed to handle this condition. On the other
hand, there are times when you want to monitor a process and use that monitoring
information to actively manage the process. In such cases, both the measurements and the
responses to various measurement conditions become an actual part of the business
process. Here you need to add the measurement and comparison activities to the main
business process and explore the management responses through additional scenarios. In
other words, you need to enrich the process design to show how the monitoring and
response actually occurs.

Process management involves many of the same activities as process monitoring. You need
to gather information about the process as it is executing. You need to evaluate those
measurements in order to decide what needs to be done. And you need to execute the
appropriate portion of the business processâ!”which may, itself, require management! All of
these activities need to be added to the business process design, and responsibilities for
them assigned to the appropriate participants.

In summary, meeting reporting, monitoring, and management requirements all require
business process design. You need to consider them and factor them into the design of the
business process and the supporting system architecture. This is particularly critical when
the process is to be managed, as will be discussed in more detail in Chapters 29 and 42.

Exception Handling

An exception is an unusual situation for which the response has not yet been determined.
As with reporting, monitoring, and management, there are responsibilities that must be
assigned to participants in the business process. What kinds of exceptions are to be
reported, and which participant is responsible for reporting which exceptions? To whom are
these exceptions reported? Who is responsible for taking action when an exception occurs?

Exception handling is one of those areas in which the stated requirements often encompass
a good deal of wishful thinking. A requirement to report business exceptions to one
participant and component (system) exceptions to another presupposes that a clear
distinction can be made between these two types of exceptions. Which category does a
database update failure belong in? The answer depends upon the nature of the database
error and its root cause. The conundrum is that this type of determination typically occurs
after the error has been reported! Leaving the requirements in this wishful state can create
a situation in which it is either impossible or impractical to comply with the requirements.

Again, before you embark upon the implementation of the business process, you want to be
clear about how exceptions are to be handled and ensure that the thinking in this area is
practical. You want to be clear about how each participant will go about reporting
exceptions. You want to ensure that there is a process in place for responding to these
exceptions, even though that process itself may be outside the scope of the project. You
want to be clear about what kind of information needs to be reported to effectively execute
the exception handling process.

Whatever the level of detail you have about the exception handling process, there are some
basic things you must know about it. You need to know how reporting an exception triggers
the exception handling process. You need to know what user interactions might be required
during the investigation and resolution of the problem so you can ensure that those
interfaces actually exist. Very often there is additional design work associated with these
interfaces, and this work must be included in the project scope. If there is a detailed
exception handling process design, you need to consider whether it needs to be modified to
handle the exceptions you are now considering. You need to make clear who the first-,
second-, and third-tier responders are going to be for various exceptions. This is
particularly important for services, whereby the ownership of the service itself is often a
topic of organizational debate.

Exception handling should be treated like any other process. You should represent it in the
business process inventory. You need to explore the design of the process even if you are
not responsible for its design. This exploration is necessary to reveal the required
interactions with the business processes and systems you are responsible for so that you
can incorporate them into the design. If you do not consciously do this as part of the design
process, you are liable to end up with a design that is difficult to diagnose and repair. This,
of course, will have an adverse impact on business process availability, and thus increase
the risk for the enterprise.

Test and Acceptance

Before your business processes and their supporting systems go live, they are going to
have to go through some level of user acceptance testing. This testing is the means by
which the business process owners and users of a system gain confidence in the new
design. Successfully passing these tests is a strategy for reducing the risk associated with
the deployment of these changes.

It is useful for you to have some insight into the nature of these tests that will be
performed. For one thing, this will help you to better understand the use to which the
system will be putâ!”that is, the larger design. Each test is an execution scenario. If you
have been thorough in the business process design, you should already have incorporated
these scenarios into the business process architecture. Asking about the testing scenarios is
then a means of validating the completeness of the scenario coverage.

Testing Can Impact System Design

Aside from simply validating scenarios, there is additional value in understanding the nature
of the tests that will be performed. Acceptance testing generally requires that specific
information be captured during the test and made available for later analysis. If this
information is understood at the time that the business process and systems are designed,
it is generally a fairly straightforward process to ensure that the correct information is easily
captured and readily available during the test. This information is often closely related to
the monitoring already planned for the process. Understanding the measurements required
for user testing may even help you refine your thinking about how to monitor the process
under normal conditions!

Retrofitting monitoring capabilities onto an existing system is always more costly and time-
consuming than designing them in from the beginning. In the worst case, the exact
information that is required might not be available at all without a significant system re-
design. You want to avoid these kinds of problems and factor in these requirements right
from the beginning.

Testing Can Require Additional Components

Aside from capturing the required test information, you also need to consider how these
tests will actually be performed. Specifically, what supporting components will be required
to run the tests? Will test components be required to generate inputs? Will test components
be required to capture and/or report on the data? Will the test data be examined manually,
or will test components be evaluating the results? You need to keep in mind that whenever
there are additional components involved, there is design work as well. Their design and
construction must be factored into the project plan.

Testing Requires an Environment

The environment in which testing will be performed also needs to be considered. It is good
practice to make tests repeatable. Then if you fix a problem, you can re-run the exact test

to verify that the problem was, indeed, corrected. But to repeat the test, you need to be
able to restore the test environment to the same initial state. This can be particularly
challenging when the systems include mainframes or complex server applications sitting on
top of databases. Establishing such a testing environment, if one does not already exist,
requires significant effort. Obviously, this will impact the project scope.

While the actual development of test scenarios is typically the responsibility of an
independent testing team, the architects need to know what the system must be capable of
doing in order to support these tests. Where additional components are needed for testing,
the requirements for these components must be identified and their design and
implementation included in the project plan. Thus, it is prudent to define the testing
requirements for each business process at this point in the project lifecycle.

Compliance Constraints

Business processes are often subject to constraints imposed by corporate, government, and
regulatory policies as well as contractual agreements with other parties. Many of these
constraints manifest themselves in terms that we have already discussed, such as
mandated response times and security requirements. But policies, regulations, and
contractual agreements can impact anything from the quality, pricing, and availability of
products and services to the generation of unintended results (pollution, aggregated
demographic data, etc.) and the timing of business activities (e.g., restricting stock trading
around the time of reporting quarterly results).

Compliance with such constraints almost always requires some level of data gathering and
measurement, and very often requires process extensions for active monitoring and
management to ensure compliance with the constraint. As with other measurement,
monitoring, and management requirements, they are most readily incorporated into a
process while the process is being conceptualized.

Summary

To effectively support the enterprise, business processes must satisfy a number of
constraints. These constraints, often referred to as nonfunctional requirements, reflect
various ways in which the project's business processes and systems interact with the other
business processes both within and external to the enterprise.

One major class of constraint addresses the performance capabilities of the business
process itself. They specify the rate at which the process must be capable of executing, the
volumes of data it is expected to handle, and the response time of the process. Closely
related are key performance indicatorsâ!”measures of process performance that are
indicators of process health. The commitment to achieve specific performance goals is often
formalized as a service-level agreement (SLA).

Another class of constraint seeks to limit the risk exposure of the business resulting from
failures in executing business processes. These constraints specify limits on the amount of
data that can be lost (the recovery point objective), the availability of the business process,
and the length of time it takes to recover from a breakdown. The values assigned to these
constraints should reflect a balanced compromise between the risk resulting from
breakdowns and the investment required to lower that risk.

Enterprise security policies are another source of constraint. These policies categorize
information and specify the rules for accessing and handling different categories of
information. Satisfying these constraints actually requires changes to the process design,
introducing activities such as authentication, authorization, encryption, and decryption.
Enhanced record keeping in the form of logging and audit trails may further alter the
business process design.

Reporting, monitoring, management, and exception handling also require extensions to the
business process design. These requirements either reflect required interactions with
external reporting, monitoring, and management processes or required extensions to the
business process to take on these responsibilities. Either way, they impact the design of the
business process.

The testing process may impose its own requirements on the business process design,
requiring specific information to be captured and made available. Testing may also require
additional components to execute the testsâ!”components that must, themselves, be
specified, designed, and implemented. Testing also requires a controlled environment that
must, itself, be designed if it does not already exist. For best results, this environment must
be readily restorable to known states so that problems can be diagnosed and fixes verified.

Corporate and government policies and regulations are another significant source of process
constraints. Complying with the constraint may require data capture, monitoring, or
proactive managementâ!”all impacting the process design.

Key Process Constraint Questions

1. Have the performance goals for the process been clearly defined? Have the
measurements required to establish whether these goals are being met also
been defined? Have they been incorporated into the process design?

2. Have the risks associated with failures of the business process been
identified and quantified? Have the process's availability, recovery point
objective, and recovery time objective been established? Have the
strategies for mitigating these risks been defined? Have the strategies been
incorporated into the process design?

3. Has the security classification of the information used in the business
process been established? Have the business rules for the handling of this
class of information been incorporated into the process design?

4. Have the reporting, monitoring, and management requirements been
defined? Have these requirements been incorporated into the business
process design?

5. Have the exception handling requirements been defined? Does the
exception handling process exist? Has exception reporting been
incorporated into the business process? Has the exception handling process
been examined to determine how it will interact with the business process
and systems? Have the requirements implied by such interactions been
captured?

6. Has the testing approach been established? Have the appropriate
information capture points been identified? Have the mechanisms for
information capture and evaluation been defined? Has the test environment
been defined? Are there supporting components required? How will tests be
repeated in this environment?

7. What are the compliance constraints that are being placed on the project?
Are there requirements related to technology selection, standards
compliance, regulatory compliance, or policy compliance? Does the business
process design satisfy these constraints?

Suggested Reading

Cockburn, Alistair. 2001. Writing Effective Use Cases. Boston, MA: Addison-Wesley.

Sharp, Alec, and Patrick McDermott. 2001. Workflow Modeling: Tools for Process
Improvement and Application Development. Norwood, MA: Artech House, Inc.

Chapter 12. Related Processes
Business processes rarely live in isolation. Most processes depend upon artifacts generated
by other processes or produce artifacts upon which other processes depend. For the
enterprise to operate properly, all of these business processes must be operating and all of
the interactions between them must be executing properly. To ensure proper operation, you
need to understand these interactionsâ!”these dependencies between processes.

For the most part, you will discover dependencies between business processes by
determining the artifacts required by each activity in the process you are designing. For
those artifacts that originate outside the process, you determine the business process that
generates the artifact. You have now identified a required interaction between the two
processes. A similar examination of the results that are produced and their destinations will
reveal other process interactions.

Beyond identifying these interactions, you need to determine whether the related processes
will require work, and thus impact the scope of the project. The work required may be the
creation of the entire process, or it may be the modification of the process to generate the
required artifact and make it accessible. This analysis will guide you in determining the true
scope of the project.

For example, the Withdraw Cash via ATM process (Figure 11-1) needs to determine
which bank it should communicate with, and therefore there must be an association
between the bank and the ATM card. Where does this information come from? In the
proposed design, this information is produced by the process that issues the ATM card along
with an association between the card and the account (Figure 12-1).

Figure 12-1. Interactions with Related Processesâ!”Partial

[View full size image]

Some of these business processes are new and will be created as part of the project. The
issuing of ATM cards and PINs and the installation and servicing of ATMs are examples of
this. But other processes already exist and will require modification. The Manage Account
Balance process is already in place and is used routinely by the human tellers in the bank
branches. This process will require some modification to support the ATM processes. Not
only does the ATM system require access to this process, but it also requires a new
conceptâ!”an Account Holdâ!”to deal with the possibilities of breakdowns during a
withdrawal transaction. If it does not already have this capability, the process of managing
the account balance will have to be modified to add it.

For some artifacts, the related business process may not be obvious at first. The initial
account balance, updated account balance, and funds reservation are examples. Intuitively,
their scope of utilization extends beyond this business process. The account balance will be
impacted by deposits and funds transfers. The account hold will impact funds transfers as
well as ordinary withdrawals. And the updated account balance will affect other processes
as well. Such situations are not only indicators of the existence of another process (whether
or not it is recognized at this point), but that other process is often a candidate to be a
service. This will be discussed further in the next section.

It is important that you actively seek out process interactions early in the design process. In
a project there is a natural tendency to focus almost exclusively on the main business
processes, since they are the ones that provide the value to the enterprise. Unfortunately,
this narrow focus tends to overlook the related processes that provide required inputs. A
failure to identify these processes can create situations in which the need for inputs and the
processes that generate them is not even identified until the project is well into the
development phase. In the worst case, you will not discover the missing work until you are

ready to test the primary business process for the first timeâ!”at which point you realize
that you are missing a needed input. Such late identification of dependencies can play
havoc with both the cost and schedule for a project, often leading to less-than-optimal
quick-fix solutions because of the time pressureâ!”pressure that could have been avoided!

There is another benefit from actively looking for these interactions while the project is still
in its formative stages. Many times the true complexity of and feasibility issues related to
the project lie not in the creation of the mainstream business processes at all, but in the
number and complexity of the related business processes. Such situations can arise when
you are conceptualizing a workflow system in which work will be assigned to individuals
based on their skills or other qualifications. Where does this skill and qualification
information come from? Does it already exist somewhere, and in a form that can be used?
If the enterprise has thousands of employees and the inventory of employee skills is not in
a form that can be used in the workflow (i.e., the information is in a paper folder), then the
process of getting this information into the proper form and maintaining it accurately may
turn out to be more trouble than it is worth. If you do not chase down the need for this
information and seek out the process that generates it, you may end up building a workflow
that assumes the availability of this information, only to discover much later that it is
impractical to obtain and maintain this information.

Identifying Services

There are four artifacts in the Withdraw Cash via ATM example that have not, as of yet,
been related to other processes: the initial account balance, the updated account
balance, the existing account holds, and the new account hold. If you think
about it, the relationship between these particular artifacts and other business processes is
not simple. The new account hold is consumed by both this process and by any other
process attempting to withdraw funds or check funds availability. The existing account
holds might originate in another instance of this process or from any other process that
places holds on account funds. The initial account balance comes from whatever
process last altered the account balance, and the updated account balance is an input
to any other process requiring knowledge of the account balance.

Managing Shared State

What is different about these artifacts is that they are not simply values that are being
passed around. These artifacts denote the states of the account balance (Figure 12-2).[1]

Each of the holds on the account reserves some of the funds in the account for some
purpose. In the Withdraw Cash via ATM process, the hold is used to ensure that the
funds about to be delivered are not used for some other purpose between the time the
disbursal is authorized and the time the successful disbursal is reported.

[1] An account may have more than one balance associated with it. For example, a credit card account
might have a purchases balance, a cash advance balance, and a payment due balance.

Figure 12-2. State Information Used by Withdraw Cash via ATM Process

It is not unusual for a business process to examine state information, make a decision
based on that information, and then update the state. As Figure 12-2 illustrates, that state
information is often more than the state of a single objectâ!”it is a set of self-consistent
information. In authorizing the disbursal of funds, the currentBalance is retrieved and
the amount from each Balance Hold is subtracted. If the remaining funds are sufficient
to cover the requested withdrawal, the withdrawal is approved and a new hold is added to
the balance in the amount of the withdrawal.

In this sequence, there is a tacit assumption that the state will not change between the
time the available balance is computed and the time the new hold is placed on the balance.
If some other business process were to modify the state during this time (e.g., withdraw all
the available funds), the result might be incorrect. For correct operation, the access and
manipulation of this state information must be managed. You have identified an opportunity
for a service.

Refining the Service Definition

Based solely on the Withdraw Cash via ATM business process, a sketch of an Account
Balance Management Service begins to emerge (Figure 12-3). This service is
responsible for the Manage Account Balance process, which in the present state of the
design is defined by the interactions required for the Withdraw Cash via ATM process.

Figure 12-3. Partial Account Balance Management Service

Reexamining the Withdraw Cash via ATM process with the proposed service in mind
(Figure 12-4) leads to other questions: Should the proposed service perform the additional
operations of identifying the customer and account and checking to see whether that
customer is authorized to access the account? Should the proposed service be the actual
interface between the bank and the ATM system?

Figure 12-4. Proposed Service in the Withdraw Cash via ATM Process

[View full size image]

Based on this single scenario, the answer to these questions is not obvious. Furthermore,
there is more to managing an account balance than just withdrawing funds. To resolve
these questions and determine the full scope of the proposed service, you need to examine
other scenarios (a hacker trying to access the bank via the ATM interface, for example) and
other business processes. Through such explorations you will be able to propose and test
various ideas about the scope of the proposed service and the balance of responsibilities for
the bank.

It is clear that the other primary business processes of the ATM example must be examined
to determine the scope of the Account Balance Management Service. The Make
Deposit via ATM, Check Balance via ATM, and Transfer Funds via ATM business
processes all interact in obvious ways with the account balance.

But there are other business processes that interact with the state of the account balance
as well, specifically those involving a human teller. Figure 12-5 highlights the activities in
the Withdraw Cash via Human Teller process that involve the account balance state.

Examining these activities raises some interesting questions. One very interesting question
is whether the update account balance and print receipt activity of the existing
bank system could be modified to play the role of update account balance in the ATM
scenario. In other words, can you reuse existing functionality as the basis of the service and
thus avoid implementation costs?

Figure 12-5. Fragment of Withdraw Cash via Human Teller Showing Bank System
Activities

[View full size image]

Whatever the final service ends up as, it is clear that the Withdraw Cash via ATM
process interacts with that service. This factoring of the service out of the business process
leads to a different set of artifacts being involved in the interactions, as shown in Figure 12-
6.

Figure 12-6. Interactions with Related Processesâ!”Completed

[View full size image]

Modeling Existing Processes

As this example illustrates, when there are existing business processes that produce the
same results as new business processes, it is often useful to model the existing processes.
One benefit is that such modeling will help you understand whether there are portions of
the existing process that might be reused in the new process. This type of analysis is
essential when building a service-oriented architecture. Modeling both the new and existing
processes helps you to identify opportunities for sharing functionality between the old and
new processes. In other words, it helps you identify potential business services. While you
need to investigate further to determine whether a common service could indeed be used in
both processes, if you do not model both processes you will not even be able to identify
these service opportunities! Furthermore, once you have concluded that a common service
is appropriate, modeling these and other potential usages of the service is an important step
in ensuring that the proposed service will indeed be usable in all intended contexts. Such
modeling provides an opportunity to document and review these proposed utilizations of the
service and thus validate its utility.

Another benefit from modeling existing business processes is that there are often many
similarities between existing and new processes that produce the same results. Although
the means by which individual activities are carried out may differ, the actual activities that
need to be performed are often similar, and have similar inputs and outputs. There is also a

lot of domain knowledge built into the existing process, particularly around various
situations that can arise and the business rules for handling them. In capturing this
understanding, modeling the existing process can significantly reduce the time it takes to
arrive at a working definition of the new process. It will give you a good understanding of
the artifacts that the process depends upon and the contingencies that the process needs to
address.

Chapter 12. Related Processes
Business processes rarely live in isolation. Most processes depend upon artifacts generated
by other processes or produce artifacts upon which other processes depend. For the
enterprise to operate properly, all of these business processes must be operating and all of
the interactions between them must be executing properly. To ensure proper operation, you
need to understand these interactionsâ!”these dependencies between processes.

For the most part, you will discover dependencies between business processes by
determining the artifacts required by each activity in the process you are designing. For
those artifacts that originate outside the process, you determine the business process that
generates the artifact. You have now identified a required interaction between the two
processes. A similar examination of the results that are produced and their destinations will
reveal other process interactions.

Beyond identifying these interactions, you need to determine whether the related processes
will require work, and thus impact the scope of the project. The work required may be the
creation of the entire process, or it may be the modification of the process to generate the
required artifact and make it accessible. This analysis will guide you in determining the true
scope of the project.

For example, the Withdraw Cash via ATM process (Figure 11-1) needs to determine
which bank it should communicate with, and therefore there must be an association
between the bank and the ATM card. Where does this information come from? In the
proposed design, this information is produced by the process that issues the ATM card along
with an association between the card and the account (Figure 12-1).

Figure 12-1. Interactions with Related Processesâ!”Partial

[View full size image]

Some of these business processes are new and will be created as part of the project. The
issuing of ATM cards and PINs and the installation and servicing of ATMs are examples of
this. But other processes already exist and will require modification. The Manage Account
Balance process is already in place and is used routinely by the human tellers in the bank
branches. This process will require some modification to support the ATM processes. Not
only does the ATM system require access to this process, but it also requires a new
conceptâ!”an Account Holdâ!”to deal with the possibilities of breakdowns during a
withdrawal transaction. If it does not already have this capability, the process of managing
the account balance will have to be modified to add it.

For some artifacts, the related business process may not be obvious at first. The initial
account balance, updated account balance, and funds reservation are examples. Intuitively,
their scope of utilization extends beyond this business process. The account balance will be
impacted by deposits and funds transfers. The account hold will impact funds transfers as
well as ordinary withdrawals. And the updated account balance will affect other processes
as well. Such situations are not only indicators of the existence of another process (whether
or not it is recognized at this point), but that other process is often a candidate to be a
service. This will be discussed further in the next section.

It is important that you actively seek out process interactions early in the design process. In
a project there is a natural tendency to focus almost exclusively on the main business
processes, since they are the ones that provide the value to the enterprise. Unfortunately,
this narrow focus tends to overlook the related processes that provide required inputs. A
failure to identify these processes can create situations in which the need for inputs and the
processes that generate them is not even identified until the project is well into the
development phase. In the worst case, you will not discover the missing work until you are

ready to test the primary business process for the first timeâ!”at which point you realize
that you are missing a needed input. Such late identification of dependencies can play
havoc with both the cost and schedule for a project, often leading to less-than-optimal
quick-fix solutions because of the time pressureâ!”pressure that could have been avoided!

There is another benefit from actively looking for these interactions while the project is still
in its formative stages. Many times the true complexity of and feasibility issues related to
the project lie not in the creation of the mainstream business processes at all, but in the
number and complexity of the related business processes. Such situations can arise when
you are conceptualizing a workflow system in which work will be assigned to individuals
based on their skills or other qualifications. Where does this skill and qualification
information come from? Does it already exist somewhere, and in a form that can be used?
If the enterprise has thousands of employees and the inventory of employee skills is not in
a form that can be used in the workflow (i.e., the information is in a paper folder), then the
process of getting this information into the proper form and maintaining it accurately may
turn out to be more trouble than it is worth. If you do not chase down the need for this
information and seek out the process that generates it, you may end up building a workflow
that assumes the availability of this information, only to discover much later that it is
impractical to obtain and maintain this information.

Identifying Services

There are four artifacts in the Withdraw Cash via ATM example that have not, as of yet,
been related to other processes: the initial account balance, the updated account
balance, the existing account holds, and the new account hold. If you think
about it, the relationship between these particular artifacts and other business processes is
not simple. The new account hold is consumed by both this process and by any other
process attempting to withdraw funds or check funds availability. The existing account
holds might originate in another instance of this process or from any other process that
places holds on account funds. The initial account balance comes from whatever
process last altered the account balance, and the updated account balance is an input
to any other process requiring knowledge of the account balance.

Managing Shared State

What is different about these artifacts is that they are not simply values that are being
passed around. These artifacts denote the states of the account balance (Figure 12-2).[1]

Each of the holds on the account reserves some of the funds in the account for some
purpose. In the Withdraw Cash via ATM process, the hold is used to ensure that the
funds about to be delivered are not used for some other purpose between the time the
disbursal is authorized and the time the successful disbursal is reported.

[1] An account may have more than one balance associated with it. For example, a credit card account
might have a purchases balance, a cash advance balance, and a payment due balance.

Figure 12-2. State Information Used by Withdraw Cash via ATM Process

It is not unusual for a business process to examine state information, make a decision
based on that information, and then update the state. As Figure 12-2 illustrates, that state
information is often more than the state of a single objectâ!”it is a set of self-consistent
information. In authorizing the disbursal of funds, the currentBalance is retrieved and
the amount from each Balance Hold is subtracted. If the remaining funds are sufficient
to cover the requested withdrawal, the withdrawal is approved and a new hold is added to
the balance in the amount of the withdrawal.

In this sequence, there is a tacit assumption that the state will not change between the
time the available balance is computed and the time the new hold is placed on the balance.
If some other business process were to modify the state during this time (e.g., withdraw all
the available funds), the result might be incorrect. For correct operation, the access and
manipulation of this state information must be managed. You have identified an opportunity
for a service.

Refining the Service Definition

Based solely on the Withdraw Cash via ATM business process, a sketch of an Account
Balance Management Service begins to emerge (Figure 12-3). This service is
responsible for the Manage Account Balance process, which in the present state of the
design is defined by the interactions required for the Withdraw Cash via ATM process.

Figure 12-3. Partial Account Balance Management Service

Reexamining the Withdraw Cash via ATM process with the proposed service in mind
(Figure 12-4) leads to other questions: Should the proposed service perform the additional
operations of identifying the customer and account and checking to see whether that
customer is authorized to access the account? Should the proposed service be the actual
interface between the bank and the ATM system?

Figure 12-4. Proposed Service in the Withdraw Cash via ATM Process

[View full size image]

Based on this single scenario, the answer to these questions is not obvious. Furthermore,
there is more to managing an account balance than just withdrawing funds. To resolve
these questions and determine the full scope of the proposed service, you need to examine
other scenarios (a hacker trying to access the bank via the ATM interface, for example) and
other business processes. Through such explorations you will be able to propose and test
various ideas about the scope of the proposed service and the balance of responsibilities for
the bank.

It is clear that the other primary business processes of the ATM example must be examined
to determine the scope of the Account Balance Management Service. The Make
Deposit via ATM, Check Balance via ATM, and Transfer Funds via ATM business
processes all interact in obvious ways with the account balance.

But there are other business processes that interact with the state of the account balance
as well, specifically those involving a human teller. Figure 12-5 highlights the activities in
the Withdraw Cash via Human Teller process that involve the account balance state.

Examining these activities raises some interesting questions. One very interesting question
is whether the update account balance and print receipt activity of the existing
bank system could be modified to play the role of update account balance in the ATM
scenario. In other words, can you reuse existing functionality as the basis of the service and
thus avoid implementation costs?

Figure 12-5. Fragment of Withdraw Cash via Human Teller Showing Bank System
Activities

[View full size image]

Whatever the final service ends up as, it is clear that the Withdraw Cash via ATM
process interacts with that service. This factoring of the service out of the business process
leads to a different set of artifacts being involved in the interactions, as shown in Figure 12-
6.

Figure 12-6. Interactions with Related Processesâ!”Completed

[View full size image]

Modeling Existing Processes

As this example illustrates, when there are existing business processes that produce the
same results as new business processes, it is often useful to model the existing processes.
One benefit is that such modeling will help you understand whether there are portions of
the existing process that might be reused in the new process. This type of analysis is
essential when building a service-oriented architecture. Modeling both the new and existing
processes helps you to identify opportunities for sharing functionality between the old and
new processes. In other words, it helps you identify potential business services. While you
need to investigate further to determine whether a common service could indeed be used in
both processes, if you do not model both processes you will not even be able to identify
these service opportunities! Furthermore, once you have concluded that a common service
is appropriate, modeling these and other potential usages of the service is an important step
in ensuring that the proposed service will indeed be usable in all intended contexts. Such
modeling provides an opportunity to document and review these proposed utilizations of the
service and thus validate its utility.

Another benefit from modeling existing business processes is that there are often many
similarities between existing and new processes that produce the same results. Although
the means by which individual activities are carried out may differ, the actual activities that
need to be performed are often similar, and have similar inputs and outputs. There is also a

lot of domain knowledge built into the existing process, particularly around various
situations that can arise and the business rules for handling them. In capturing this
understanding, modeling the existing process can significantly reduce the time it takes to
arrive at a working definition of the new process. It will give you a good understanding of
the artifacts that the process depends upon and the contingencies that the process needs to
address.

Triggering Events

Business processes and their individual activities do not start spontaneously. There is
always some event that triggers execution. Sometimes this triggering event marks the
arrival of a required input. When you are playing catch, for example, you catch the ball
when the ball arrives. The arrival of the ball (or, to be more precise, your observation of its
approach) is the event that triggers your catching of the ball. And if you are not trying to
detect the eventâ!”not watching for the ballâ!”you won't perform the required action.

While some triggering events correspond to the arrival of needed inputs or the completion
of previous activities in the process, other triggering events may be totally unrelated to the
process. What triggers your reading of the mail is not necessarily the arrival of the mail.
You may choose to read it when you come home from work or when you take a break.
While you obviously cannot read the mail prior to its arrival, the actual event that triggers
your reading of the mail does not have to be related to the delivery of the mail.

You commonly find both types of triggering events in business processes. When a result
needs to be moved from one system to another, the actual transfer of that result might be
triggered by its creation, or it might be scheduled to occur at some arbitrary point in timeâ
!”unrelated to previous activities. Consider the movement of purchase requests from a
production planning system to a purchasing system (Figure 12-7). Depending upon the
process design, the movement of the purchase request might be triggered by the generation
of the purchase request or by some unrelated event.

Figure 12-7. The Movement of Purchase Requests

Batch transfers provide a common example of unrelated events. With batch transfers, the
purchase requests are created and saved in the production planning system. The triggering
events for the transfer are timersâ!”unrelated to the process flow. At 12 a.m. a batch job is
run that queries the production planning system and generates a file containing the
previous day's purchase requests. At 2 a.m. this file is transferred (probably along with
many other files) to the purchasing system (and possibly transformed as well). At 4 a.m.

another batch job is run that reads the file and inserts the purchase requests into the
purchasing system.

The antithesis of the batch transfer is the real-time transfer driven by business events. In
this approach, the creation of the purchase request in the production planning system
triggers the sending of a message announcing the new purchase request. The arrival of this
message in the purchasing system, in turn, triggers its entry and subsequent processing.
Here the result of one activity serves as the trigger for the subsequent activity.

This distinction between the arrival of inputs and the triggering event may seem to be a
small point, but it can be very significant. The absence of a triggering event will cause a
business process to fail just as surely as the lack of a needed input. Consequently, you must
pay as much attention to triggering events and their sources as you do to the required
inputs for each activity. If there are steps in a business process that have triggering events
originating in another process, you must consider the design of that other process and the
interactions that convey the triggering event. In other words, you need to treat triggering
events as just another form of required input.

Independent Processes

Let's now take a step back and look at entire processes and their interactions with other
processes. Some business processes are completely self-containedâ!”they have no
interactions with other processes during their execution. Once the process has been
triggered, the activities within the process generate all of the inputs required for the
remaining activities in the process, both results and triggering events. Once the initial
triggering event occurs, everything else that happens in the process is completely
determined by the process itself. These are called independent processes to emphasize that
that they do not depend on any other processes for successful execution.

The closed nature of an independent process makes it easy to document in a single UML
activity diagram. For example, consider the consumer in-store check-out process shown in
Figure 12-8. The process has one initial triggering event, the arrival of the customer at the
head of the check-out queue. The triggering event for subsequent activities is the
completion of a previous activity in the process or the arrival of an artifact from another
activity. You can see that this process is completely self-contained, dependent only upon
the activities within the process. Its execution is thus independent of the execution of any
other process.

Figure 12-8. An Independent Process

Dependent Processes

Many processes rely on one or more inputs (either artifacts or triggering events) that do not
originate within the process. These processes are dependent upon the processes that
generate these artifacts and are termed dependent processes.

For example, consider the online purchasing of merchandise shown in Figure 12-9. The
triggering event for this process is the customer's decision to purchase. The process
proceeds as if it were an independent process from this point up until just after the pick
order is printed in the warehouse. But at that point, the process waits for a warehouse
worker to decide to get next assignment. This decision is the triggering event for
the get next order activity, but this event does not originate within the process. The
actual triggering event may be the worker's completion of another order, the end of a
coffee break, or the beginning of the work day. In any case, this triggering event is
completely unrelated to the previous steps of this particular purchase. Since the purchasing
process is dependent upon this unrelated event, it is a dependent process.

Figure 12-9. Basic Catalog or Online Merchant Order

[View full size image]

The source of this dependent triggering event may seem like a small point, but when you
are trying to actually manage the process this event is extremely important. You cannot, for
example, make this process execute quickly without having some control over the timing of
when a worker decides to get the next assignment. A lazy or absent worker can delay
shipment, which may cause the shipment to occur later than promised, resulting in an
unhappy customer and possibly a service-level agreement violation with an associated
financial penalty. Every process that depends upon human participation is a dependent
process.

This example contains another external dependency as well: It depends upon the
availability of the goods to be shipped. The presence of these goods is itself the result of
another processâ!”one that is not shown in the diagram in Figure 12-9. If these goods are
absent, no product can be shipped. Furthermore, if the goods are not present, then the
order becomes a back order, which has a different execution scenario. The back-order
scenario includes activities that trigger the ordering of missing items and activities for
subsequently shipping the goods. These shipment activities are triggered by the eventual
arrival of the goods, another external dependency.

External process dependencies can have a significant impact on the execution of a business
process. Even if there is no design work involved, these dependencies represent possible
sources of failure. Thus, when you find external dependencies, you should consider whether
the design of the process should encompass mechanisms for detecting the absence of
expected inputs and alerting people to their absence. In the case of the warehouse worker,
an alert might be generated by the warehouse system if a shipment notification is not
generated within eight hours after the generation of the pick order. In the case of the back
order, if the merchandise is not in stock, a notice might be sent to the customer, with a
copy to the stock-ordering system as well. Further action might be required if the goods
have not arrived within 30 days.

Towards Event-Driven Processes

Completely independent processes are relatively uncommon in practice. Most business
processes coordinate the work of autonomous entities, whether they are individual people
or entire organizations. Autonomous entities generally decide, on their own, when to
perform work. The overall business process is thus dependent upon these decisions.

Much of today's innovation in business process design lies in rethinking the interactions
between processes. In older designs, the ordering process and the pack-and-ship process
may well have been completely independent, each being driven by a daily schedule. The
order system might have accumulated the pack-and-ship orders in a batch file, which
would be transferred each night to the warehouse system. The daily schedule of the pack-
and-ship process would trigger the printing of those pick orders, which would then be taken
to the supervisor for distribution to warehouse workers.

This old-style process design relies on many triggering events that are unrelated to the
actual processing of an order. A more modern event-driven process design might move
individual orders, as they are received, through the warehouse system and to workstations
on the warehouse floor. Wherever possible in the event-driven style, the completion of one
activity in the process serves as the triggering event for the next. Such designs eliminate
the delays associated with waiting for unrelated events, and thus make it possible to
provide services such as the same-day shipping of merchandise.

Note that when you are reengineering processes in this mannerâ!”from batch-oriented to
event-drivenâ!”virtually all of the activities from the original process remain intact. They
still require the same inputs and produce the same results. What changes are the triggering
events for some of the activities and, to a lesser extent, the performers of those activities.
Because of the similarities, an analysis of the as-is process will yield a great deal of
information about the to-be process.

This distinction between dependent and independent processes may seem like a nuance at
first, but it has a great impact on the way you go about monitoring and managing
processes. If a process is independent, then you can manage (control) each execution of
the process as an independent entity. The management begins with the initial triggering
event for the process and can actively direct all work, telling each participant which activity
to perform and when to perform it. The management is providing the triggering event for
each activity and is thus relatively straightforward. But if the process is dependent on
events from other processes, then all the process manager can do is to observe whether or
not the event actually occurs. Furthermore, unless a service-level agreement (SLA) has
been established regarding the timing of this external event, the process manager has no
basis upon which to decide whether or not a problem exists. These issues will be discussed
in more detail in Chapters 41 and 42.

Summary

Most business processes interact with other business processes. They provide inputs to
those processes and consume results from those processes. These processes collaborate,
and the proper operation of the overall collaboration requires the proper execution of these
interactions. Because of this, the processes that are the sources of all inputs and the
destinations of all outputs must be identified.

Sometimes the input to a process is not an artifact but is instead the current state of an
artifact, and the result of the process is a change in state to that artifact. When the state of
that artifact can be modified by another process instance, some control must be exercised
over the artifact to ensure proper execution of the process. This control is actually another
process that is being executed by a service, a service that manages the state of that
artifact. This service not only provides the state information and makes the state changes,
but it provides transactional control over these activities as well.

When a state management service interacts with more than one process, every process it
interacts with needs to be modeled in order to fully specify the service. Existing processes
that use this state information must be examined as well as new processes that are being
created.

Some process inputs are simply events that trigger the execution of an activity within the
process. When a process requires such triggering events, its execution becomes dependent
upon the process that generates those events. A process that does not require any input
triggering events is an independent process.

Independent processes can still be consumers of artifacts generated by other processes, but
the movement of those artifacts is unrelated to their creation. This introduces delays in the
movement from one process to another, and thus retards the overall business process.
Using the creation of the artifact as the triggering event for its movement to the other
process creates a real-time, event-driven business process that minimizes processing
delays.

Key Related Process Questions

1. Have the business process sources for all required input artifacts been
identified? Have the business process recipients for all result artifacts been
identified?

2. Have the sources of all triggering events been identified, particularly those
that arise outside the business process?

3. With respect to each identified process interaction, are the interactions
driven by the creation of the artifact or by some external event? Would the
process be improved by using the creation of the artifact as the trigger for
the interaction? Would the receiving process be improved by using the
arrival of the artifact as a triggering event for an activity in that process?

Chapter 13. Modeling the Domain
Thus far, the consideration of business processes has focused primarily on their procedural
aspects. But as you are discussing the process, you are inevitably learning about the
domain itself. You hear references to information used in the processâ!”withdraw cash
requests, sales orders, and so forth. You hear discussions about the results being
generated, such as cash, receipts, and goods shipments. You hear about other things
related to the process, such as bank accounts, ATM cards, and credit reports. And you hear
about the participants in the process: customers, bank tellers, banks, and, of course, the
system you are designing.

Virtually all of these things that are discussed in reference to the business process will have
some form of representation in the system you are building. So it is in your own interest to
begin capturing an understanding of what these things are. As you learn about the business
process, you need to keep track of the different types of things that you have come across.
As you learn about their important characteristics you need to keep track of them as well.
This is the purpose of the domain model.

The reason you want to put a domain model together is to get an accurate big-picture
understanding of what can actually happen in the application domain. You want to capture a
working understanding of the types of things that your systems will need to deal with, so
you need to be aware of their existence. If you need to be able to reference individual
entitiesâ!”whether they are people or productsâ!”then you need to know how those
individuals will be identified. If the business process makes decisions based on their
characteristics, then you need to know what these characteristics are.

Many of these concepts have relationships to one another. Bank accounts are related to
specific customers and to specific banks. Shipments are associated with specific orders.
These relationships are as important as the things to which they relate, so you want to
capture an understanding of them in your domain model as well.

Your understanding of relationships, and in particular their multiplicity, will have a profound
impact on the design of your data structures and the way systems interact with them. Is a
bank account associated with a single customer, or can there be multiple people associated
with a single bank account? The answers to such questions will directly impact the way in
which you design data structures and database schema, and these things are extraordinarily
difficult and expensive to change once they have been implemented. Consequently, you
want to make sure that you have an accurate understanding of what can really happen in
the application domain so that your systems are fully capable of handling this variety.

Domain modeling does not strive for completeness. You are not trying to capture every
single attribute associated with every concept, nor are you trying to decide what the
representations (data types) of the attributes should be. You are simply trying to
understand what concepts are relevant, what relationships can exist between them, and
which of their attributes play a major role in the business processes.

The domain model not only helps you understand the information involved in the business
processes, but it also serves as a guide for partitioning the information and assigning

system-of-record ownership responsibilities. As discussed in Chapter 3, the ownership of
relationships is a major issue when the related concepts are "owned" by different
components or services, inevitably necessitating the replication of some information about
the related concepts. A good domain model will help you quickly understand the
implications of partitioning the data in various ways.

UML Class Notation

The UML class notation provides an excellent means of representing a domain model. The
concepts in the domainâ!”bank accounts, ATM cards, customers, orders, and the likeâ!”are
represented as UML classes. Classes[1] represent types of things. A class is depicted as a
rectangle divided into three regions, called compartments (Figure 13-1). The first
compartment contains the name of the concept, such as Person. The second compartment
contains attributes that characterize the concept, such as a person's name, date of
birth, height, and hair color. Some of these attributes may be fixed for any given
individual, such as a person's date of birth. Others, such as height or hair color, may change
with time. The third compartment contains operationsâ!”things that instances of the
concept can do. A person can, for example, sleep, eat, and walk.

[1] Also referred to as Classifiers in UML 2.0.

Figure 13-1. Basic UML Class Notation

[View full size image]

For some passive objects, such as bank accounts, the notion of operations may not be
meaningful. But for other objects, such as the active participants in the business processes,
operations may be quite appropriate. The display of the attribute and operation
compartments is optional in any given diagram, as is the display of individual attributes and
operations. In other words, you can be selective about the attributes and operations you
wish to display in any given diagram.

For the most part, you will not be paying much attention to operations in your domain
modeling, particularly early in the business process analysis. Operations generally reflect
design decisions and become relevant relatively late in the design process. During the
process design, the responsibilities of participants are reflected in the activity diagrams. So,
during process design you should focus primarily upon concepts and their important
attributes.

As important as concepts are, the relationships between them are equally important.
Relationships between concepts are called associations in UML and are depicted as a line
drawn between the two related concepts (Figure 13-2). An association can be annotated at
each end to indicate the role that the concept plays in the relationship. The example
indicates that a Person may be an employee of a Company, and a Company can be the
employer of a Person.[2] You can also annotate each end of the association to indicate the
possible multiplicity of the relationship. The example indicates that a Company can have 0
or more employees (the asterisk represents an unbounded value), and that a Person can
have 0 or more employers.

[2] If you are familiar with the Chen Entity-Relationship (E-R) notation, note that the role names in UML
appear at the opposite ends of the association as compared to the E-R notation.

Figure 13-2. Basic UML Association

Your understanding of multiplicity is crucial to creating a flexible and stabile design, for it
will determine the basic organization of your data structures. Changing the organization of
data structures is an expensive and time-consuming processâ!”one that should be avoided
wherever possible. As such, it is prudent to explore multiplicities with the business
community to understand what can actually happen in the application domain. By seeking
an understanding of the multiplicity possibilities in the domain rather than the possibly more
restricted multiplicity implemented in the current business process, you will be designing
flexibility into the data structures that will allow the enterprise to evolve.

Imagine that you are designing a database for a business's online phone directory. What is
the relationship between a person and a phone? Consider the relationship shown in Figure
13-3. What are the appropriate multiplicities for the association? If any given person either
has a work phone or does not, and each phone is assigned to exactly one person, then the
multiplicity of each end of the association is 0..1. You might then represent a phone book
entry as a single record containing the person's name and the phone number, reflecting this
one-to-one relationship between person and phone. The user interfaces for updating and
querying the phone book would be designed with this 1:1 relationship in mind.

Figure 13-3. Phone Directory Example

Now consider what would happen if the system were designed with this 1:1 multiplicity, and
then somebody got a second phone line, or two people started sharing a phone, or both.
Not only would the database need to be changed, but all the components that interacted
with the database would need to change as well. This would be an expensive change to say
the least.

So as you explore the business process, you want to make every attempt to be sure that
you get the relationships and their multiplicities right. The time to explore the possibilities
and make mistakes is now, when the design is still on paper and before you have begun
investing in detailed design and implementation. Changing your mind now is inexpensive.
The later you make the changes, the more expensive they become.

When you have an association between concepts, there is often information related to the
association that you wish to capture. Consider the Employment relationship shown in Figure
13-4. When a person works for a company, there is information associated with each
instance of this relationship, such as an employeeID, a salary, and a title. The
presence of such information is represented with an association class, which is a class
connected to the association itself by a dashed line. In this class you place the attributes
that are relevant to the association. The semantics of the association class is that one set
of this information exists for each instance of the association.

Figure 13-4. Association Class

It takes some time and practice to become adept at modeling. One of the more common
modeling mistakes is to blur the distinction between the role that a class plays and the
class itself. The result is that the two are represented as a single concept. The roles of
Employee and Customer are two common examples, as shown in Figure 13-5. Here each
class contains a mixture of information about the person (e.g., the name) and information
related to the role that the person is playing (e.g., employeeID). From this representation
it is difficult to recognize that the same person could potentially be both a customer and an
employee.

Figure 13-5. Merged Concepts and Roles

Contrast this with the model shown in Figure 13-6, which shows the concept of Person
explicitly, and shows Employment and Customer as relationships between a Person and a
Company. When you are having difficulty in modeling, the first question you should ask
yourself is whether you have accidentally merged a concept and a relationship into a single
class. If this is the case, separating the class from the relationship (i.e., explicitly showing
the relationship) will resolve the difficulty.

Figure 13-6. Employment and Customer as Association Classes

These modeling difficulties usually arise when you are trying to show relationships between
the "combined" class and other concepts. Let's take the combined employee/person class
and look at two relationships, both of which are relevant to an employment situation (Figure
13-7). One of these relationships is the supervisor/direct report relationship, and the other
is a spousal relationship (this might be required for insurance purposes, for example). The
problem with this model is that it implies that the spouse is also an employee, which is
most likely not the case.

Figure 13-7. Relationship Difficulties with a Combined Concept/Role Class

Contrast this with the representation shown in Figure 13-8. Here the concept of Person has
been separated from the concept of Employment. Now the spousal relationship from person
to person can no longer be confused with the supervisor/direct report relationship between
employees. The overall model is much clearer.

Figure 13-8. Relationships after Separating Concept and Role

Chapter 13. Modeling the Domain
Thus far, the consideration of business processes has focused primarily on their procedural
aspects. But as you are discussing the process, you are inevitably learning about the
domain itself. You hear references to information used in the processâ!”withdraw cash
requests, sales orders, and so forth. You hear discussions about the results being
generated, such as cash, receipts, and goods shipments. You hear about other things
related to the process, such as bank accounts, ATM cards, and credit reports. And you hear
about the participants in the process: customers, bank tellers, banks, and, of course, the
system you are designing.

Virtually all of these things that are discussed in reference to the business process will have
some form of representation in the system you are building. So it is in your own interest to
begin capturing an understanding of what these things are. As you learn about the business
process, you need to keep track of the different types of things that you have come across.
As you learn about their important characteristics you need to keep track of them as well.
This is the purpose of the domain model.

The reason you want to put a domain model together is to get an accurate big-picture
understanding of what can actually happen in the application domain. You want to capture a
working understanding of the types of things that your systems will need to deal with, so
you need to be aware of their existence. If you need to be able to reference individual
entitiesâ!”whether they are people or productsâ!”then you need to know how those
individuals will be identified. If the business process makes decisions based on their
characteristics, then you need to know what these characteristics are.

Many of these concepts have relationships to one another. Bank accounts are related to
specific customers and to specific banks. Shipments are associated with specific orders.
These relationships are as important as the things to which they relate, so you want to
capture an understanding of them in your domain model as well.

Your understanding of relationships, and in particular their multiplicity, will have a profound
impact on the design of your data structures and the way systems interact with them. Is a
bank account associated with a single customer, or can there be multiple people associated
with a single bank account? The answers to such questions will directly impact the way in
which you design data structures and database schema, and these things are extraordinarily
difficult and expensive to change once they have been implemented. Consequently, you
want to make sure that you have an accurate understanding of what can really happen in
the application domain so that your systems are fully capable of handling this variety.

Domain modeling does not strive for completeness. You are not trying to capture every
single attribute associated with every concept, nor are you trying to decide what the
representations (data types) of the attributes should be. You are simply trying to
understand what concepts are relevant, what relationships can exist between them, and
which of their attributes play a major role in the business processes.

The domain model not only helps you understand the information involved in the business
processes, but it also serves as a guide for partitioning the information and assigning

system-of-record ownership responsibilities. As discussed in Chapter 3, the ownership of
relationships is a major issue when the related concepts are "owned" by different
components or services, inevitably necessitating the replication of some information about
the related concepts. A good domain model will help you quickly understand the
implications of partitioning the data in various ways.

UML Class Notation

The UML class notation provides an excellent means of representing a domain model. The
concepts in the domainâ!”bank accounts, ATM cards, customers, orders, and the likeâ!”are
represented as UML classes. Classes[1] represent types of things. A class is depicted as a
rectangle divided into three regions, called compartments (Figure 13-1). The first
compartment contains the name of the concept, such as Person. The second compartment
contains attributes that characterize the concept, such as a person's name, date of
birth, height, and hair color. Some of these attributes may be fixed for any given
individual, such as a person's date of birth. Others, such as height or hair color, may change
with time. The third compartment contains operationsâ!”things that instances of the
concept can do. A person can, for example, sleep, eat, and walk.

[1] Also referred to as Classifiers in UML 2.0.

Figure 13-1. Basic UML Class Notation

[View full size image]

For some passive objects, such as bank accounts, the notion of operations may not be
meaningful. But for other objects, such as the active participants in the business processes,
operations may be quite appropriate. The display of the attribute and operation
compartments is optional in any given diagram, as is the display of individual attributes and
operations. In other words, you can be selective about the attributes and operations you
wish to display in any given diagram.

For the most part, you will not be paying much attention to operations in your domain
modeling, particularly early in the business process analysis. Operations generally reflect
design decisions and become relevant relatively late in the design process. During the
process design, the responsibilities of participants are reflected in the activity diagrams. So,
during process design you should focus primarily upon concepts and their important
attributes.

As important as concepts are, the relationships between them are equally important.
Relationships between concepts are called associations in UML and are depicted as a line
drawn between the two related concepts (Figure 13-2). An association can be annotated at
each end to indicate the role that the concept plays in the relationship. The example
indicates that a Person may be an employee of a Company, and a Company can be the
employer of a Person.[2] You can also annotate each end of the association to indicate the
possible multiplicity of the relationship. The example indicates that a Company can have 0
or more employees (the asterisk represents an unbounded value), and that a Person can
have 0 or more employers.

[2] If you are familiar with the Chen Entity-Relationship (E-R) notation, note that the role names in UML
appear at the opposite ends of the association as compared to the E-R notation.

Figure 13-2. Basic UML Association

Your understanding of multiplicity is crucial to creating a flexible and stabile design, for it
will determine the basic organization of your data structures. Changing the organization of
data structures is an expensive and time-consuming processâ!”one that should be avoided
wherever possible. As such, it is prudent to explore multiplicities with the business
community to understand what can actually happen in the application domain. By seeking
an understanding of the multiplicity possibilities in the domain rather than the possibly more
restricted multiplicity implemented in the current business process, you will be designing
flexibility into the data structures that will allow the enterprise to evolve.

Imagine that you are designing a database for a business's online phone directory. What is
the relationship between a person and a phone? Consider the relationship shown in Figure
13-3. What are the appropriate multiplicities for the association? If any given person either
has a work phone or does not, and each phone is assigned to exactly one person, then the
multiplicity of each end of the association is 0..1. You might then represent a phone book
entry as a single record containing the person's name and the phone number, reflecting this
one-to-one relationship between person and phone. The user interfaces for updating and
querying the phone book would be designed with this 1:1 relationship in mind.

Figure 13-3. Phone Directory Example

Now consider what would happen if the system were designed with this 1:1 multiplicity, and
then somebody got a second phone line, or two people started sharing a phone, or both.
Not only would the database need to be changed, but all the components that interacted
with the database would need to change as well. This would be an expensive change to say
the least.

So as you explore the business process, you want to make every attempt to be sure that
you get the relationships and their multiplicities right. The time to explore the possibilities
and make mistakes is now, when the design is still on paper and before you have begun
investing in detailed design and implementation. Changing your mind now is inexpensive.
The later you make the changes, the more expensive they become.

When you have an association between concepts, there is often information related to the
association that you wish to capture. Consider the Employment relationship shown in Figure
13-4. When a person works for a company, there is information associated with each
instance of this relationship, such as an employeeID, a salary, and a title. The
presence of such information is represented with an association class, which is a class
connected to the association itself by a dashed line. In this class you place the attributes
that are relevant to the association. The semantics of the association class is that one set
of this information exists for each instance of the association.

Figure 13-4. Association Class

It takes some time and practice to become adept at modeling. One of the more common
modeling mistakes is to blur the distinction between the role that a class plays and the
class itself. The result is that the two are represented as a single concept. The roles of
Employee and Customer are two common examples, as shown in Figure 13-5. Here each
class contains a mixture of information about the person (e.g., the name) and information
related to the role that the person is playing (e.g., employeeID). From this representation
it is difficult to recognize that the same person could potentially be both a customer and an
employee.

Figure 13-5. Merged Concepts and Roles

Contrast this with the model shown in Figure 13-6, which shows the concept of Person
explicitly, and shows Employment and Customer as relationships between a Person and a
Company. When you are having difficulty in modeling, the first question you should ask
yourself is whether you have accidentally merged a concept and a relationship into a single
class. If this is the case, separating the class from the relationship (i.e., explicitly showing
the relationship) will resolve the difficulty.

Figure 13-6. Employment and Customer as Association Classes

These modeling difficulties usually arise when you are trying to show relationships between
the "combined" class and other concepts. Let's take the combined employee/person class
and look at two relationships, both of which are relevant to an employment situation (Figure
13-7). One of these relationships is the supervisor/direct report relationship, and the other
is a spousal relationship (this might be required for insurance purposes, for example). The
problem with this model is that it implies that the spouse is also an employee, which is
most likely not the case.

Figure 13-7. Relationship Difficulties with a Combined Concept/Role Class

Contrast this with the representation shown in Figure 13-8. Here the concept of Person has
been separated from the concept of Employment. Now the spousal relationship from person
to person can no longer be confused with the supervisor/direct report relationship between
employees. The overall model is much clearer.

Figure 13-8. Relationships after Separating Concept and Role

ATM Example Domain Model

Building a domain model is an iterative process. You capture your current understanding,
examine the implications (often reviewing the model with key stakeholders), and then refine
the model. Figure 13-9 shows an initial cut at the domain model for the ATM example. It
represents some of the basic concepts in the domain: Person, Account, Bank, Bank
System, ATM Card, PIN, and ATM System. It also represents the relationships among
them.

Figure 13-9. Initial Cut Domain Model for the ATM Example

[View full size image]

There are a couple of problems with this model as it stands. Account is shown as an
association between Person and Bank. While this captures the idea that a person can have
many accounts, it also implies that there can only be one person associated with an
account. This is a restriction that is not consistent with real bank accounts, and the model
is, therefore, incorrect. The model also shows that there is exactly one Account associated
with each ATM Card. This would make it impossible to perform funds transfers between
accounts and is therefore incorrect as well.

Figure 13-10 presents a refined domain model for the ATM example. Account is now a
concept on its own and can have multiple account holders. The ATM Card can now be
associated with more than one accountâ!”which actually creates a design complexity: Since

the card can be associated with multiple accounts, the person using the card will have to
specify the accounts to be involved in the transaction.

Figure 13-10. Refined Domain Model for ATM Example

[View full size image]

The refined model also raises an additional question: Should the ATM Card be associated
with the Account or with the Account Holder? If the card is associated with the account
and there are multiple cards on the account, then it may not be clear which person is using
the card. This is the appropriate time to explore such questionsâ!”before any design
commitments have been made. Ask the business people whether it makes a difference, and
help them explore the implications.

Ideally, all of this exploration occurs before you make any commitment to data structuresâ
!”messages, file formats, and database schemas. But even if these data structures already
exist, your domain model will help you understand any limitations in these data structuresâ
!”real-world situations that the existing data structures cannot adequately represent. These
are limitations in the enterprise's ability to cope with real-world situations and thus
represent risk for the enterprise. It is prudent then to have a discussion with the business
community regarding these limitations, the business risks they present, and whether these
risks warrant investing in changes to the systems.

Reverse Engineering the Domain Model

While you can learn a lot about the domain model by talking about business processes, you
can learn a lot about existing processes by examining the data structures in their databases
and communications. This is a relatively straightforward exercise when these data
representations have formal representations such as the data definition language (DDL)
used to define SQL database schemas or the XML schema definition (XSD) used to define
XML data structures.

When reverse engineering data structures, however, you need to do some interpretation to
determine the overall domain model. Each individual schema generally represents only a
fragment of the whole. Furthermore, many schemas contain partial data about concepts and
relationships, and other schemas contain additional data about these same concepts and
relationships. Because these representations evolved independently, they may not be
consistent in their representations. You need to determine how these fragmentary
representations relate to one another as you assemble the domain model.

Another issue you will face is that the natural structure of the data may be somewhat
obscured and flattened in these representations. A single record may contain both customer
and person information, perhaps with a smattering of phone and address information as
well. Some analysis will be required to recover the true structure, particularly with respect
to roles.

Some of the data you will encounter may be design artifacts that are not properly part of
the domain model at all. A record sequence number that gives a unique identity to each
record in a file, for example, is just a design artifact related to the structure of that file and
has no significance in the domain model itself. One of the challenges you will face is
distinguishing such design artifacts from the relevant domain data.

Despite these shortcomings and challenges, reverse engineering existing data structures can
save you a lot of time. It will also raise the visibility of data that might not be otherwise
mentioned in the discussion of the business process. It is a good practice to look at existing
data structures while you are building your understanding of the business processes. This
will afford you the opportunity to ask about the significance of the data and how it relates to
the business process.

Domain Modeling Summary

Concepts and relationships play a major role in the design of both business processes and
their supporting systems. They represent the information on which business processes
operate. This information will be stored in databases, communicated between participants,
and displayed and edited in user interfaces. It drives the decision-making logic of the
business process itself. To effectively design business processes and systems, you need to
understand this information and how it is being used. You must also decide where this
information will reside and how it will be accessed and maintained. The more you
understand about these concepts and relationships, the better you will be able to design the
business processes and the systems that support them.

Although you need to understand the overall structure of this information, namely the basic
concepts and relationships, along with a few key attributes, you do not need all of their
detail at this time. What you need to understand in order to architect the business
processes and systems is the following:

What concepts exist, and the relationships that exist among them

The multiplicity of the relationships

The attributes used to identify instances of concepts and relationships in situations in
which the identity is important in the business process

The attributes that are used for decision making in the business process

These things have deep implications for the design of the system. If the ATM card can be
associated with more than one account, then every user interaction that starts with an ATM
card must in some manner ask the customer to identify the account that is the target of
each transaction. If you design a system for a single account, this dialog will be absent. If
you later decide that you want to add support for multiple accounts, many portions of the
design will be impacted. Thus, it is important at this stage of the design process to
understand what might be possible in the application domain and consciously decide how
much of that variability should be accommodated in the business process and system
design. You want these to be conscious decisions, not accidents of design.

If there is no cost impact associated with handling this flexibility, then you should obviously
build the flexibility into the design. It would be foolish not to do so. But if there is a cost
impact, part of the decision-making process should be to acquaint the business stakeholders
with the relative costs of changing the design at some point in the future as opposed to
incorporating the flexibility into the current design. Again, multiplicities of relationships are
of particular interest. If you design the ATM system to only work with a single bank (the
one that owns the ATM system) and later decide that you want to provide services for other
banks as well, there will be many changes required to the design. It is prudent, therefore,
to spend time with the business stakeholders early in the design process to explore such
possibilities before any design commitments have been made. Since they are the ones
making the investment in the system, they should be the ones balancing short-term
investment decisions against long-term risk for the business.

This discussion has only scratched the surface of modeling. Modeling is an artâ!”one that
requires some experience in order to develop proficiency. There is often more than one way
to represent a situation, and one representation is not necessarily "more correct" than
another. For guidance in modeling, refer to Object-Oriented Modeling and Design with UML,
Second Edition[3] and similar books. For proper use of the notation itself, refer to The
Unified Modeling Language Reference Manual, Second Edition.[4]

[3] Blaha, Michael, and James Rumbaugh. 2005. Object-Oriented Modeling and Design with UML, Second
Edition. Upper Saddle River, NJ: Prentice Hall.

[4] Rumbaugh, James, Ivar Jacobson, and Grady Booch. 2005. The Unified Modeling Language Reference
Manual, Second Edition. Boston, MA: Addison-Wesley.

Key Domain Modeling Questions

1. Have the major concepts and relationships involved in the process been
added to the domain model?

2. Has the possible multiplicity of all relationships been established?

3. Have the key attributes involved in identification and decision making been
identified?

4. Has the model been validated and reviewed with the business community?

Suggested Reading

Blaha, Michael and James Rumbaugh. 2005. Object-Oriented Modeling and Design with UML,
Second Edition. Upper Saddle River, New Jersey: Prentice Hall.

Rumbaugh, James, Ivar Jacobson, and Grady Booch. 2005. The Unified Modeling Language
Reference Manual, Second Edition. Boston, MA: Addison-Wesley.

Chapter 14. Enterprise Architecture: Process and
Domain Modeling
Unless you are creating an enterprise from scratch, your projects are generally not starting
with a clean slate and building entire business processes and their supporting systems. Each
project is making incremental changes to existing business processes and systems,
operating in areas where other projects have been before.

There is considerable overlap in projects with respect to business processes and domain
models, and therefore an opportunity to share information and reduce the amount of work
required for each project. If one project has developed a model of a business process or
part of a domain, subsequent projects should be able to build on that work, extending and
refining it. One of the key responsibilities of the enterprise architecture group is to develop
this shared understanding of business processes and their related domain models.

For one project to build upon the work of another, there must be consistency in how things
are done from one project to another. Standards are required for representing business
processes and domain models as well as for the mechanics of archiving and versioning
these models. The enterprise architecture group is responsible for this archive and the
quality of its contents.

Skills are also requiredâ!”skills in process modeling and domain modeling. The enterprise
architecture group will contain the greatest concentration of these skills in the enterprise,
but it is generally impractical for this group to directly do the modeling for each project.
Instead, this work must largely be done by project architects. However, these project
architects must have the appropriate skills to do this work, and it is the enterprise
architecture group's responsibility to ensure that they do. Toward this end, the enterprise
architecture group must determine (and often deliver) appropriate training, mentor project
architects, and review their work.

As a whole, the process and domain modeling group will have two interrelated streams of
work. One will focus on assembling the overall model for the enterprise and organizing that
information to make it accessible to those who need it. The other stream will focus on the
needs of individual projects, both transferring knowledge to them and specifying common
process patterns and data models as required. For the sake of project efficiency, it is
important that the enterprise group be proactive in both of these activities. Helping the
project team get the process and domain models right the first time, and ensuring that they
are using the appropriate business process patterns and common data representations will
be far more efficient than showing them their mistakes after the fact. Late reviews and
feedback will make the project teams reluctant to adopt the changes, and small changes
may not be made at all due to schedule pressures. For a quality result, the process and
domain modeling group needs to be aggressively involved in project activities.

Process and Domain Modeling Responsibilities

Process and domain modeling are skills that can only be acquired with practice. The number
of people who are truly adept at modeling is relatively limited, so you must consider how

the needed skills will be provided for individual projects. The basics of modeling can be
taught relatively easily, but novices require support as they encounter complex and unusual
situations. Review and feedback regarding their work will be required to ensure consistent
quality. The question is, how can you organize your limited resources to accomplish this?

A common practice for sharing a valuable but limited skill set is to organize the people with
the needed skills into a center of excellence. In this case, we are talking about creating a
process- and domain-modeling group comprising the most skilled process modelers in the
enterprise. Logically, this group is part of the enterprise architecture group. What does this
group do? Well, a variety of things, including:

Establish standards and best practices for process and domain modeling

Manage process and domain knowledge transfer to project teams

Review process and domain models from projects

Maintain a repository of business process and domain models

Establish models of common process patterns

Establish common data model representations

Chapter 14. Enterprise Architecture: Process and
Domain Modeling
Unless you are creating an enterprise from scratch, your projects are generally not starting
with a clean slate and building entire business processes and their supporting systems. Each
project is making incremental changes to existing business processes and systems,
operating in areas where other projects have been before.

There is considerable overlap in projects with respect to business processes and domain
models, and therefore an opportunity to share information and reduce the amount of work
required for each project. If one project has developed a model of a business process or
part of a domain, subsequent projects should be able to build on that work, extending and
refining it. One of the key responsibilities of the enterprise architecture group is to develop
this shared understanding of business processes and their related domain models.

For one project to build upon the work of another, there must be consistency in how things
are done from one project to another. Standards are required for representing business
processes and domain models as well as for the mechanics of archiving and versioning
these models. The enterprise architecture group is responsible for this archive and the
quality of its contents.

Skills are also requiredâ!”skills in process modeling and domain modeling. The enterprise
architecture group will contain the greatest concentration of these skills in the enterprise,
but it is generally impractical for this group to directly do the modeling for each project.
Instead, this work must largely be done by project architects. However, these project
architects must have the appropriate skills to do this work, and it is the enterprise
architecture group's responsibility to ensure that they do. Toward this end, the enterprise
architecture group must determine (and often deliver) appropriate training, mentor project
architects, and review their work.

As a whole, the process and domain modeling group will have two interrelated streams of
work. One will focus on assembling the overall model for the enterprise and organizing that
information to make it accessible to those who need it. The other stream will focus on the
needs of individual projects, both transferring knowledge to them and specifying common
process patterns and data models as required. For the sake of project efficiency, it is
important that the enterprise group be proactive in both of these activities. Helping the
project team get the process and domain models right the first time, and ensuring that they
are using the appropriate business process patterns and common data representations will
be far more efficient than showing them their mistakes after the fact. Late reviews and
feedback will make the project teams reluctant to adopt the changes, and small changes
may not be made at all due to schedule pressures. For a quality result, the process and
domain modeling group needs to be aggressively involved in project activities.

Process and Domain Modeling Responsibilities

Process and domain modeling are skills that can only be acquired with practice. The number
of people who are truly adept at modeling is relatively limited, so you must consider how

the needed skills will be provided for individual projects. The basics of modeling can be
taught relatively easily, but novices require support as they encounter complex and unusual
situations. Review and feedback regarding their work will be required to ensure consistent
quality. The question is, how can you organize your limited resources to accomplish this?

A common practice for sharing a valuable but limited skill set is to organize the people with
the needed skills into a center of excellence. In this case, we are talking about creating a
process- and domain-modeling group comprising the most skilled process modelers in the
enterprise. Logically, this group is part of the enterprise architecture group. What does this
group do? Well, a variety of things, including:

Establish standards and best practices for process and domain modeling

Manage process and domain knowledge transfer to project teams

Review process and domain models from projects

Maintain a repository of business process and domain models

Establish models of common process patterns

Establish common data model representations

Establishing Standards and Best Practices

Because the enterprise architecture group contains the most skilled process and domain
modelers, it must assume the responsibility of providing leadership with respect to the tools
and techniques for modeling. There is real need for leadership and guidance in this area, as
the techniques for process modeling, in particular, are still in flux, and tools for supporting
both process and domain modeling are evolving rapidly.

The modeling of domains with UML class diagrams is relatively mature. Graphical domain
modeling has been around since the 1970s in the form of Chen Entity-Relationship (ER)
diagrams. The Object Modeling Technique, first published in 1989, provided a richer
notation with more refined representations of relationships. In 1997 it became the basis for
the UML class notation. It is now a very mature notation that is widely used.

Process modeling, on the other hand, is still evolving. The leading notations for modeling
the flow of activities in a process are the UML activity notation (used in this book) and the
closely related Business Process Modeling Notation (BPMN). There are efforts under way in
the industry to reconcile the differences between these notations.

While the representation of the flow of activities is very similar in the two notations, UML
activity notation has linkages to other UML notations that are absent in the BPMN notation.
For example, activities frequently produce artifacts (objects in the UML notation) that are
inputs to other activities. In information systems these artifacts are, more often than not,
communications that embody data structures. In the UML activity notation, the type of an
object (i.e., the type of the data structure) can be identified as a UML class. This class, in
turn, can be defined using the UML class notation.

Fully characterizing business process and system architectures requires multiple
perspectives: process and component structures, activity flows, concepts and relationships,
state transitions, and implementations. Just as importantly, the elements of these different
perspectives must be related to each other in a precise and unambiguous manner. This is
the intent of the UML notations and is noticeably absent in the BPMN notation.

However, in contrast to UML's stable class and state notations, the structure, activity, and
implementation notations are still in flux. UML 2.x evolved significantly from UML 1.x, and
although the rate of evolution appears to be slowing, refinements in the notation can be
expected to continue for some time into the future.

These ongoing UML refinements are not just niceties. They occur because architects
continue to identify important concepts that do not have convenient and precise
representations in the existing notation. The most striking example is the introduction of
structure notation in UML 2.x. This notation now makes it possible to describe the
performance of work as a collaboration of participants. It provides a mechanism for
identifying the roles in the collaboration. It also allows the structure of that collaboration to
be defined in terms of other collaborations, and it paves the way for the precise
characterization of patterns and their usage.

Because of this ongoing evolution, the enterprise architecture group, as part of its

leadership role, must track the state of maturity of these notations (and their supporting
tools) and make a determination as to when notational changes and the corresponding tool
support should be introduced into the enterprise. As the keeper of the skill base for process
and domain modeling, the enterprise architecture group must be responsible for
establishing standards for how business processes and domain models will be represented.
These standards comprise the selection of notations and the tools for creating these
representations.

When standards for process and domain modeling are established, it is important to keep in
mind that they are part of a larger enterprise architecture effort. The models and tools
need to integrate smoothly with the models and tools used for the remainder of the
architecture at both the enterprise level and the individual project level. Process and system
structure, milestone lifecycles, and implementations all need to be defined and clearly
related back to the business processes, concepts, and relationships being captured.

Complementing these standards are the best practices regarding the use of process and
domain modeling. These best practices establish conventions regarding the handling of
certain situations. For example, complex business processes frequently require views at
different levels of detail: a high-level view presenting the overall structure of the business
process and a series of more detailed views presenting the details of portions of the
business process. The high-level view is needed to keep the big picture in focus, while the
details are required to support systems development. While reference materials (such as
this book and its references) offer a number of possible alternatives for dealing with various
situations, maintaining consistency choosing these alternatives can be as important as the
alternative itself. Establishing the best practice requires an evaluation of the available
alternatives and the selection of a preferred alternative along with the identification of the
circumstances under which it is applicable. The enterprise architecture group must also
document the best practices so that they can be readily shared and provide training in their
use.

Managing Process and Domain Knowledge Transfer

Perhaps the most important responsibility of the enterprise architecture group is knowledge
transfer. The expertise of the group must somehow be effectively applied at the project
level. In most organizations, the number of projects is large enough that direct staffing by
the enterprise architecture group is not practical. In such cases the project architect, who is
not a member of the enterprise architecture group, will do the process and domain
modeling for the project. The key question is, how do these architects obtain the needed
skills?

Some level of skill can be obtained through direct training. This training may be delivered
by the enterprise architecture group or an external party; this is a matter of choice.
However, the enterprise architecture group must be responsible for the training curriculum
and for the quality of the training.

Training must be augmented with a structured mentoring program. Training alone is not
sufficient to give the project architect the skills necessary to do process and domain
modeling. Training will convey a basic understanding of the techniques, but only through
practice will the project architect truly develop the skill. During this practice period, the
architect will require guidance. Real-world modeling will present the architect with situations
that require clarification in the use of the modeling techniques or were not covered in the
course at all.

There are a couple of variations on mentoring programs. The strongest one is an
apprenticeship program, in which the project architect works under the direct guidance of
an enterprise architect on common projects. This affords ample opportunity for the
enterprise architect to observe and guide the project architect. Alternatively, an enterprise
architect may be assigned to mentor one or more project architects, but not work directly
on the projects. The mentor periodically reviews the work of the project architects and is on
call to answer questions that the project architect may have.

Part of this knowledge transfer is conveying an understanding of how the enterprise shares
process and domain models between projects. Individual projects rarely, if ever, develop
complete process or domain models. They work on fragments of the models. For both
efficiency and consistency, these fragments need to be merged into a cohesive whole so
that they can be referenced and extended by future projects. Since the enterprise architects
are responsible for maintaining these merged models, they must show the project architects
how to access, refine, and extend these models.

Reviewing Project Models

As the owner of process and domain models, the enterprise architecture group has a quality
control responsibility with respect to individual projects. Apart from the training and
mentoring responsibilities, the enterprise architects must review the work being done on the
individual projects to ensure that it is both correct and done in a style that is consistent
with the shared process and domain models. This review should take place prior to any
implementation commitment and prior to its merger with the overall enterprise models.

These reviews also provide a means for the enterprise architecture group to evaluate the
skills of the project architects and thus evaluate the effectiveness of the knowledge transfer
program.

Maintaining the Business Process and Domain Model
Repository

Since individual projects generally work on fragments of the business process and domain
models, the project work needs to be assembled into a coherent whole. This will let projects
build upon the work of other projects and, over time, assemble a complete enterprise
business process and domain model. Establishing and maintaining this repository is the
responsibility of the enterprise architecture group.

A repository must be organized so that people can find the content that is relevant to their
work. Toward this end, the enterprise architecture group should look beyond the current
projects and identify as many of the enterprise's key business processes as possible. The
level of information that should be gathered is that required for ranking business processes,
as discussed in Chapter 7. This inventory can then be used to establish a framework for
organizing and storing business process models for easy access. A similar organization of
the domain models can be achieved by grouping related concepts and relationships into
topic areas.

As business process and domain models are created, whether as part of a project or part of
other enterprise architecture activities, they should be added to this repository. The
enterprise architecture group should make this repository readily available to the enterprise.
Business people, enterprise architects, and project teams will all need to access this
information.

Don't use the creation of a repository as an excuse for a technology project! Your goal is not
to build the world's greatest archive of business process and domain knowledge. Rather, it
is to establish a practical means for documenting and sharing business process information.
Keep it simple.

Defining Business Process Patterns

While a process model reflects the dialog between participants in a specific business
process, you will find that many processes follow very similar interaction patterns. For
example, customer queries coming in through a front-end web site and hitting the same
back-end systems will likely all share the same interaction pattern between the participants
involved regardless of the nature of the query. Abstracting even further, it is likely that
queries coming in via the same type of channel (i.e., web browser access) and hitting the
same type of back-end system (i.e., a mainframe) will all follow the same pattern.

In such cases it is beneficial to document the interaction pattern and establish a repository
of such patterns. Once a pattern is identified, the enterprise architecture group can then
define a corresponding system architecture. The combination of business process pattern
and corresponding system architecture then provides a standard cookie-cutter template
that project teams can use to streamline their work. Once they have modeled the business
process and identified the pattern, they can find the corresponding architecture template
and apply it, saving time and money. This approach provides an effective means of broadly
sharing architectural expertise (always in limited supply) and achieving consistency among
projects.

Defining Common Data Model Representations

The data structures that are exchanged between process participants are all derived from
the domain model, that is, an understanding of the inherent structure of the information.
This derivation requires some time and thought, and the quality of the result is dependent
upon the skill of the architect designing the data structure.

It is common to find different participant interactions requiring similar sets of data. In such
cases, it makes sense to define one data structure that can support these different
interactions. Such data structures are called common data models, and their engineering is
discussed in Chapter 23.

Since the enterprise architecture group has the highest level of skill, it make sense for this
group to actually do the engineering of common data models, organizing them and placing
them into a repository. Many of these will originate as data structures proposed by the
individual project teams. The enterprise architecture group should routinely be reviewing
these data structures as part of the project architecture review. If the group has not been
involved in the engineering of these data structures and it appears as though their content,
conceptually, is appropriate for a common data model, the review is an appropriate time for
the group to modify the data structures into their more general form.

Summary

Even though the bulk of the work occurs within individual projects, process and domain
modeling are part of an overall enterprise architecture effort. Consequently, the enterprise
architecture group must take responsibility for this overall effort from a number of
perspectives.

The enterprise architecture group needs to establish the standards, techniques, and best
practices for creating business process and domain models. It needs to ensure that project
architects have the training to do this modeling and support them in their efforts, and it
needs to ensure that the modeling done on individual projects is done in a consistent
manner, both by mentoring project architects and by reviewing their efforts.

To avoid different projects remodeling the same processes and information, the enterprise
architecture group must collect the work of individual projects and merge them into an
overall enterprise process and domain model. These models must be kept in a repository
that is readily accessible by business and technical personnel alike.

There are structural patterns to be found in the enterprise model, patterns in both the
structure of business processes and the structure of the information that is communicated
between process participants. These patterns represent opportunities to pre-engineer their
implementations. These pre-engineered implementations simplify projects, reducing much
of their work to recognizing the presence of the pattern and borrowing the predefined
implementation. The net result saves time and effort. To achieve these benefits, the
enterprise architecture group must be proactive in identifying these patterns, engineering
their solutions, and making this information available to the project teams.

Key Enterprise Process and Domain Modeling Questions

1. Has the enterprise architecture group established standards and best
practices for modeling business processes and the information they use?

2. Does the enterprise architecture group oversee the training of project
architects and provide mentoring support for them?

3. Does the enterprise architecture group routinely review the process and
domain models produced by individual projects?

4. Has the enterprise architecture group established a repository for process
and domain models? Does it manage the incorporation of individual project
models into the repository? Is the repository readily available to both
business and technical personnel?

5. Does the enterprise architecture group look for patterns in the process
models? Does it document the patterns and define standard
implementations for these patterns?

6. Does the enterprise architecture group look for commonalities in the
information exchanged between process participants? When commonalities
are found, does it define common data models for the exchange of this
information?

Part III: The Systems Perspective

Chapter 15. Systems Architecture Overview
We turn our attention now to the architecture of the systems underlying the business
processes. When you are designing business processes, for the most part you are treating
the "systems" as a single participant in the process. The only exceptions occur when the
use of a specific system is mandated for specific activities. The focus of the business
process is on determining what systems need to do in the process, not on their architecture
and design. But to complete the implementation of the business process, you need to
architect and then implement those systems.

Before diving into the design issues, it is worth stepping back to take a look at how to
create the architecture from a methodology perspective. There are two major activities in
putting an architecture together: defining the architecture and evaluating its suitability for
supporting the business processes. When considering how you are going to accomplish
these steps, there are two questions you must address. First, given that there are many
possible architectures for any solution, how are you going to explore those possible
architectures and find the right one? Second, given that you have a real project with a real
deadline, how are you going to make this architecture selection process efficient?

The Challenge of Architecting Distributed Systems

Explicitly architecting large-scale distributed information systems is a relatively new
phenomenon. Historically, the majority of IT architectural efforts have focused either on the
structure of client-server, 3-tier, or n-tier applications, or on establishing their underlying
hardware and communications infrastructure. These application-oriented architectural styles
provide guidance in the vertical partitioning of functionality within an application, but
provide no guidance whatsoever in horizontal partitioningâ!”deciding which business
process activities belong in which applications.

In distributed information systems, the major systems are peers. No one system is in
charge. In such systems, rationalizing the allocation of responsibilities to the individual
systems can be challenging. The placement of some functionality may be clear; for
example, the sales order management system is obviously responsible for functionality
directly related to the management of sales orders. The placement of other functionality
may not be as obvious. Business processes span multiple systems. Where should
functionality reside that is related to business process monitoring, management, and
reporting? If individual systems provide individual services, where should a composite
service reside that involves services from multiple systems? When data is replicated
between systems, which system should manage that replication? When interactions require
data transformation, where should you put that functionality?

Part III: The Systems Perspective

Chapter 15. Systems Architecture Overview
We turn our attention now to the architecture of the systems underlying the business
processes. When you are designing business processes, for the most part you are treating
the "systems" as a single participant in the process. The only exceptions occur when the
use of a specific system is mandated for specific activities. The focus of the business
process is on determining what systems need to do in the process, not on their architecture
and design. But to complete the implementation of the business process, you need to
architect and then implement those systems.

Before diving into the design issues, it is worth stepping back to take a look at how to
create the architecture from a methodology perspective. There are two major activities in
putting an architecture together: defining the architecture and evaluating its suitability for
supporting the business processes. When considering how you are going to accomplish
these steps, there are two questions you must address. First, given that there are many
possible architectures for any solution, how are you going to explore those possible
architectures and find the right one? Second, given that you have a real project with a real
deadline, how are you going to make this architecture selection process efficient?

The Challenge of Architecting Distributed Systems

Explicitly architecting large-scale distributed information systems is a relatively new
phenomenon. Historically, the majority of IT architectural efforts have focused either on the
structure of client-server, 3-tier, or n-tier applications, or on establishing their underlying
hardware and communications infrastructure. These application-oriented architectural styles
provide guidance in the vertical partitioning of functionality within an application, but
provide no guidance whatsoever in horizontal partitioningâ!”deciding which business
process activities belong in which applications.

In distributed information systems, the major systems are peers. No one system is in
charge. In such systems, rationalizing the allocation of responsibilities to the individual
systems can be challenging. The placement of some functionality may be clear; for
example, the sales order management system is obviously responsible for functionality
directly related to the management of sales orders. The placement of other functionality
may not be as obvious. Business processes span multiple systems. Where should
functionality reside that is related to business process monitoring, management, and
reporting? If individual systems provide individual services, where should a composite
service reside that involves services from multiple systems? When data is replicated
between systems, which system should manage that replication? When interactions require
data transformation, where should you put that functionality?

Part III: The Systems Perspective

Chapter 15. Systems Architecture Overview
We turn our attention now to the architecture of the systems underlying the business
processes. When you are designing business processes, for the most part you are treating
the "systems" as a single participant in the process. The only exceptions occur when the
use of a specific system is mandated for specific activities. The focus of the business
process is on determining what systems need to do in the process, not on their architecture
and design. But to complete the implementation of the business process, you need to
architect and then implement those systems.

Before diving into the design issues, it is worth stepping back to take a look at how to
create the architecture from a methodology perspective. There are two major activities in
putting an architecture together: defining the architecture and evaluating its suitability for
supporting the business processes. When considering how you are going to accomplish
these steps, there are two questions you must address. First, given that there are many
possible architectures for any solution, how are you going to explore those possible
architectures and find the right one? Second, given that you have a real project with a real
deadline, how are you going to make this architecture selection process efficient?

The Challenge of Architecting Distributed Systems

Explicitly architecting large-scale distributed information systems is a relatively new
phenomenon. Historically, the majority of IT architectural efforts have focused either on the
structure of client-server, 3-tier, or n-tier applications, or on establishing their underlying
hardware and communications infrastructure. These application-oriented architectural styles
provide guidance in the vertical partitioning of functionality within an application, but
provide no guidance whatsoever in horizontal partitioningâ!”deciding which business
process activities belong in which applications.

In distributed information systems, the major systems are peers. No one system is in
charge. In such systems, rationalizing the allocation of responsibilities to the individual
systems can be challenging. The placement of some functionality may be clear; for
example, the sales order management system is obviously responsible for functionality
directly related to the management of sales orders. The placement of other functionality
may not be as obvious. Business processes span multiple systems. Where should
functionality reside that is related to business process monitoring, management, and
reporting? If individual systems provide individual services, where should a composite
service reside that involves services from multiple systems? When data is replicated
between systems, which system should manage that replication? When interactions require
data transformation, where should you put that functionality?

Learning from the CORBA Experience

The architectural placement of functionality must take into consideration both the logical
organization of that functionality and the dynamic performance implications of that
placement. Experiences in using CORBA provide some object lessons in this regard. The
purpose of CORBA is to establish a standardized foundation for distributed system design. It
provides the ability to define objects in such a way that any one object can use the services
of another object, regardless of the object's physical location. The nature of CORBA
encourages you to modularize your distributed design into objects (each bundling data and
related operations) without worrying about how and where the objects will be deployed.

Unfortunately, as many an architect has discovered, it makes a great deal of difference
where those distributed objects actually reside. When objects are co-located in the same
environment, the overhead of communicating between them is low. Interactions occur in a
matter of microseconds. Latency is so low that it can be safely ignored and there is no
traffic that impacts the network. But the story is different when two interacting objects
reside in different machines. Communications delays and operating system context-
switching can easily increase communications latency a thousandfold, making the delays
noticeable. Communications also requires network traffic, and therefore requires network
bandwidth. The consideration of latency and network load often demands rethinking
placement of the objects, and often requires changing the granularity of the object's
operations. The following case study illustrates this point.

Case Study: Credit Card Fraud Investigation

A bank is implementing a system to investigate credit card fraud. The bulk of the
business process consists of examining information associated with the account.
The investigator pokes around in the information, looking for suspicious patterns
of activity. After an initial examination, the investigator makes contact with
various parties, commonly the cardholder, merchants, and law enforcement
agencies. Ultimately the investigator determines which transactions are legitimate
and which are fraudulent. The investigator then creates a new account and
transfers all legitimate activity to the new account, leaving the old account with
just the fraudulent transactions.

This investigative work and the ensuing account modifications require the display
of detailed account information. This information resides in the Credit Card
Account System, an existing system that is separate from the new Fraud
Investigation System. Part of the project is to define the services that the
credit card account system will provide.

A simplified view of the credit card account information is shown in Figure 15-1.
This figure represents a logical model of the information, and it is proposed that
this logical model be directly implemented as CORBA objects in the Credit
Card Account System. Each class has a set of attributes (the actual data
stored in the credit card account system) and a set of operations that provide
access to this data. For simplicity, the operations that would be required to

create and modify these classes and their attributes have been omitted.

Figure 15-1. Simplified Class Model for Credit Card Fraud Investigation

[View full size image]

Now consider the design of the Fraud Investigation System. Assume for
the moment that the Credit Card Account System has its account

information represented by CORBA objects in the manner just described. When
an investigator wants to work on an account, the Fraud Investigation
System must display a window containing virtually all of this information in a
tabular representation so that it can be easily scanned.

To populate this table, the Fraud Investigation System needs to retrieve
the account information. The mechanics of this retrieval seem straightforward:
Use the account number to locate the Credit Card Account and then use a
sequence of get<attributeName>() calls to retrieve the remaining
information. Figure 15-2 shows the resulting dialog between the Fraud
Investigation System and the Credit Card Account System.

Figure 15-2. Client-side Assembly of Account Data

[View full size image]

Figure 15-2 immediately highlights the problem with this design: The retrieval of
each attribute requires a round-trip communication with the Credit Card
Account Server. Each exchange will take several milliseconds or more and
require a few hundred bytes of network trafficâ!”all to retrieve a dozen bytes of
information. A page displaying 40 transactions along with 10 fields of data
(including fields from their corresponding authorizations and merchants) will
require 400 interactions between the two systems and will generate over 100KB
of network traffic.

Optimistically, if the server stands ready to instantly respond to each request, it
will still take more than a second to assemble the data. More realistically, it will
take a number of seconds to display the table, and that is to display only 40
transactions. Many accounts have hundreds of transactions, and the fraud
investigator needs to flip back and forth through the transactions looking for
suspicious activity. Multi-second delays in retrieving the data will be very
annoying to the investigators and will seriously degrade their efficiency.

Moving the responsibility for field-by-field data retrieval to the Credit Card
Account System greatly simplifies the interactions between the systems
(Figure 15-3). With this approach, the Fraud Investigation System sends a
single request, and the Credit Card Account System accumulates all of the
required information. Latency is now reduced to less than a second, and network
traffic is reduced from more than 100KB to around 5KB. The downside, of
course, is that doing this requires changes to the Credit Card Account
System. Unfortunately, that system belongs to a different organization and has a
different IT group maintaining it. That group doesn't have the resources to make
the changes in the time frame required for the Fraud Investigation System
project. Welcome to the realities of distributed system design!

Figure 15-3. Server-side Assembly of Account Data

[View full size image]

This case study illustrates two of the major problems you will encounter in architecting
distributed systems. One of these is technical, and the other is organizational. The technical
problem is that the assignment of activities to system components affects the design of the
systems and the communications patterns between them. An inappropriate assignment of
activities can easily lead to a communication pattern that cannot possibly meet the
performance requirements. Therefore, the first thing you need to do in your design is to
consciously evaluate the assignment of activities and the resulting communications patterns
to determine whether this design can reasonably meet your performance goals. You want to
do this evaluation before you proceed any further with the design.

The organizational problem is that there is almost always more than one development
group involved in distributed systems. Unless all of these groups are active and willing
participants in the project, passive resistance in the form of unwillingness to make changes
will often distort the architecture. At best, the result will be less than optimal for the
enterprise. At worst, as the case study illustrated, it just won't do the job.

This problem gets even worse with services. Non-cooperative development groups can
adversely impact the specification of the service itself, and thus its usability. They can also
adversely impact the internal architecture of the service, resulting in a service that just
can't perform as needed.

Efficiently Exploring Architectures

There are many design issues that need to be considered when architecting distributed
systems. These include:

Defining the system components and services

Assigning activity responsibilities to components and services

Identifying the required interactions between the components and services

Determining the geographic location of services and components on the network

Determining the mechanisms by which components will communicate

Defining common data models where appropriate

Determining the need for data replication and the mechanisms for managing the
replicated data

Deciding how to coordinate the activities of components and services

Determining how error detection and handling will be done

Deciding whether high availability, fault tolerance, and load distribution are needed
and the mechanisms that will be used to provide them

Determining how security requirements will be addressed

Determining the need for business process and component/service monitoring and
the mechanisms that will be used

Determining how repeatable testing will be supported and how performance and
failure-mode testing will be conducted

Evaluating the architecture to determine its suitability

Sequencing Architecture Issues

The sheer number of architectural issues mandates that some order be brought to their
investigation. One of the challenges you face here is that the decisions you make with
respect to one issue may alter the decisions you make addressing another. You don't want
to end up in a situation in which you have to go back and revisit design decisions. Such
situations can be avoided by considering the sequence in which you address the issues. A
sequence that has worked well for architecting distributed information systems is the
following:

1. Top-Level Architectureâ!” identifying the major components and services,

assigning responsibility for individual activities, identifying the needed
communications between the components, and determining where the components
will live on the geographic network

2. Communicationsâ!” determining the mechanisms to be used for communication
transport and the need for adapters, identifying the required data representations
and the need for content transformation

3. Dataâ!” determining systems of record, how identifiers will be mapped, whether
common data models are needed, whether information will be replicated, how
replication will be managed, and where results will be validated

4. Coordinationâ!” determining how the execution of activities will be coordinated and
how coordination choices will impact business process breakdown detection,
determining whether and how processes will be monitored and managed, and
determining the coordination patterns to be used for the business process

5. High Availability, Fault Tolerance, and Load Distributionâ!” determining the
need for these capabilities and the mechanisms by which they will be carried out

6. Securityâ!” determining the need for authentication, authorization, encryption, and
audit logs, and assigning the responsibilities for these activities to components

7. Monitoringâ!” determining what needs to be monitored and how it will be
monitored both at the business-process and component level

8. Testingâ!” determining how the business process and system will be tested and
modifying the design to facilitate this testing

Field experience has shown that if these topics are addressed in this sequence, it is unlikely
that decisions made in earlier steps will have to be revisited when later issues are
considered. Thus security and monitoring are late in the sequence not because they are
unimportant, but because they are heavily impacted by decisions in the other areas.

Periodic Architecture Evaluation

Noticeably absent in the previous sequence is evaluation of the architecture. Evaluation
consists of determining whether the chosen architecture can perform adequately, can be
built within the cost and schedule guidelines, has adequate provisions for future growth and
change, and complies with standards and best practices.

Doing evaluation once requires performing the evaluation last. This placement can lead to
serious inefficiencies. If you spend time addressing all of these architectural issues only to
find through evaluation that you have made some bad design choices, you have wasted a
lot of effort on the bad design. To avoid this, you want to stop and evaluate your
architecture at key stages in the architecture development, as discussed in Chapter 5.

The first key evaluation point comes immediately after you have sketched out the high-level
architecture for the first business process. At this point you want to do a preliminary
performance evaluation. The major components are known, and their responsibilities and

patterns of interaction have been captured in the form of activity diagrams. If you combine
the understanding of these interaction patterns with an understanding of the peak rate at
which these interactions occur, you can determine how often each component needs to
perform its tasks. Adding an understanding of the deployment topology and the volume of
information exchanged in each interaction allows you to determine the volume of
communications traffic within and between locations. Given this understanding, you can
then assess the feasibility of components doing work at this rate, and make an initial
assessment of the class of machines and networks that will be required. After that you can
make a preliminary assessment of the feasibility of implementing the architecture within the
cost and schedule guidelines.

Once you have convinced yourself that this initial architecture is feasible, you can then
proceed to considering the remaining architectural issues and round out the architecture for
that business process. Since each of the architecture issues has at least the possibility of
adding new components, activities, and communications to the evolving systems
architecture, you need to repeat the performance analysis and cost assessment once you
have completed the architecture for the first business process.

From this point on, after each iterative round adding new business processes and refining
the architecture to accommodate them, you will want to once again evaluate the expected
performance and reassess anticipated costs and schedules. This periodic reevaluation will
give you an early indication as to whether you are moving in a direction that might not
provide a suitable architecture. This will drive you to consider alternate and more suitable
architectures while minimizing the level of effort required.

Summary

Distributed systems present design challenges not present in client-server and n-tier
application design. The responsibility for individual business process activities must be
assigned to specific systems, and the resulting interaction patterns must be evaluated. The
evaluation must consider both the logic of the functional organization and the performance
of the overall architecture.

There is additional functionality that must also be considered, functionality that is not
strictly a part of any individual business process activity. The coordination of activities, the
monitoring and management of the overall business process, and the transport and
transformation of information in motion from one system to another must all be considered.

There are many architectural issues that must be addressed, and the choices made with
respect to one issue frequently impact the choices for others. To avoid continual rework as
issues are addressed, it is prudent to sequence these issues so that decisions made
regarding early issues are unlikely to be altered by decisions made about later issues. The
sequence in which issues are presented in this book is that which is used for architecting
distributed information systems.

For efficiency, there is one issue that must, intentionally, be repeatedly addressed:
architecture evaluation. It is risky to postpone evaluation until the architecture is
completed. Should the evaluation indicate that the architecture is inadequate, you have
squandered much of your effort. To make the overall architecture effort more efficient, you
should perform an evaluation early in the development cycle that is focused on the most
challenging business process and just the basic high-level architecture. Only with a
favorable evaluation will you then invest time in addressing other architectural issues.
Evaluations should be repeated periodically as the architecture evolves to ensure that the
architecture remains viable.

Key Systems Architecture Overview Questions

1. Is your systems architecture work structured so that decisions regarding
one architectural issue are unlikely to require altering previous decisions
regarding other architectural issues?

2. Does your architecture approach explicitly determine the placement of
responsibility for business process activities assigned to the systems?

3. Does your architecture approach explicitly determine the placement of
responsibility for supporting functionality? Does this encompass business
process monitoring, management, and reporting? Does it encompass
transaction management as well as the transport and transformation of
information between systems?

4. Does your architecture approach periodically evaluate the evolving
architecture, and address both the performance feasibility and the cost and
schedule feasibility of the architecture?

Chapter 16. Top-Level Systems Architecture
The first step in determining an architecture is to define the major system participants in
each business process being considered. Some of these system participants may have
already been identified as part of the business process definition since their participation is
mandated. Their presence and the role they will play have already been established. The
remainder of the functionality to be provided by systems was intentionally assigned to a
single swimlane representing the systems as a whole. Your task at this point is to
determine which components should be involved and what role each will play.

First-Cut Structure

Defining a component structure is a creative activity and inherently a trial-and-error
process. You propose a set of components, assign responsibility for activities, determine the
required communications between the components, and then evaluate the result. For
example, in the Withdraw Cash via ATM Machine business process, the teller
functionality was assigned to a yet-to-be-defined ATM System. One possible architecture
for this system (but not the only one) is to have a number of ATMs at various locations and
a centralized ATM server acting as an intermediary between the ATMs and the bank
systems.

The participants in the business process would then consist of the Person (the customer),
an ATM Machine, an ATM Server, and the Bank System (Figure 16-1).

Figure 16-1. Top-Level Architecture for Withdraw Cash from ATM Machine

Note that the ATM System is shown to be an aggregation of an ATM Server and a number
of ATM Machines. By doing this, you are making a clear statement about the relationship
between the ATM System, which played the teller role in the business process diagrams,
and this more detailed decomposition of the system participants. Clearly documenting this

relationship is important for follow-on projects. Without it, future projects will not know
which components are involved in a given business process, nor will they know which
business processes could be potentially impacted by changing specific components.

Simply identifying the system components is not very interesting. It tells you nothing about
what each component is doingâ!”or why they even exist. You must define how the
components participate in the business process. You do this by extending the activity
diagram of the Withdraw Cash via ATM scenario to indicate what each component is
doing in the process (Figure 16-2). The teller swimlane in the business process is
relabeled with the more specific ATM System, whose decomposition into its constituent ATM
Machine and ATM Server components is indicated with nested swimlanes. Note that this
diagram accomplishes several things. It indicates the activity responsibilities of each
participant, identifies all required communications, and identifies the types of
communications (more on this shortly). What this diagram documents is how the system
components collaborate with the other participants to bring the business process to life.
Remember, that's the purpose of the architecture. Thus, it makes sense to explore this
collaboration even when the architecture is in its formative stages.

Figure 16-2. Withdraw Cash Showing Top-Level Architecture Participants

[View full size image]

Chapter 16. Top-Level Systems Architecture
The first step in determining an architecture is to define the major system participants in
each business process being considered. Some of these system participants may have
already been identified as part of the business process definition since their participation is
mandated. Their presence and the role they will play have already been established. The
remainder of the functionality to be provided by systems was intentionally assigned to a
single swimlane representing the systems as a whole. Your task at this point is to
determine which components should be involved and what role each will play.

First-Cut Structure

Defining a component structure is a creative activity and inherently a trial-and-error
process. You propose a set of components, assign responsibility for activities, determine the
required communications between the components, and then evaluate the result. For
example, in the Withdraw Cash via ATM Machine business process, the teller
functionality was assigned to a yet-to-be-defined ATM System. One possible architecture
for this system (but not the only one) is to have a number of ATMs at various locations and
a centralized ATM server acting as an intermediary between the ATMs and the bank
systems.

The participants in the business process would then consist of the Person (the customer),
an ATM Machine, an ATM Server, and the Bank System (Figure 16-1).

Figure 16-1. Top-Level Architecture for Withdraw Cash from ATM Machine

Note that the ATM System is shown to be an aggregation of an ATM Server and a number
of ATM Machines. By doing this, you are making a clear statement about the relationship
between the ATM System, which played the teller role in the business process diagrams,
and this more detailed decomposition of the system participants. Clearly documenting this

relationship is important for follow-on projects. Without it, future projects will not know
which components are involved in a given business process, nor will they know which
business processes could be potentially impacted by changing specific components.

Simply identifying the system components is not very interesting. It tells you nothing about
what each component is doingâ!”or why they even exist. You must define how the
components participate in the business process. You do this by extending the activity
diagram of the Withdraw Cash via ATM scenario to indicate what each component is
doing in the process (Figure 16-2). The teller swimlane in the business process is
relabeled with the more specific ATM System, whose decomposition into its constituent ATM
Machine and ATM Server components is indicated with nested swimlanes. Note that this
diagram accomplishes several things. It indicates the activity responsibilities of each
participant, identifies all required communications, and identifies the types of
communications (more on this shortly). What this diagram documents is how the system
components collaborate with the other participants to bring the business process to life.
Remember, that's the purpose of the architecture. Thus, it makes sense to explore this
collaboration even when the architecture is in its formative stages.

Figure 16-2. Withdraw Cash Showing Top-Level Architecture Participants

[View full size image]

Initial Evaluation

Once you have sketched this collaboration, the next question in your mind ought to be, "Is
this a good architecture for the solution?" This may not be a simple question to answer, yet
it is the most important question about an architecture. If you get the architecture wrong,
no amount of effort will salvage the project. On the other hand, if you get it right, you are
setting the stage with a flexible and robust architecture that will support the needs of the
enterprise long into the future.

So how do you go about answering this question? You break it down into four smaller
questions:

1. Can the proposed architecture deliver the expected performance?

2. Can the proposed architecture be built within the cost and schedule
guidelines?

3. Is the proposed architecture sufficiently adaptable to evolutionary changes
such as the organic growth of the business?

4. Is the proposed architecture sufficiently adaptable to stressful changes such
as mergers and acquisitions or the introduction of new technology?

The first two questions provide simple yes/no answers. If the system cannot perform
adequately or cannot be built within the cost and schedule guidelines, there is no point in
proceeding further with the architecture. The third and fourth questions are less crisp. To
answer them you must consider various types of changes that might occur and then
determine what their impact would be on the architecture. For each type of change you
consider what architectural alterations would be required and what the corresponding costs
would be. You then determine whether those alterations and costs would be acceptable at
some point in the future, or whether architectural alterations should be made now to lessen
this future impact. In contrast to the first two questions, the third and fourth questions
require judgment calls, weighing future risks (costs and schedules) against the likelihood of
the situation actually arising or the cost of present-day architectural alterations to lessen
the future impact. If the risks are judged unacceptable, then you will modify the
architecture now to lower those future risks.

While we will not discuss the formal techniques for answering these questions until Chapter
39, it is worth pausing to consider some of the questions you expect that architecture
evaluation to answer. One question is, "What class of hardware will be required to
implement each component?" To answer this question you need to understand what each
component needs to do and how often it needs to do it. Unless you are trying to do
something very difficult from a performance perspective, this usually boils down to a cost
question: Does the class of machine required fit within the cost and schedule guidelines for
the project?

Another question you expect the evaluation to answer is "What network bandwidth will be
required?" Again, unless you are asking the impossible in terms of performance, this usually
boils down to a cost question, particularly with respect to wide-area-network (WAN)
bandwidth. WAN connections are typically leased and represent an ongoing expense during
the lifetime of the system. Once again, you are seeking to understand whether these costs
fit within the guidelines for the project.

While there are formal approaches to answering these questions, there is an informal
question you can ask that generally weeds out bad architectures without going through the
formalities: Is the overall pattern of activities and communications simple and easy to
understand? Generally, the simpler the interaction pattern, the easier it will be to
implement, monitor, and manage the business process and system. Complex patterns
usually translate into higher costs.

Communications and Modularization

One of the things you are trying to decide as you formulate the top-level architecture of
your solution is how you want to modularize the design. Modularization allows you to divide
functionality into smaller units that are easier to manage. The basic unit of modularization
in distributed systems is the operating system processâ!”the running program in a
computer. When you separate functionality into different operating system processes, the
resulting processes need to communicate with each other. As an architect, you need to
factor this communication into your thinking. In particular, you need to consider the
performance overhead in terms of both latency and bandwidth.

Communications Latency

Communications latency is the time messages spend in transit between sender and recipient
processes (Figure 16-3). For distributed systems in general and service-oriented
architectures in particular, latency becomes a factor when the provider of functionality
resides in a different operating system process than the user of the functionality. In such
situations, you must weigh the time it takes to perform the actual work (T2) against the
time it takes to communicate between operating system processes (T1 + T3). If the work
to be performed only requires a few microseconds and the inter-process communications
delays require milliseconds, it does not make a lot of sense to place that functionality in a
separate process. You don't, for example, place addition in a separate process even though
it is a commonly used element of functionality. The communications overhead would be
prohibitive.

Figure 16-3. Communications Overhead in Process-Based Modularization

The consideration of latency leads to a rule of thumb for modularizing functionality into
separate processes: At a minimum, the time required to perform the work should be at
least as great as the time it takes to communicate between the processes. Preferably the
work time will exceed the communications latency by a significant marginâ!”an order of
magnitude or more. Anything less and the execution of a business process requiring many
such interactions will be noticeably slowed by the latency. In other words, the act of
modularizing the functionality is going to degrade systems performance.

Communications Bandwidth

Communicating between operating system processes requires resources. When these

processes are executing on different machines, the resource required is communications
bandwidth. The information required to perform a modularized function must come either
directly from the requesting process or indirectly from some other process, a database, or
some other persistent data store. Either way, communications bandwidth is required to
move this information.

Bandwidth may not appear to be a significant issue when you are just considering the
modularization of a single function. However, if that functionality is, in turn, broken down
into a number of modules, the cumulative effect can be significant. Modern communications
technology has actually made the problem worse by making it easy (from a development
perspective) for one module to communicate with another. It is now so easy to separate
functionality into communicating processes that this capability is often overused. The
resulting communication demand can easily increase network bandwidth requirements by an
order of magnitude or more.

Data Marshalling

The form in which data is moved between components is rarely the form being used
internally by components. In such cases, the internal data representations need to be
transformed into a representation that can be communicated (a process known as
marshalling the data), and the receiving component needs to perform a corresponding
transformation into its required internal representation. The work involved in these
transformations adds overhead to the communications and requires computational
resources, particularly for large data structures and when encryption is involved.

Geographic Distribution

Communications latency and bandwidth become serious issues when the functionality is
geographically distributed. Long-distance communications introduces increasing latency as
messages are passed from node to node in the network. In addition, the cost of these long-
distance connections is usually proportional to the bandwidth required. Unlike local
communications costs, which tend to be dominated by the investment in network hardware,
long distance communications costs tend to be ongoing monthly expenses. Thus your
modularization decisions can significantly impact both near-term capital investments and
ongoing operational costs.

Consider Other Modularization Approaches

Finally, you should remember that partitioning functionality into another process is not the
only modularization option open to you. You can factor common functionality into code
libraries (or similar design artifacts) that can then be incorporated into the components
wishing to use the functionality. While this is often an internal design issue within a
component, as an architect you need to keep an eye open for functionality that may be
more appropriately shared in this manner.

Service Identification and Performance

At this point in the development of your architecture you should once again pause to
identify potential services. Similar operations identified in different business processes (or
used more than one place within the same business process) should be considered a
candidate for a service. Operations requiring coordination, such as the various operations on
a common data structure, are also good candidates for services. Note that this, too, is
sharing: The rules regarding the coordination of the operations are being shared.

Before you consider creating a service, you must first ask one question: Does it even make
sense to partition the proposed functionality into a separate operating system process?
Based on consideration of both communications latency and network bandwidth, is this
partitioning warranted? Only if the answer is yes does it make sense to pursue the service
approach. If the answer is no, but the functionality still needs to be shared, other avenues
of sharing, such as shared code libraries, should be considered.

Modeling System Interactions

As with modeling business processes, the UML activity notation once again provides a
powerful mechanism for showing how the top-level architectural components participate in
the business process. You saw an example of this in Figure 16-2. The notation makes it
easy to show the activities of each system component and the required interactions
between them, along with some detail about the artifacts conveyed in the interactions.

A significant difference between the use of activity notation here and the way business
processes were represented is that shortcuts are not being used to represent the
interactions between the system participants (Figure 16-4). Instead, each interaction is
represented as an object (typically a message, database record, or file). The type of that
artifact is indicated, represented as the name of a UML class. The association of this type
with the artifact is indicated by following the artifact name with a colon and the type name.
This association indicates that the artifact is an instance of the typeâ!”a relationship known
as instantiation in UML.

Figure 16-4. Representation of a Communications Artifact and its Associated Type

The type, at this point, has no definition other than a name. You should begin sketching the
type now using the UML class notation. Identifying key attributes (including identifiers) will
stimulate you to think about the information needed to support the business process and
the origins of that information. It is good practice to create a diagram containing all of the
data structures used in each business process or collection of related business processes
(Figure 16-5). You don't need to detail the entire data structureâ!”at least not yet. In fact,
you want to avoid getting bogged down in such details because the architecture is still
tentative, and the interaction artifacts will come and go as you rearrange the component
structure and activity assignments. You don't want to make the investment in details until
you are confident that you are headed in the right direction with the architecture.

Figure 16-5. Withdraw Cash Communications Data Structures

While the full set of details may not be of interest this time, there are some details that you
must capture even at this early stage. Any identifiers used in the business process, such as
the identity of the bank account, must be known. Identifiers are important because you
need to know where they come from and what component (and what business process) is
responsible for managing them. Other important details are data elements explicitly used by
the business process, such as the amount being withdrawn from the bank account. Any
essential piece of information, particularly information being used to support decision
making, should be identified in your model. Note, however, that you only need to identify
the informationâ!”you don't need to detail its representation.

Let's look at another example. Consider the sales order process in a catalog retailer. The
sales order management process obviously must involve sales orders, the individual line
items in the order, and the catalog item being ordered on each line (Figure 16-6). Catalog
orders involve a shipping address and billing information, but at this point you do not
necessarily need the details of how addresses and billing information are represented.
Orders must also be related to shipments, which require their own information.

Figure 16-6. Partial Catalog Order Domain Model

If your proposed system design involves an Order Management System, a Fulfillment
System, and a Warehouse Management System, these systems must obviously
communicate information about orders and shipments related back to the sales orders
(Figure 16-7).

Figure 16-7. Fragment of Catalog Sales Process

[View full size image]

In defining this architecture, you need to identify the collection of information that is being
exchanged in each interaction. Again, you don't want to worry about the details, but you do
need to consider the source of the information. A first-cut model identifies the subset of the
domain information that is exchanged in each of the interactions (Figure 16-8).

Figure 16-8. First-Cut Model of Information Exchanged in the Catalog Sales
Process

Defining the information content of these interactions raises a question: Where did the
Product information come from? Somehow the catalog items in the order must be mapped
to the products that are actually shipped. Since the Order Fulfillment System receives
catalog item information and sends product information, it must map one into the other
(Figure 16-9). But how does it do this? Mapping requires that the items being mapped have
identifiers and requires a map between those identifiers. The Order Management System
identifies catalog items with a catalogItemID, while the Warehouse Management
System uses Stock Control Unit (SKU) codes to identify products. The Order
Fulfillment System uses a cross reference to map the catalogItemID to the SKU.
Note that the cross reference is a result of some related process that must now be brought
into scope for the project.

Figure 16-9. Refined Fragment of Catalog Sales Process

[View full size image]

Other identifiers may be required by the business process as well. For example, while
exploring the handling of returns you are likely to discover a need for a reference to the
order in the shipping paperwork. Since this paperwork is generated by the Warehouse
Management System, the Shipment Request Message must contain such a reference.
This is easily accommodated by adding an orderID to the Catalog Order and having the
Order Fulfillment System pass this information on in the Shipment Request
Message.

As a result of these considerations, you need to add the identifiers to the information being
exchanged between the participants (Figure 16-10). The Catalog Order, Catalog Item,
and Product all now require identifiers. Furthermore, you have to determine what
information is required in the cross-reference data structure, which business process will
maintain it, and how the Order Fulfillment System will gain access to it.

Figure 16-10. Refined Data Structures for Order Processing Scenario

[View full size image]

The maintenance of cross-reference information can have a significant impact on the design
of both the business processes and the systems that support them. You need to determine
when (at which point in which business processes) the cross-reference entries are created,
and by which participant. You need to determine which participant is responsible for storing
reference information and how participants that require the information will access it. In
addition, you need to evaluate your decisions from a performance perspective. It is not
enough to know that the cross-reference information exists. If the component requiring the
information cannot access it efficiently, it may not be able to meet the performance
requirements of the business process. Chapter 16 examines the design patterns for
accessing reference information. For now, you just need to recognize that decisions
regarding reference information can potentially impact many business processes and
participants, and therefore need to be carefully considered in the architecture.

Modeling Deployment

Once you have established that one component needs to communicate with another over a
network, you must begin to consider where on the distributed network the participants will
reside. Just as it is easier for you to interact with a colleague sitting at a desk next to yours
than one in another room, state, country, or continent, it is easier for one system to
communicate with another at the same physical site than with one located at another site.
The reliability and availability characteristics of the network within a site also tend to differ
from the reliability and availability of the network connections between sites. An
understanding of the network topology that must be traversed by communications will give
you an understanding of the reliability of those communications.

What you need to consider at this point is the geographic location of each component.
Assume for the moment that the full bandwidth of a local area network is available for
communications between components within each geographic location. As a result, you
treat each geographic location as if it were a single local area network (LAN) (Figure 16-
11). Communications between geographic locations then needs to traverse a wide-area
network (WAN). What you want to do is propose a coarse topology of LAN and WAN
connections, locate your top-level components on the topology, and evaluate the demand
this will place on the various network elements.

Figure 16-11. Deployment Metamodel

The motivation for this exercise is simple. Bandwidth over a wide-area network between
physical sites is more expensive than bandwidth within a physical site. You want to
understand how different deployment alternatives will impact bandwidth demands, and thus
relative cost. At this stage of your design, the analysis will be simple. You simply want to
know if the bandwidth requirements are reasonable. Have you overloaded a LAN by trying
to move information at a rate greater than the readily available network can handle? Are
you moving information across the WAN at a rate that will push you into a more expensive
communications technology? What kind of WAN connections (in terms of bandwidth) are
available in the locations you are considering? Satellite links? Dial-up phone lines? DSL or
cable modem connections? Trunk lines? How sensitive is your solution to the costs of these
connections?

The initial modeling of deployment is often crudeâ!”intentionally so. In the interests of

efficiency, you want to do a simple analysis to determine whether a more detailed portrayal
is warranted. So, for example, you might model the deployment of the ATM system as
shown in Figure 16-12. Here every ATM in the system is located on a single LAN, and every
bank server is located on another LAN. Obviously, this is not realistic! However, if this
simplified model shows that there are no issues with LAN loading or, more importantly, WAN
loading, a more detailed deployment model is not required to determine the viability of the
proposed architecture. This is an important approach to efficiently designing an
architecture: Do a simple analysis to determine whether a more extensive (and therefore
more costly and time consuming) analysis is warranted.

Figure 16-12. ATM Example: Oversimplified Deployment

[View full size image]

Let us pause for a moment to examine the UML implementation notation being used. The
box-like elements in the diagram are called nodes. In this deployment modeling, nodes are
being used to represent three different types of infrastructure elements: machines, LANs,
and WANs. Each of these has been defined as a type of node. A solid line between two
nodes represents a communications path between those nodes.

While the solution infrastructure is represented with nodes, the logical components of the
design are represented with UML classes.[1] These classes are the logical components of the
top-level architecture defined previously (Figure 16-1). In the deployment diagram,
instances of those logical components are represented with UML instance specifications.
Links (lines) between the instance specifications and nodes represent hosting relationships.
It is permissible to have more than one instance of a component type, indicated either with
multiple-instance specification icons in the diagram or, as in the example, an explicit
instance multiplicity. This example shows many ATMs and many Bank Servers.

[1] UML components are not used as they represent "physical replaceable parts," and the intent here is
to represent logical components. The physical structure of these logical components will be defined later
in the architectural process.

There is one bit of nonstandard UML that is being used here that warrants some

explanation. The Instance Specification of UML 2.0 does not make provisions for
indicating the number of instances. However, UML does allow for the definition of user-
defined stereotypes. Stereotypes can have properties and can be applied to other UML
constructs. Through this mechanism, properties can be added to UML constructs. In this
case, a Deployed Instance stereotype has been created with an instance
multiplicity property (Figure 16-13). As the stereotype indicates, it can be applied to
any Deployed Artifact, which includes the subclasses Instance Specification and
Artifact. This stereotype has been applied to the instance specifications shown in Figure
16-12, allowing the multiplicity of the individual instances to be specified.

Figure 16-13. Deployed Instance Stereotype Specification

While software components must eventually be hosted on machines, it is quite likely at this
point in your design that you haven't yet figured out what machines will be needed and
where each component will be hosted. To allow flexibility in modeling component
deployment and communications early in the architecture development, the metamodel
used here allows component instances to be deployed either on a Machine or on a LAN.
This model is rich enough to evaluate the communications load on the LANs and WANs.
Then, as your design progresses and you make deployment decisions, you update the
deployment model to indicate the machines and the component instances that will be
deployed on each machine. You may even begin to refine the network topology by showing
interconnected LANs within a physical site, particularly when firewalls are involved.

When you are modeling deployment, it is important to keep in mind the purpose of the
exercise: You are simply trying to determine whether the communications bandwidth
requirements are reasonable. To do this, your network model does not have to be very
sophisticated. Keep it simple for the architecture phase. In general, don't partition the local
LAN until bandwidth demands indicate that you will actually need to divide the traffic. Of
course, if there are major partitions of the physical network that already exist, there is no
harm in modeling them, but the intent of the model at this point is to identify potential
problems, not define the detailed deployment of the system.

Addressing Performance

Once you have sketched how the major architectural components will functionally support
the business process, you need to assess the feasibility of meeting throughput and
response time requirements. The ATM example stipulated a 30-second response time for
the transaction to complete, and Figure 11-1 identified the events that mark the start and
finish of that interval. Now it is time to determine the performance requirements that each
individual component must meet to achieve the overall performance goal.

When you have overall process-level performance requirements, you must derive the
requirements for the individual components. When you have an expected peak rate of
activity for the overall process, you need to determine the implied peak rate of activity of
each component. When you have a response time requirement, you need to budget that
time, determining how much will be spent in each participating componentâ!”that is, a
response time requirement. Keep in mind that those response times must be met while the
components are experiencing the peak rates!

Peak Loads

The techniques for determining peak rates and evaluating the feasibility of meeting those
load requirements will be discussed in Chapter 39. What those techniques will give you is a
means of transforming the peak rate for the overall business process into the corresponding
peak rates that will be experienced by each of the individual components. It will also provide
some guidelines for determining the horsepower that will be required to execute the work at
those rates.

Response Times

In addition to evaluating peak rates, you need to determine the response time budgets for
each component as well. When you are establishing these response time budgets, you need
to consider that communications delays will contribute to the overall response time. Not
only do the individual participants take time to do their work, but communications takes
time as well. You need to take this into account when you establish the response time
budgets for each component, and you need to take care that the specification for each
component is unambiguous. What exactly do you mean when you say that the response
time budget for a component is 5 seconds?

The need for clarity around this specification becomes apparent when you look at a
component in the middle of a chain of activity as shown in Figure 16-14. What does it mean
when you specify a 5-second response time for component B? Are you talking about T1, the
total amount of time that elapses between the time B receives a request and the time it
provides the reply? Or are you only talking about T3 + T4, the time that B actually spends
doing work (note that this is the same as T1â!“ T2)? You need to be clear what you mean
when you specify response times.

Figure 16-14. Measuring Response Time

[View full size image]

You also have to recognize that the response time specified for B will not be the same as
the delay seen by component A, for there are communications delays between the two
components. T1 is the minimum amount of time that A might have to wait, but you can
expect that T5 will in fact be greater than T1. Consider the ATM example. If A is the ATM
Machine, B is the ATM Server, and C is the Bank System, how long does it take the
ATM machine to get disbursement approval from the bank? The wait will be longer than the
time it takes the ATM server to get the approval, particularly considering that most ATM
machines (at least at the time of this writing) use dial-up phone service to access their
networks. It takes a few seconds to place the call and establish communications before the
request can actually be submitted. You need to budget for these delays when you determine
how you are going to meet response time requirements.

When you have response time requirements, you should record the response time budget
decisions for each component and each communication. For the components you are going
to build or modify, these budgets become requirements for the components. For
components that already exist, these budgets become assumptions about those
components, assumptions whose accuracy needs to be verified with the system owners. You
also need to record the budgets for communications delays and verify these with the
communications infrastructure providers. Table 16-1 shows an example time budget for the
Withdraw Cash from ATM scenario.

Table 16-1. Response Time Budget Summary

Business
Process

Required
Total
Response
Time
(Seconds) ATM

Machine-Server
Communications

ATM
Server

ATM Server -
Bank Server
Communications

Bank
Server

Withdraw
Cash via
ATM

30 5 10 3 1 5

The ATM example has a relatively straightforward process structure for which it is relatively
simple to assign response time budgets. When the pattern of component interactions
becomes complex, particularly when there is branching logic that alters the communications
pattern, it may require some thought and effort to determine what the response time

budgets need to be.

When complicated situations arise, it's tempting to conclude that it is just too complicated
to figure outâ!”it's not worth the effort. Resist this temptation! What you are really saying
is that you'll figure it out after you have built and deployed the system. A production
environment is not exactly the best place to discover that your architecture is infeasible, nor
is it the best place to finally determine what the individual component and communications
time budgets need to be to meet overall process response time requirements. Do your
homework now. Make sure each component and service provider knows exactly what their
component needs to be doing.

Response Time Test Specifications

If a response time is important, it is not enough to simply specify what the response time
ought to be. You need to measure the actual response time before you will know whether
you have achieved the goal. These tests warrant consideration at this point in the design
process because response time measurements require some design work. Each
measurement requires capturing time stamps to mark the beginning and end of the time
intervals. These time stamps need to be correlated, and the time difference calculated. This
is not necessarily a big deal, but it is often awkward and expensive to retrofit these
capabilities into an existing design.

Because response time measurement requires design work, you need to specify the needed
measurements early in the design process. You should also give some thought to when
these measurements will be madeâ!”in testing, in production, or in both. You should also
consider what your next steps might be if a response time measurement turns out to be out
of specification. You might need to make additional measurements on other components to
determine which component is really at fault. And, once again, you need to consider
whether these additional measurements will be made in test or in production.

For now your task is just to define the measurements that need to be made and when they
need to be made. The mechanics of making these measurements are covered in Chapter
38, which considers various choices about which components will be responsible for the
capture, correlation, computation, and recording of the information. The performance
impact of making these measurements will also be considered; you need to make sure that
the measurement itself does not distort the data.

Early Architecture Evaluation

At this point in the architecture development you have arrived at a high-level understanding
of the pattern of communications that will be required to execute the business process. This
gives you enough information to perform an initial evaluation of the architecture.

The first question you want to consider is whether the communications pattern looks
reasonable. Is it overly complex? Back in Figure 15-2 you saw an example of one
component communicating with another many times to assemble some data, and in Figure
15-3 you saw an alternative design in which there was a single exchange between the same
two participants. The latter approach is the simpler of the two, and in general the simpler
the design the better. Simple designs are easier to understand. Fewer communications
require less design work and less run-time activity. Simpler systems are easier to monitor
and diagnoseâ!”and there are fewer things that can go wrong with them! So you want to
look for simpler design alternatives. If you have complexity, you want to make sure that
you have a justifiable reason for the complexity.

If the complexity of the communications pattern looks reasonable, you then want to
estimate the network and component loading using the techniques of Chapter 39, and ask
whether the loading looks reasonable. From a component perspective, you want to
understand the machine resources that will be required for each component to handle the
peak rate of incoming communications and perform the work that it needs to do. You want
to determine whether that level of resource is reasonable given the project's cost
constraints. At this point you may even perform some feasibility experiments to determine
whether or not it is even practical to do things at the rates you are contemplating and
achieve response time goals.

From the network perspective, you want to determine the volume of communications that
will occur over each network segment, again using the techniques of Chapter 39. You need
to determine the network resources that will be required to make that volume possible and
determine whether those resources are available. If they are not, you need to determine
whether the costs of upgrades fall within the project cost constraints.

Finally, you need to consider whether you can actually implement the proposed architecture
within the project's cost and schedule guidelines. At this point, you have an inventory of
both components and communications data structures, and you have at least a cursory
understanding of the complexity of each. From this, you can make an initial estimate (using
conventional estimation techniques) of the level of effort required to implement the design.
The key question, of course, is whether that estimate lies within the project cost and
schedule guidelines. You need to remember, particularly in the early iterations, that you are
only looking at a partial design, and you have yet to consider many design issues that will
add components and complexity. Considering this, for a feasible project you would expect
your initial estimate to be well within the project guidelines. If you are anywhere near the
limits on this first pass, you have a problem!

Early architecture evaluation helps you determine whether you are headed in the right
direction. If you like the evaluation results, then you can proceed with the consideration of
other design issues. If you do not like the evaluation results, you should consider whether

there are alternative architectures or possibly alternative business process designs that
would lead to a better result.

If you don't like the evaluation results and there do not appear to be any viable
alternatives, then you have reached a difficult conclusion: You can't solve the problem
within the given cost and schedule constraints. In other words, the project is not feasible
within the limits set forth in the project's charter.

When you conclude that a project is infeasible, there is little purpose in proceeding further
without a reevaluation of the project. The best course of action at this point is to estimate
what it will actually take to solve the problem and then gather the project manager and
executive sponsors together and share the bad news. Ideally, it should be the business
executive sponsor's decision as to what to do nextâ!”politics permitting, of course. If you
end up in the unfortunate position of continuing with the project under the original cost and
schedule constraints, it's time to consult Ed Yourdon's Death March.[2] You've got a
problem!

[2] Edward Yourdon. 2004. Death March, Second Edition, Upper Saddle River, NJ: Prentice Hall.

Key Top-Level SystemsArchitecture Questions

1. Have all top-level architecture components been identified?

2. Do the top-level architecture components play clearly identifiable roles in
each of the business processes?

3. Have the functional responsibilities been assigned to the top-level
architecture components?

4. Have all the required communications between components and their
associated data structures been identified?

5. Have reference information and other activity inputs that originate in other
business processes been identified? Have their source business processes
been identified and added to the business process inventory?

6. Has the deployment of the architecture been modeled?

7. Has the required level of machine resources been determined for each
component? Does that level of resource fit within the project cost and
schedule guidelines?

8. Has the required level of network resources been determined? Is that level
of resource available within the project cost and schedule guidelines?

9. Have potential business services (or the usage of existing business services)
been identified?

10. Have the throughput requirements been established for each component in
each major scenario?

11. Has a response-time budget been established for each component in each
major scenario? Does it account for communications delays?

12. Have the required response time measurements been defined that are
needed to demonstrate that the response time requirements are actually
being satisfied? Have diagnostic measurements been defined that are
needed to identify the offending component when response time
requirements are not being satisfied?

Suggested Reading

Edward Yourdon. 2004. Death March, Second Edition. Upper Saddle River, NJ: Prentice Hall.

Part IV: Communications

Chapter 17. Transport
At this point in developing your architecture you have explored the business processes,
proposed the high-level system architecture components, and identified all participant
interactions that are required. Now it is time to turn your attention to the mechanics of the
interactions. You need to determine all of the transports that will be required for
communications, from carrier pigeon to high-speed data networks. You need to determine
the physical nature of all content, from paper to electronic data structures. You need to
determine the form that the content will take, from the spoken word to an XML
representation of a purchase order. And you need to determine the event that the arrival of
the content represents, whether it is the announcement of a previous result, a request for
something to be done, or a response to such a request. All of these considerations fall
under the broad brush of communications.

To be more precise, you need to consider the technology being used for the transport and
the content representation. The transport technology establishes the mechanism by which
the communications content will be delivered. This content could be sent as a JMS message,
an HTTP communication, an e-mail, a fax, inter-office mail, or a courier service. But each
transport is only capable of delivering certain types of content.

The selection of a transport technology constrains the content technology: You can't send
physical paper over the phone. But specifying the transport technology does not completely
define the content technology. IP networks support electronic content as streams of bytes,
but the content technology defines how those bytes are organized. IP-compatible content
technologies include various image representation schemes such as JPEG, structured (XML
representations) and unstructured (ASCII text) data representation schemes. Service
technologies have introduced even more highly structured representations such as SOAP. In
contrast, the audio signal transport of an analog phone connection supports content
technologies such as raw audio data, the encoded image of a fax, or the encoded data from
a modem.

Transport Technology

Defining the transport starts with the consideration of the physical aspects of
communications. You are addressing, in a physical sense, just how the content of the
communications will be transported from one party to the other. If you want a reliable
business process, you need to be thorough in the exploration of all transports involved in
the process, even the interactions between people. A failure in a human-to-human
interaction will hurt the business process just as surely as any technical failure in the
systems. Consequently, from the architecture perspective you need to examine all
transports involved.

Your interest in transport encompasses two tasks: selection and evaluation. Some of the
selection may have already been done as part of the business process design. For example,
the business process may call for the customer to phone the customer service
representative. In other cases, specifically in system-to-system interactions, it is your task
to select the transport mechanism. In any case, for every interaction you need to ensure
that the transport mechanism has been clearly identified.

The second task you have is to evaluate the suitability of the selected transport from the
perspectives of functional capability, capacity, reliability, and cost. Is the transport
mechanism appropriate for the task? You are probably not going to move terabytes of data
over a dial-up phone line. Does it promote effective information transfer? You are probably
not going to verbally convey a graphic design for a magazine cover over the phone. Is it
sufficiently reliable? You are probably not going to use the postal service to transport large
sums of cash. Is it sufficiently auditable, that is, does it provide a record of interactions and
their content? Is it scalable, both in terms of capacity and cost? For each interaction in the
business process you need to decide which questions are relevant and then answer them.

Pragmatically, an exhaustive analysis of all transport options and all of the possible design
considerations associated with each is not only impractical but would also be boring. To
keep it practical, the following sections focus on two things: the key questions that you
should be asking yourself as you make these choices and the techniques you can use for
capturing the design decisions. Along the way, some techniques will be provided for
answering some of the common questions, particularly those related to performance
feasibility and capacity planning. But your primary focus is on ensuring that you have
thought through the mechanics related to all communications and specified a clear and
unambiguous design pattern for each interaction to follow.

Person-to-Person Interactions

The transports available for person-to-person interaction are quite varied. This should not
be surprising, as people have been inventing new means of interacting with each other for
some time now. Phone, intercom, radio, instant messaging, e-mail, fax, inter-office memo,
and letter are but a few examples of transports used for human interaction. Even air, the
transport for direct conversation, needs to be considered in some contexts. While you may
normally think nothing of this, the absence of air in the vacuum of space makes even the
availability of this common transport an issue for astronauts.

Although you may not spend a lot of time on the human-to-human communication aspects
of your process design, you at least need to understand what is being communicated, the
medium that is being used, and the appropriateness of the medium for that particular type
of information. This is particularly important when you are modeling an existing process that
will be partially or completely automated. What is actually communicated, and the
mechanisms used to do it, are often known only to the participants in the process. If you
are to automate these activities, you must first understand them.

Scalability of the person-to-person transport is of particular concern when there is a large
workforce involved. Techniques that work well with a small team may break down badly as
the number of people increases. Unstructured face-to-face interactions may be fine for a
small team, but hundreds of people communicating with each other by simply yelling across
the room might not be such a good idea. On the other hand, the near-chaos of an equities

trading floor demonstrates just how much communication is possible in such a chaotic
environment! When all is said and done, you need to make sure that these human-to-
human interactions are appropriately organized. You also need to determine what
supporting technology is required and ensure that if it is not already available, its
provisioning is included within the scope of the project.

Human-to-System Transport

When people need to interact with systems, there are many vehicles available. Some are
fundamentally designed as human interfaces: generic web browsers, dedicated application
interfaces (fat clients), and custom hardware devices such as ATMs and hand-held devices
are common examples. Increasingly, however, media that were originally intended for
person-to-person interactions are being adapted to become system interfaces. The
telephone (via voice response systems), e-mail, and faxes have all been adapted in this
manner, and this is an area in which there is constant innovation. Cellular phones in
particular, with integrated text messaging, text paging, touch screens, audible alerts, and
web browser capabilities, are rapidly evolving into personal portable system terminals.

When you look at human-to-system interactions, you need to evaluate the choice of
medium from the perspectives of both human usability and technical feasibility. The
complexity of the technical design work and anticipated performance challenges must be
evaluated along with the cost of acquiring and using the technology. The bottom line is that
you need to determine whether the approach is practical within the cost and schedule
guidelines of the project.

System-to-System Transport

When it comes to system-to-system interactions, at least within a physical site, physical IP
networks are generally the medium of choice,[1] but there are many other options that
might also come into play. Terminals and peripheral devices may use serial interfaces such
as RS-232, USB, or IEEE 1394 (firewire). They may use parallel interfaces such as the
Centronix parallel printer or IEEE 488 interfaces. When distances increase, various types of
voice and digital switched wide-area networks and satellite links may come into play.

[1] Strictly speaking, an IP network is not a medium but rather a low-level communications protocol that
can itself be provided over lower-level protocols and media. However, the availability of IP fabric has
become so ubiquitous that at the application level it is not inappropriate to view it as a medium, at least
within a physical site.

Wide-area and satellite connections have cost and performance characteristics that you
need to be very aware of in your design, as they can be major contributors to ongoing
operations costs. The cost of wide-area communications is usually proportional to the
bandwidth required, so your design choices that impact bandwidth requirements directly
determine the associated operational costs. For a remote connection, a portion of that IP
network (the last-mile drop to the premises) might be built on top of a dial-up analog
telephone network, a Digital Subscriber Line (DSL) service, or a CATV service. Higher-
bandwidth links such as T1 and T3 connections will cost proportionally more. Satellite
communications can be priced in data increments as small as 60 bytes.[2] You need to
consider these cost implications in your projects.

[2] An increment of bandwidth utilization known as a Message Transmission Unit (MTU).

Another communications issue to consider is latencyâ!”the time it takes for the interaction
to occur. This is a problem you always have to face for wide-area connections. At least as of
this writing, the speed-of-light problem has not been overcome, and there may be further
(and more significant) delays associated with traversing the network components (switches
and routers). The use of satellite links contributes further delays, as will the use of
encryption/decryption, data compression/decompression, and other types of
encoding/decoding techniques. While no one delay may seem particularly large, the
cumulative effect of many delays can have an adverse impact on the overall process. You
need to determine whether the delays are acceptable. Of course, to do this, you need to
understand what delays are acceptable, so you are once again referring back to the
requirements associated with the business process itself.

In addition to picking the medium for system-to-system interactions, you also need to
select the application-level communications protocol that will be used over the medium. The
protocol determines the actual mechanism for information exchange between components.
A web browser, for example, typically uses the Hyper-Text Transport Protocol (HTTP) or its
secure cousin, HTTPS, to communicate over an Internet Protocol (IP) based network. Java
Messaging Service (JMS) or other messaging service might be employed. You might even
end up selecting an e-mail or ftp protocol. The list of available choices continues to grow as
new technologies are introduced and evolving service standards have begun to add
additional protocol layers. SOAP (the Simple Object Access Protocol), for example, is a
protocol that can operate over different transports such as HTTP, e-mail, and JMS.

Part IV: Communications

Chapter 17. Transport
At this point in developing your architecture you have explored the business processes,
proposed the high-level system architecture components, and identified all participant
interactions that are required. Now it is time to turn your attention to the mechanics of the
interactions. You need to determine all of the transports that will be required for
communications, from carrier pigeon to high-speed data networks. You need to determine
the physical nature of all content, from paper to electronic data structures. You need to
determine the form that the content will take, from the spoken word to an XML
representation of a purchase order. And you need to determine the event that the arrival of
the content represents, whether it is the announcement of a previous result, a request for
something to be done, or a response to such a request. All of these considerations fall
under the broad brush of communications.

To be more precise, you need to consider the technology being used for the transport and
the content representation. The transport technology establishes the mechanism by which
the communications content will be delivered. This content could be sent as a JMS message,
an HTTP communication, an e-mail, a fax, inter-office mail, or a courier service. But each
transport is only capable of delivering certain types of content.

The selection of a transport technology constrains the content technology: You can't send
physical paper over the phone. But specifying the transport technology does not completely
define the content technology. IP networks support electronic content as streams of bytes,
but the content technology defines how those bytes are organized. IP-compatible content
technologies include various image representation schemes such as JPEG, structured (XML
representations) and unstructured (ASCII text) data representation schemes. Service
technologies have introduced even more highly structured representations such as SOAP. In
contrast, the audio signal transport of an analog phone connection supports content
technologies such as raw audio data, the encoded image of a fax, or the encoded data from
a modem.

Transport Technology

Defining the transport starts with the consideration of the physical aspects of
communications. You are addressing, in a physical sense, just how the content of the
communications will be transported from one party to the other. If you want a reliable
business process, you need to be thorough in the exploration of all transports involved in
the process, even the interactions between people. A failure in a human-to-human
interaction will hurt the business process just as surely as any technical failure in the
systems. Consequently, from the architecture perspective you need to examine all
transports involved.

Your interest in transport encompasses two tasks: selection and evaluation. Some of the
selection may have already been done as part of the business process design. For example,
the business process may call for the customer to phone the customer service
representative. In other cases, specifically in system-to-system interactions, it is your task
to select the transport mechanism. In any case, for every interaction you need to ensure
that the transport mechanism has been clearly identified.

The second task you have is to evaluate the suitability of the selected transport from the
perspectives of functional capability, capacity, reliability, and cost. Is the transport
mechanism appropriate for the task? You are probably not going to move terabytes of data
over a dial-up phone line. Does it promote effective information transfer? You are probably
not going to verbally convey a graphic design for a magazine cover over the phone. Is it
sufficiently reliable? You are probably not going to use the postal service to transport large
sums of cash. Is it sufficiently auditable, that is, does it provide a record of interactions and
their content? Is it scalable, both in terms of capacity and cost? For each interaction in the
business process you need to decide which questions are relevant and then answer them.

Pragmatically, an exhaustive analysis of all transport options and all of the possible design
considerations associated with each is not only impractical but would also be boring. To
keep it practical, the following sections focus on two things: the key questions that you
should be asking yourself as you make these choices and the techniques you can use for
capturing the design decisions. Along the way, some techniques will be provided for
answering some of the common questions, particularly those related to performance
feasibility and capacity planning. But your primary focus is on ensuring that you have
thought through the mechanics related to all communications and specified a clear and
unambiguous design pattern for each interaction to follow.

Person-to-Person Interactions

The transports available for person-to-person interaction are quite varied. This should not
be surprising, as people have been inventing new means of interacting with each other for
some time now. Phone, intercom, radio, instant messaging, e-mail, fax, inter-office memo,
and letter are but a few examples of transports used for human interaction. Even air, the
transport for direct conversation, needs to be considered in some contexts. While you may
normally think nothing of this, the absence of air in the vacuum of space makes even the
availability of this common transport an issue for astronauts.

Although you may not spend a lot of time on the human-to-human communication aspects
of your process design, you at least need to understand what is being communicated, the
medium that is being used, and the appropriateness of the medium for that particular type
of information. This is particularly important when you are modeling an existing process that
will be partially or completely automated. What is actually communicated, and the
mechanisms used to do it, are often known only to the participants in the process. If you
are to automate these activities, you must first understand them.

Scalability of the person-to-person transport is of particular concern when there is a large
workforce involved. Techniques that work well with a small team may break down badly as
the number of people increases. Unstructured face-to-face interactions may be fine for a
small team, but hundreds of people communicating with each other by simply yelling across
the room might not be such a good idea. On the other hand, the near-chaos of an equities

trading floor demonstrates just how much communication is possible in such a chaotic
environment! When all is said and done, you need to make sure that these human-to-
human interactions are appropriately organized. You also need to determine what
supporting technology is required and ensure that if it is not already available, its
provisioning is included within the scope of the project.

Human-to-System Transport

When people need to interact with systems, there are many vehicles available. Some are
fundamentally designed as human interfaces: generic web browsers, dedicated application
interfaces (fat clients), and custom hardware devices such as ATMs and hand-held devices
are common examples. Increasingly, however, media that were originally intended for
person-to-person interactions are being adapted to become system interfaces. The
telephone (via voice response systems), e-mail, and faxes have all been adapted in this
manner, and this is an area in which there is constant innovation. Cellular phones in
particular, with integrated text messaging, text paging, touch screens, audible alerts, and
web browser capabilities, are rapidly evolving into personal portable system terminals.

When you look at human-to-system interactions, you need to evaluate the choice of
medium from the perspectives of both human usability and technical feasibility. The
complexity of the technical design work and anticipated performance challenges must be
evaluated along with the cost of acquiring and using the technology. The bottom line is that
you need to determine whether the approach is practical within the cost and schedule
guidelines of the project.

System-to-System Transport

When it comes to system-to-system interactions, at least within a physical site, physical IP
networks are generally the medium of choice,[1] but there are many other options that
might also come into play. Terminals and peripheral devices may use serial interfaces such
as RS-232, USB, or IEEE 1394 (firewire). They may use parallel interfaces such as the
Centronix parallel printer or IEEE 488 interfaces. When distances increase, various types of
voice and digital switched wide-area networks and satellite links may come into play.

[1] Strictly speaking, an IP network is not a medium but rather a low-level communications protocol that
can itself be provided over lower-level protocols and media. However, the availability of IP fabric has
become so ubiquitous that at the application level it is not inappropriate to view it as a medium, at least
within a physical site.

Wide-area and satellite connections have cost and performance characteristics that you
need to be very aware of in your design, as they can be major contributors to ongoing
operations costs. The cost of wide-area communications is usually proportional to the
bandwidth required, so your design choices that impact bandwidth requirements directly
determine the associated operational costs. For a remote connection, a portion of that IP
network (the last-mile drop to the premises) might be built on top of a dial-up analog
telephone network, a Digital Subscriber Line (DSL) service, or a CATV service. Higher-
bandwidth links such as T1 and T3 connections will cost proportionally more. Satellite
communications can be priced in data increments as small as 60 bytes.[2] You need to
consider these cost implications in your projects.

[2] An increment of bandwidth utilization known as a Message Transmission Unit (MTU).

Another communications issue to consider is latencyâ!”the time it takes for the interaction
to occur. This is a problem you always have to face for wide-area connections. At least as of
this writing, the speed-of-light problem has not been overcome, and there may be further
(and more significant) delays associated with traversing the network components (switches
and routers). The use of satellite links contributes further delays, as will the use of
encryption/decryption, data compression/decompression, and other types of
encoding/decoding techniques. While no one delay may seem particularly large, the
cumulative effect of many delays can have an adverse impact on the overall process. You
need to determine whether the delays are acceptable. Of course, to do this, you need to
understand what delays are acceptable, so you are once again referring back to the
requirements associated with the business process itself.

In addition to picking the medium for system-to-system interactions, you also need to
select the application-level communications protocol that will be used over the medium. The
protocol determines the actual mechanism for information exchange between components.
A web browser, for example, typically uses the Hyper-Text Transport Protocol (HTTP) or its
secure cousin, HTTPS, to communicate over an Internet Protocol (IP) based network. Java
Messaging Service (JMS) or other messaging service might be employed. You might even
end up selecting an e-mail or ftp protocol. The list of available choices continues to grow as
new technologies are introduced and evolving service standards have begun to add
additional protocol layers. SOAP (the Simple Object Access Protocol), for example, is a
protocol that can operate over different transports such as HTTP, e-mail, and JMS.

Part IV: Communications

Chapter 17. Transport
At this point in developing your architecture you have explored the business processes,
proposed the high-level system architecture components, and identified all participant
interactions that are required. Now it is time to turn your attention to the mechanics of the
interactions. You need to determine all of the transports that will be required for
communications, from carrier pigeon to high-speed data networks. You need to determine
the physical nature of all content, from paper to electronic data structures. You need to
determine the form that the content will take, from the spoken word to an XML
representation of a purchase order. And you need to determine the event that the arrival of
the content represents, whether it is the announcement of a previous result, a request for
something to be done, or a response to such a request. All of these considerations fall
under the broad brush of communications.

To be more precise, you need to consider the technology being used for the transport and
the content representation. The transport technology establishes the mechanism by which
the communications content will be delivered. This content could be sent as a JMS message,
an HTTP communication, an e-mail, a fax, inter-office mail, or a courier service. But each
transport is only capable of delivering certain types of content.

The selection of a transport technology constrains the content technology: You can't send
physical paper over the phone. But specifying the transport technology does not completely
define the content technology. IP networks support electronic content as streams of bytes,
but the content technology defines how those bytes are organized. IP-compatible content
technologies include various image representation schemes such as JPEG, structured (XML
representations) and unstructured (ASCII text) data representation schemes. Service
technologies have introduced even more highly structured representations such as SOAP. In
contrast, the audio signal transport of an analog phone connection supports content
technologies such as raw audio data, the encoded image of a fax, or the encoded data from
a modem.

Transport Technology

Defining the transport starts with the consideration of the physical aspects of
communications. You are addressing, in a physical sense, just how the content of the
communications will be transported from one party to the other. If you want a reliable
business process, you need to be thorough in the exploration of all transports involved in
the process, even the interactions between people. A failure in a human-to-human
interaction will hurt the business process just as surely as any technical failure in the
systems. Consequently, from the architecture perspective you need to examine all
transports involved.

Your interest in transport encompasses two tasks: selection and evaluation. Some of the
selection may have already been done as part of the business process design. For example,
the business process may call for the customer to phone the customer service
representative. In other cases, specifically in system-to-system interactions, it is your task
to select the transport mechanism. In any case, for every interaction you need to ensure
that the transport mechanism has been clearly identified.

The second task you have is to evaluate the suitability of the selected transport from the
perspectives of functional capability, capacity, reliability, and cost. Is the transport
mechanism appropriate for the task? You are probably not going to move terabytes of data
over a dial-up phone line. Does it promote effective information transfer? You are probably
not going to verbally convey a graphic design for a magazine cover over the phone. Is it
sufficiently reliable? You are probably not going to use the postal service to transport large
sums of cash. Is it sufficiently auditable, that is, does it provide a record of interactions and
their content? Is it scalable, both in terms of capacity and cost? For each interaction in the
business process you need to decide which questions are relevant and then answer them.

Pragmatically, an exhaustive analysis of all transport options and all of the possible design
considerations associated with each is not only impractical but would also be boring. To
keep it practical, the following sections focus on two things: the key questions that you
should be asking yourself as you make these choices and the techniques you can use for
capturing the design decisions. Along the way, some techniques will be provided for
answering some of the common questions, particularly those related to performance
feasibility and capacity planning. But your primary focus is on ensuring that you have
thought through the mechanics related to all communications and specified a clear and
unambiguous design pattern for each interaction to follow.

Person-to-Person Interactions

The transports available for person-to-person interaction are quite varied. This should not
be surprising, as people have been inventing new means of interacting with each other for
some time now. Phone, intercom, radio, instant messaging, e-mail, fax, inter-office memo,
and letter are but a few examples of transports used for human interaction. Even air, the
transport for direct conversation, needs to be considered in some contexts. While you may
normally think nothing of this, the absence of air in the vacuum of space makes even the
availability of this common transport an issue for astronauts.

Although you may not spend a lot of time on the human-to-human communication aspects
of your process design, you at least need to understand what is being communicated, the
medium that is being used, and the appropriateness of the medium for that particular type
of information. This is particularly important when you are modeling an existing process that
will be partially or completely automated. What is actually communicated, and the
mechanisms used to do it, are often known only to the participants in the process. If you
are to automate these activities, you must first understand them.

Scalability of the person-to-person transport is of particular concern when there is a large
workforce involved. Techniques that work well with a small team may break down badly as
the number of people increases. Unstructured face-to-face interactions may be fine for a
small team, but hundreds of people communicating with each other by simply yelling across
the room might not be such a good idea. On the other hand, the near-chaos of an equities

trading floor demonstrates just how much communication is possible in such a chaotic
environment! When all is said and done, you need to make sure that these human-to-
human interactions are appropriately organized. You also need to determine what
supporting technology is required and ensure that if it is not already available, its
provisioning is included within the scope of the project.

Human-to-System Transport

When people need to interact with systems, there are many vehicles available. Some are
fundamentally designed as human interfaces: generic web browsers, dedicated application
interfaces (fat clients), and custom hardware devices such as ATMs and hand-held devices
are common examples. Increasingly, however, media that were originally intended for
person-to-person interactions are being adapted to become system interfaces. The
telephone (via voice response systems), e-mail, and faxes have all been adapted in this
manner, and this is an area in which there is constant innovation. Cellular phones in
particular, with integrated text messaging, text paging, touch screens, audible alerts, and
web browser capabilities, are rapidly evolving into personal portable system terminals.

When you look at human-to-system interactions, you need to evaluate the choice of
medium from the perspectives of both human usability and technical feasibility. The
complexity of the technical design work and anticipated performance challenges must be
evaluated along with the cost of acquiring and using the technology. The bottom line is that
you need to determine whether the approach is practical within the cost and schedule
guidelines of the project.

System-to-System Transport

When it comes to system-to-system interactions, at least within a physical site, physical IP
networks are generally the medium of choice,[1] but there are many other options that
might also come into play. Terminals and peripheral devices may use serial interfaces such
as RS-232, USB, or IEEE 1394 (firewire). They may use parallel interfaces such as the
Centronix parallel printer or IEEE 488 interfaces. When distances increase, various types of
voice and digital switched wide-area networks and satellite links may come into play.

[1] Strictly speaking, an IP network is not a medium but rather a low-level communications protocol that
can itself be provided over lower-level protocols and media. However, the availability of IP fabric has
become so ubiquitous that at the application level it is not inappropriate to view it as a medium, at least
within a physical site.

Wide-area and satellite connections have cost and performance characteristics that you
need to be very aware of in your design, as they can be major contributors to ongoing
operations costs. The cost of wide-area communications is usually proportional to the
bandwidth required, so your design choices that impact bandwidth requirements directly
determine the associated operational costs. For a remote connection, a portion of that IP
network (the last-mile drop to the premises) might be built on top of a dial-up analog
telephone network, a Digital Subscriber Line (DSL) service, or a CATV service. Higher-
bandwidth links such as T1 and T3 connections will cost proportionally more. Satellite
communications can be priced in data increments as small as 60 bytes.[2] You need to
consider these cost implications in your projects.

[2] An increment of bandwidth utilization known as a Message Transmission Unit (MTU).

Another communications issue to consider is latencyâ!”the time it takes for the interaction
to occur. This is a problem you always have to face for wide-area connections. At least as of
this writing, the speed-of-light problem has not been overcome, and there may be further
(and more significant) delays associated with traversing the network components (switches
and routers). The use of satellite links contributes further delays, as will the use of
encryption/decryption, data compression/decompression, and other types of
encoding/decoding techniques. While no one delay may seem particularly large, the
cumulative effect of many delays can have an adverse impact on the overall process. You
need to determine whether the delays are acceptable. Of course, to do this, you need to
understand what delays are acceptable, so you are once again referring back to the
requirements associated with the business process itself.

In addition to picking the medium for system-to-system interactions, you also need to
select the application-level communications protocol that will be used over the medium. The
protocol determines the actual mechanism for information exchange between components.
A web browser, for example, typically uses the Hyper-Text Transport Protocol (HTTP) or its
secure cousin, HTTPS, to communicate over an Internet Protocol (IP) based network. Java
Messaging Service (JMS) or other messaging service might be employed. You might even
end up selecting an e-mail or ftp protocol. The list of available choices continues to grow as
new technologies are introduced and evolving service standards have begun to add
additional protocol layers. SOAP (the Simple Object Access Protocol), for example, is a
protocol that can operate over different transports such as HTTP, e-mail, and JMS.

Selecting Transports

Within the space constraints of this book it is not possible to go into all the details of
physical media and the layers of communications protocols that can be built upon them.
That, in itself, is enough material for a book nearly as large as this one![3] However, at this
point in your architecture you do need to establish the transport mechanisms that the
architectural components will use to communicate regardless of how much research that
requires. With respect to the chosen transports, you need to know what to expect in terms
of availability, performance, and cost. Even though you may not be responsible for the
design, implementation, or provisioning of the transport, you as the architect are ultimately
responsible for determining the adequacy of the choice with respect to the application.
Overloaded networks, excessive latency, or exorbitant costs will kill the application just as
surely as a poorly designed participant. Your job is to ask enough questions so that you
understand the available communications approaches, evaluate them, and select the right
ones.

[3] Ray Horak 2000. Communications Systems and Networks, Second Edition. Foster City, CA: M&T
Books.

In choosing the transports, you need to be practical as well. While it may be desirable to
uniformly employ a single communication protocol throughout the system, there are many
valid reasons for employing more than one. In fact, the different behavioral properties of
various communications protocols often makes it attractive to employ more than one
protocol in the enterprise. For example, socket-level protocols such as HTTP (and HTTPS)
might be the preferred protocols for external-facing interfaces that the enterprise presents
to other enterprises since their use requires no specific technology footprint at the other
end. On the other hand, a messaging service such as JMS might be the preferred protocol
for communications within the enterprise since it enables asynchronous interaction and load
distribution.[4]

[4] Strictly speaking, JMS is a standardized Application-level Interface (API) written in Java and not a
true communications protocol. The actual protocol is hidden under the covers.

There are other considerations as well. Socket-level protocols such as HTTP are tied to the
host names and IP addresses (either physical or virtual) of the participants in the
communication. When communication is required, a connection is established to the system
hosting the application, either directly or indirectly.[5] Once this connection has been
established, it is used to conduct subsequent communications. This dependency on a
specific connection to a specific host means that both parties must be active at the same
time for communications to occur. It also presents specific design challenges with respect to
high availability, fault tolerance, and load distribution, which we will discuss in Part VII.

[5] Indirect communications can occur through an IP-redirector, proxy, or both.

In contrast to socket protocols, which are inherently point-to-point connections, messaging
services (such as JMS) introduce a communications service that acts as an intermediary
between the parties. The originating party sends a message to the communications service,
which in turn delivers the message to the intended recipient. With this approach, the sender

and recipient no longer need to be active at the same time for communications to occur.
The message service can accept the message from the sender, and then deliver it to the
recipient at a later time. In addition, the sender and recipient no longer need to be aware of
one another. Messages are sent to and from abstractions known as destinations (topics and
queues in JMS). This level of indirection allows the actual recipient of the message to be
moved from one machine to another without requiring any change to either the sender or
the messaging service. It also allows multiple applications to subscribe to the same
message, again without the knowledge of the sender. Multiple subscribers with JMS topics
allow the same message to be delivered to many parties. Since messages in JMS queues
are delivered to exactly one recipient, the use of multiple subscribers allows the processing
load to be distributed across the subscribers. These capabilities can significantly reduce
system maintenance costs in the ever-changing world of enterprise systems.

One issue you will have to face is that not every end-point system will be capable of
utilizing the chosen protocols. The presence of legacy systems and commercial off-the-shelf
components that happen to employ different protocols mandates that these protocols be at
least minimally supported to enable communications with these components. This may drive
you towards the use of adapters (Chapter 18) to limit the extent to which these
noncompliant protocols pervade the enterprise. In any case, it is certainly reasonable to
restrict the use of these noncompliant protocols to these special cases.

Once you have selected the communications mechanisms, you update your activity
diagrams to reflect the choices you have made, as shown in Figure 17-1. Here the ATM
Machine is using JMS (the JMS1 label will be explained in a moment) to send message 1
to the ATM Server, that in turn is using HTTP to send message 2 to the Bank System.
You are now making the activity diagram more specific, reflecting the design choices you
are making.

Figure 17-1. Annotating Activity Diagrams with Communications Mechanism
Selections

[View full size image]

If you are employing messaging servers, in addition to annotating the communications in
the activity diagrams, you also need to update the deployment diagram to show where
these messaging servers reside. Figure 17-2 shows the placement of a JMS Server in the
ATM example deployment. This placement is important in helping you understand what the
network load will be. Knowing the location of the sender, recipient, and communications
server, you can trace the path of the communication. This will enable you to determine the
load that the communication will present on each LAN and WAN instance (more on this in
Chapter 39). When you initially locate the messaging server, you will probably only show
the placement of the server on a network LAN. Later, as the architecture becomes more
complete, you will determine the machine to which the server will actually be deployed,
updating the diagram accordingly.

Figure 17-2. JMS Server Deployment

[View full size image]

You should note that while the labels on the object flows are standard UML, their use to
indicate the chosen communications mechanism is simply a convention, albeit a useful one.
Their use provides you with the ability to not only record the selected protocol choice but
can also be used to establish a correlation with the specific messaging server being used.
Here a further convention has been adopted such that a match between the label on the
object flow generating the message (e.g., JMS1 in Figure 17-1) and the object name (not
the object type) of the messaging server in the deployment diagram indicates that this
messaging server is the one through which that message will be delivered. As we shall see
later in Chapter 39, this enables you to determine the precise network route each message
will take and thus determine the load on each network LAN and WAN instance.

Messaging Server Topology

While it is convenient to think of a messaging service as a ubiquitous fabric equally
accessible by all systems, the reality is that messaging services are provided by physical
componentsâ!”and possibly more than one. Not every message will go to the same server,
and some messages may be routed between servers on their way to their destinations. As a
result, you need to understand how those components will interact with each other and with
the components sending and receiving messages. You need to know their location on the
network relative to each other and relative to the components using them for
communications. When there are messages that are routed between servers on their way
from the sending component to the receiving component, you need to know the
communications path that those messages will take. All of this is needed to determine
whether or not the proposed communications and messaging infrastructure can adequately
support the application. Even when you are not responsible for the actual design of this
messaging or communications infrastructure, you must still do this evaluation.

The simplest case for messaging servers is to have exactly one server. To be clear, the
reference to a server here is a reference to the logical component and not the physical
machine it resides on. You could, potentially, have two or more messaging servers residing
on the same machine. In any case, when you have only one server, the evaluation is pretty
straightforward. You simply need to determine the peak rate at which the server needs to
handle messages (as determined by your application), and then determine whether the
proposed (or existing) server can handle that number of messages per second while
meeting the latency requirements for message delivery. You also need to consider the
network locations of the sender and recipients of these messages and the availability of the
network bandwidth to and from the messaging server. All in all, the analysis involving a
single messaging server is relatively straightforward. But a single messaging server is not
always the right solution.

There are generally two types of situations that will drive you towards the use of multiple
messaging servers. One arises when the total messaging load exceeds the capacity
limitations of either a single server or a single network LAN. The other arises when there is
a geographic distribution of components involving two or more physical sites. Either type of
situation can lead to the use of multiple messaging servers.

Coping with Capacity Limitations

When the total message load exceeds the capacity of a single messaging server or network
LAN, you will need to split that load. One solution is, of course, to redesign to reduce the
amount of traffic. But for the moment let's assume that you need to deal with the volume
of traffic as-is. If a LAN is overloaded, it is likely that this LAN is the one on which the
messaging server is located. To relieve the overload, you must split the network traffic
across two or more LANs. This may lead you to add additional messaging servers as well,
splitting the traffic between the servers. If the messaging server itself is overloaded, then
you must split the traffic across two or more messaging servers. Although the details are
not discussed here (the design patterns and other considerations for load distribution are
covered in Chapter 35), it is at this point in the design process that you would identify the
need for load distribution and choose the appropriate design pattern.

Let's pause for a moment here to reinforce just how important it is to determine whether
an overload situation exists, regardless of whether the overload occurs at the
communications level or at the application-component level. Time and again enterprises
build and deploy systems without stopping to consider whether the capacity actually exists
to handle the load. Not only do these systems fail, but their failure is predictable early in
their design and with a very modest amount of work. One company in particular was in the
process of architecting a system for archiving and retrieving emails. They got so caught up
in figuring out the pipeline of activities required to process these emails that they never
even calculated the overall communications load. The architecture they were defining would
have resulted in a single LAN communications load exceeding 10 Gbits/second, which was
(at the time) an order of magnitude greater than available network components could
provide. A simple back-of-the-envelope calculation was all it took to reveal that this was
not a practical architecture, yet they were several months into working out its details. The
message (pardon the pun) is clear: A few simple questions early in the design cycle can
avoid months of wasted effort and millions of dollars in wasted development costs. Do your
homework!

So what do you do if the communications turns out to be infeasible from a performance
perspective? You need to consider alternate architectures until you can find a satisfactory
solutionâ!”or conclude that the problem cannot be solved within the project cost and
schedule guidelines. Alternatives can run the gamut from choosing different communication
mechanisms, relocating system components on the network, up through redesigning the
overall business process so that it requires a lower volume of communications.

Coping with Geographic Distribution

When the components requiring messaging services are geographically distributed across
multiple sites, you must consider how those components will access the messaging servers.
The seemingly simple solution is to have all of the components connect to a single
messaging server, but this requires each remote component to make its own connection
over the WAN. This presents a number of potential design issues related to the use of the
WAN, including the number of socket connections, provisioning the credentials used to
establish and secure those connections, and the total bandwidth demand placed on the
WAN connection to the server.

If each remote component establishes its own WAN connection, then the number of sockets
required on the messaging server will be equal to the total number of components. One
issue this raises is that there is a finite limit to the number of connections that can be
practically supported by a messaging server. Another issue is that each of the connecting
components must be configured with all of the information necessary to establish the
connection, including the network address (hostname or IP address) and required security
credentials. This provisioning can make the administration of the system complex,
particularly when the messaging server needs to be re-hosted as part of a failover or site
disaster recovery scheme. A third issue is that each of the components must be designed to
deal with the breakdowns typically associated with WAN connections. They must be capable
of handling dropped connections, reestablishing connections, and restoring the application
to the correct state. A fourth issue is that when the same message needs to be sent to
multiple recipients at the same remote site, it will be sent multiple times over the same
WAN connection. This increases the bandwidth requirements for the WAN connection and

may have significant cost implications for the project.

There is an alternative worth considering if the chosen messaging servers are capable of
routing messages from one to another. In this alternative approach, a messaging server is
placed at each physical site. Components local to each site connect to the on-site
messaging server. The messaging servers then route messages to the correct site, where
they are delivered to the appropriate recipient. This approach has a number of advantages.
First, only the messaging servers need to deal with the WAN connections and their
associated configuration, credentials, and breakdowns. Second, it limits the number of
connections that each messaging server needs to handle. And third, this configuration may
provide a means of reducing WAN bandwidth requirements for the case in which a single
message is delivered to multiple recipients at a remote site. Assuming an appropriate
delivery semantic is used for the message (i.e., a JMS topic), the message will only be sent
once across the WAN. The local messaging server will then distribute it to each recipient.

If you choose this type of distributed messaging server topology, you can extend the
annotation convention to cover these routed messages. You do so by labeling each of the
object flows with the name of the messaging server involved from the perspective of each
participant.

Thus in Figure 17-3, participant A sends a message using the JMS1 server, while
participant B receives that message from the JMS2 server.

Figure 17-3. Labeling Messages with Routed Communications

Continuing on with the convention, you show both servers on the deployment diagram
(Figure 17-4). You also show the logical connection between the JMS servers, indicating
that the two servers are aware of each other and capable of routing messages between
them. These logical connections determine the sequence of servers that the message will
traverse through on its way to its destination. This, in turn, will enable you to determine the
network LANs and WANs each message traverses on its way to its destination.

Figure 17-4. Geographic Distribution of Messaging Servers

[View full size image]

Capacity

As an architect, you are ultimately responsible for the choice and adequacy of the
communications mechanisms you select for the solution. These mechanisms may not be
something you design and create as part of your projectâ!”they are often services that are
already in place in the systems environment. Nevertheless, you must ensure that the
service is actually capable of doing the job you expect. You cannot assume that these
services are infinite in capacity and provide instantaneous response. Every service has finite
limitations, and you need to factor those limitations into the design. If you are trying to
move data at the rate of several gigabits per second between a pair of participants, then a
1-gigabit network service is not going to do the job. Furthermore, if the service is already in
use for other applications, you need to determine whether there is sufficient capacity
remaining to support the application. Once you understand the needed capacity, you must
then interact with the service provider to determine whether that capacity is available and
obtain a commitment to provide it.

When you are asking capacity questions, you need to bear in mind that communications
services may be built, in turn, upon other communications services. To understand the
overall limitations, you need to understand the capacity limitations of each service. A
messaging server, for example, will utilize a network to interact with the message senders
and recipients. Therefore, you need to understand the capacity limitations both of the
messaging server itself and of the underlying network. You will learn how to determine the
needed capacity in Chapter 39, but for now let's assume that you have already made these
calculations.

Simply understanding the needed capacity is not sufficient. If you are obtaining
communications services from a service provider, whether in-house or external, you need to
obtain a commitment to provide that capacity. Be forewarned that there is often a long lead
time (measured in months) required to establish new telecommunications services. You also
need to determine what the cost will be, particularly of wide-area network connections,
keeping in mind that the solution must be implementable within the project's cost and
schedule guidelines.

A note of practicality is in order here. If another organization (not part of your project
team) is responsible for communications services, you must make some judgment calls in
terms of how you deal with that organization. At a minimum, you need to present them
with the load requirements and obtain a commitment to provide that level of service. You
might even go so far as to negotiate a service-level agreement (SLA) for providing the
needed services. But, much as you might dislike admitting it, you also need to make a
judgment call as to whether or not you can trust the commitment.

This does not necessarily imply that the organizations providing the services do not have
the skills required or are insincere in their commitments, for this is rarely the case. But the
fact is that many infrastructure groups simply do not know how much of their capacity is
truly available under worst-case conditions. Yes, they routinely observe and measure
current activity, and they have a pretty good understanding of the resources that will be
available on a day-to-day basis. They probably have an understanding of when predictable
periods of peak activity occur and what the available capacity is during those times. But the

core problem is that the true peak periods, the disaster scenarios, very rarely occur! How
often does the stock market crash? In the absence of direct observations, how are you to
know what the true remaining capacity is during exceptional peaks? How can you know
what the available network capacity will be in a stock exchange during a market crash?

The reality is that the demands on the communications and messaging infrastructure during
true peak load situations can only be determined analytically. That analysis requires an
understanding of the business processes that are using the infrastructure and the behavior
of those processes during these periods. If the infrastructure is shared, this analysis must
include the other business processes as well. It is highly likely that this analysis has not
been done for those other business processes. Therefore, you need to make a judgment
call. Is your application mission critical, that is, a category 4 or 5 in the business process
impact ranking from Chapter 10? Do you therefore need to guarantee performance even
under these extreme peak load conditions? If the answer to both of these questions is yes,
then you must pursue the understanding of capacity until you are satisfied that the answers
reflect reality. Whether that means using a separate communications infrastructure or
analyzing the other business processes (or teaching the service organization how to do
this), you must do whatever you feel necessary to ensure that the business processes will
meet their service-level agreements. Don't forget that this might include concessions on the
solution side, renegotiating the SLAs to make them less stringent during disaster scenarios.

Point-to-Point Interaction Patterns

The simplest form of communication is for the two parties to interact directly with one other
using the selected communications protocol. This interaction can employ one of two
interaction patterns: batch (the reason for this name will become apparent in a moment) or
event-driven (Figure 17-5). In the batch style, a triggering event that is generally unrelated
to the execution of the business process (usually time-based) causes participant A to
generate a dataset. A second triggering event, generally time-based and unrelated to the
arrival of the dataset, then causes participant B to retrieve this dataset and process
it. This pattern is typical of the nightly batch-processing that often goes on in data centers.

Figure 17-5. Point-to-Point Communications Patterns

The triggering events for batch communications are usually time-based and are not directly
related to the participants' generation of business process results. Even when a
management utility is used to orchestrate the transfer, the triggering of the utility itself is
usually based on time or some other event unrelated to the business process execution.
This lack of correlation between the business process's generation of results and the
communication of those results leads to an interaction style that is commonly known as
batch processing. In this style, when the triggering event occurs in participant A, all of
the business results that have been generated since the last triggering event (or,
alternatively, all of the business results that are available) are collected and placed in a
dataset. This set of results is the "batch," and all subsequent activity in the communication
pattern uses this batch as the unit of work: hence the term batch processing.

The alternative to batch processing is an event-driven interaction. In this style, the
completion of an activity acts as the trigger for the communications. When this trigger
occurs, the participant gathers the relevant information, packages it up as a message, and
sends the message to the recipient. The recipient's activity is, in turn, triggered by the
arrival of the message. Here all the events driving the communication are directly related to
the meaningful events in the business processâ!”hence the term event-driven.[6]

[6] The term real time is often mistakenly applied to this pattern of interaction. In reality, there is some
time lag as the message propagates from the sender to the recipient and the recipient gets around to
processing it. This time interval, although generally short, tends not to be rigidly controlled. In contrast,
it is the rigid control of timing work performance that is the hallmark of truly real-time systems. Thus
the term real time is not precisely appropriate for most business applications. The term near-real-time
might be employed to emphasize that information is moved and processed as quickly as is practicable.

The fact that a message is intended to act as a trigger is so significant that UML provides
special symbols for the activities that send and receive such messages. The messages that
play this role are referred to as signals, the action of sending such a signal is represented
by a send signal action, and the recipient is an accept event action. The use of these
symbols emphasizes the special role that such messages play in the overall business
process execution.

Point-to-Point Intermediaries

As you begin to select communications mechanisms, one of the first dilemmas you will
encounter is that the sender and recipient in a communication do not share a common
communication protocol (or you choose not to use a protocol they do share for policy
reasons). Assuming that you don't wish to modify the participants, you must employ a
communications intermediary to facilitate the interaction (Figure 17-6). This intermediary
uses protocols that are available on each of the participants and performs whatever
additional work is required to transform one participant's information into a form suitable
for the other participant.

Figure 17-6. Point-to-Point with Intermediary Communications Patterns

[View full size image]

As with point-to-point communication, the intermediary typically operates in either batch or
event-driven styles. In the batch style, management utilities are often used to generate the
triggering events for all participants and verify the correct creation and processing of the
data sets. These management utilities, however, can be hampered by an inability to
generate the required triggering events. The recipient system, for example, may not have
an interface that allows the management utility to trigger the consumption of a data set.
The trigger for this must come from some other source, such as a human operator or a
schedule contained within the application.

An important design consideration with the point-to-point intermediary approach is that the
construction and maintenance of the intermediary can become quite complex. There are

three responsibilities embodied in the intermediary: interacting with participant A,
converting the dataset into a form suitable for participant B, and interacting with
participant B. This requires the developer of the intermediary to become familiar with
both communications protocols, both data representations and their related representation
technologies, and the techniques available for mapping one representation into another.

The point-to-point intermediary design problem becomes even more complex when the two
participants reside on different machines (possibly on different operating systems) and the
end-point system interfaces are programming language interfaces (APIs) and not
communications protocols. Use of the API often requires that the user of the API physically
reside on the same machine as the end-point system. If both end points have this type of
interface, it is not possible to create a single intermediary. When such situations arise (as
they frequently do), the intermediary itself needs to be split into two components, one
residing on each machine, and these two components now must interact with one another.
These split components are referred to as adapters, and they are the subject of the next
chapter.

Transport-Supplied Services

As service-oriented architectures evolve, transport mechanisms are being extended to
facilitate the interactions between service consumers and service providers. These
extensions provide features such as access control and request routing. These features were
discussed in Chapter 4, but this is the point in the design process at which their use should
be determined.

Summary

The interactions you have defined in your architecture must occur over some physical
transport, and the artifacts being exchanged must have a physical representation as well.
You need to identify the specific transport to be used for each interaction and update your
architecture documentation accordingly. Your choice of transport technology constrains the
possible physical representations of the artifacts, particularly the technologies available for
representing information. The representation of data requires the definition of its syntax and
semantics, so you need to identify (though not necessarily define) the particular syntax and
semantics to be used in each exchange. You must also identify the semantics of the
interaction itself as representing either a request, a reply to such a request, or an
announcement.

In architecting a solution, all interactions need to be considered, even those between
people. In every case, you need to determine whether the transport chosen is adequate to
the task, and whether the parties can operate on the same physical artifact and share an
understanding of its syntax and semantics. The available capacity of the transport needs to
be evaluated and a commitment secured to provide the required capacity to support the
solution.

When the selected transport involves communications servers, the architecture of those
servers needs to be considered along with their capacity. If the solution is geographically
distributed, you must determine the location of the various servers and the routing of
communications between them. Once this topology is understood, you need to reevaluate
the load that will be placed on network LANs and WANs as well as the load on the individual
communications servers.

Finally, you need to identify the events that trigger the interactions. Some interactions will
be triggered by activities that are a part of the business processes, while others will be
triggered by external events. The sources of external events must be identified.

Key Transport Questions

1. Have communications mechanisms been identified for all interactions
between participants? Have the transports and protocols been identified?
Have the activity diagrams been appropriately updated?

2. If messaging is being used, have the locations of the messaging servers on
the network been defined? If there are multiple messaging servers, has the
messaging server topology been defined? Have the deployment diagrams
been updated?

3. Has the performance feasibility of the network and messaging infrastructure
been established? Has the analysis been documented? Is the required
capacity available within the project's cost and schedule guidelines? Have
commitments been obtained to provide the required communications
services?

Suggested Reading

Ray Horak, 2000. Communications Systems and Networks, Second Edition. Foster City, CA:
M&T Books.

Chapter 18. Adapters
In an ideal world, once you have selected the protocol for each interaction, each of the
participants would simply use the selected protocol. You could then turn your attention to
other aspects of the system design. Unfortunately, in the real world a lot of existing
functionality is embodied in components that cannot directly employ the protocol you have
selected. Such participants require intermediaries to map their existing interfaces into the
chosen protocol, which is generally one of the protocols on which the enterprise has chosen
to standardize. These intermediaries are commonly referred to as adapters (Figure 18-1).
While the enterprise's long-range goal may be for all participants to directly employ a
standard protocol for their interactions, in the short term the bulk of the participants (mostly
those that already exist) will require the use of an adapter to employ these protocols.

Figure 18-1. Standardized Protocol and Adapters Pattern

[View full size image]

When an adapter is required, you need to look at how the adapter is going to interact with
the end-point system, and you need to consider this for both inbound and outbound
communications. In both inbound and outbound directions you need to determine (a) what
event will determine that action is required, (b) how that event will be recognized, and (c)
how the action will be implemented.

In general, you will find that the interfaces on end-point systems break down into four
categories:

Application programming interfaces (API)

Databases

Files

Protocols

Each category differs with respect to event identification and triggering, and each has
certain strengths and weaknesses. Let's take a look at each type of interface from the
perspective of event identification, event recognition, and action implementation.

API-Based Adapters

APIs are programming-language interfaces that are provided by the end-point systems.
They are generally intended to be a means for an external piece of programming language
code to invoke functionality in the end-point system. As such, they tend to provide a fairly
straightforward means for an adapter to translate an inbound message into specific actions
in the end-point system as long as that functionality is made available through the API.
Upon receipt of a message (the trigger), an API-based adapter un-bundles the information
in the message and invokes the appropriate APIs.

Unfortunately, most APIs do not provide an event-recognition capability that will allow
adapter code to be called by the end-point system when specific events occur in that end-
point system. When these mechanisms do exist, they are generally referred to as callbacks.
The use of a callback, if available, involves a two-step interaction between the adapter and
the end-point system. In the first step, the adapter registers the callback (the code to be
called) with the end-point system. This registration associates the callback with a particular
type of event. Depending upon the specific mechanisms offered by the end point, this
registration may be accomplished through the static configuration of the end-point system,
or it may occur dynamically at runtime. In either case, once the registration has taken
place, subsequent occurrences of the specified event will result in the invocation of the call-
back code in the adapter, which can then generate an outbound message.

In the absence of callbacks, the only means that an adapter has for identifying events in the
end-point system is to periodically call APIs to determine whether any significant changes
have occurredâ!”a practice referred to as polling. Depending upon the available APIs,
polling can range in complexity from very simple to practically impossible. Polling may also
present an unacceptable performance demand on the end-point system. The reality is that
most systems that have APIs are not designed for efficient polling. Consequently, it is very
difficult to identify the occurrence of triggering events in the end-point systems. Thus, APIs
tend to be good for inbound communications and poor for outbound communications.

Chapter 18. Adapters
In an ideal world, once you have selected the protocol for each interaction, each of the
participants would simply use the selected protocol. You could then turn your attention to
other aspects of the system design. Unfortunately, in the real world a lot of existing
functionality is embodied in components that cannot directly employ the protocol you have
selected. Such participants require intermediaries to map their existing interfaces into the
chosen protocol, which is generally one of the protocols on which the enterprise has chosen
to standardize. These intermediaries are commonly referred to as adapters (Figure 18-1).
While the enterprise's long-range goal may be for all participants to directly employ a
standard protocol for their interactions, in the short term the bulk of the participants (mostly
those that already exist) will require the use of an adapter to employ these protocols.

Figure 18-1. Standardized Protocol and Adapters Pattern

[View full size image]

When an adapter is required, you need to look at how the adapter is going to interact with
the end-point system, and you need to consider this for both inbound and outbound
communications. In both inbound and outbound directions you need to determine (a) what
event will determine that action is required, (b) how that event will be recognized, and (c)
how the action will be implemented.

In general, you will find that the interfaces on end-point systems break down into four
categories:

Application programming interfaces (API)

Databases

Files

Protocols

Each category differs with respect to event identification and triggering, and each has
certain strengths and weaknesses. Let's take a look at each type of interface from the
perspective of event identification, event recognition, and action implementation.

API-Based Adapters

APIs are programming-language interfaces that are provided by the end-point systems.
They are generally intended to be a means for an external piece of programming language
code to invoke functionality in the end-point system. As such, they tend to provide a fairly
straightforward means for an adapter to translate an inbound message into specific actions
in the end-point system as long as that functionality is made available through the API.
Upon receipt of a message (the trigger), an API-based adapter un-bundles the information
in the message and invokes the appropriate APIs.

Unfortunately, most APIs do not provide an event-recognition capability that will allow
adapter code to be called by the end-point system when specific events occur in that end-
point system. When these mechanisms do exist, they are generally referred to as callbacks.
The use of a callback, if available, involves a two-step interaction between the adapter and
the end-point system. In the first step, the adapter registers the callback (the code to be
called) with the end-point system. This registration associates the callback with a particular
type of event. Depending upon the specific mechanisms offered by the end point, this
registration may be accomplished through the static configuration of the end-point system,
or it may occur dynamically at runtime. In either case, once the registration has taken
place, subsequent occurrences of the specified event will result in the invocation of the call-
back code in the adapter, which can then generate an outbound message.

In the absence of callbacks, the only means that an adapter has for identifying events in the
end-point system is to periodically call APIs to determine whether any significant changes
have occurredâ!”a practice referred to as polling. Depending upon the available APIs,
polling can range in complexity from very simple to practically impossible. Polling may also
present an unacceptable performance demand on the end-point system. The reality is that
most systems that have APIs are not designed for efficient polling. Consequently, it is very
difficult to identify the occurrence of triggering events in the end-point systems. Thus, APIs
tend to be good for inbound communications and poor for outbound communications.

Database-Based Adapters

It may seem a bit strange to think of a database as an interface, but the reality is that
many applications reside (logically) on top of a database. Furthermore, significant changes
in the application, particularly those marking the occurrence of significant events, generally
result in updates to the database. When an order is placed, for example, the new order is
saved in the database. The entry of the order in the database can then be taken as a signal
that a new order has been created. Most databases support triggers that initiate the
execution of stored procedures. These triggers can then be used as a means for recognizing
application events. This, of course, assumes that you understand enough about the
database to determine which changes correspond to meaningful events.

The availability of triggers can then be used to architect an adapter. The technique is to
identify an application table of interest, create a second table whose structure replicates the
original, and implement a trigger that takes a snapshot of each application record that
changes (Figure 18-2). A simple query of the Adapter Database Table will reveal any
changes that have occurred. The adapter is set up to periodically query this table, retrieve
the event information, and publish messages. In general, the combined use of triggers and
queries of the event table, coupled with a reasonable time interval for querying the event
table, puts far less of a burden on the database than would a broader query of the
Application Database Table that seeks to identify the records that have changed
since the last query was performed. It is efficient.

Figure 18-2. Using Triggers for Database Adapters

While database triggers often provide an effective means of triggering outbound
communications, direct database updates generally do not provide a good means for
handling inbound communications. The reason for this is that the application owning the
database almost always contains business logic that governs the use of the database. A
direct update of the database bypasses this business logic and is therefore unacceptable
from the applications perspective. A secondary issue is that the schema of the database is
likely to be proprietary and subject to change between application releases. Therefore, an
adapter that works with one version of the database may need to be modified when the
application owning the database is upgraded.

Combining API and Database Approaches

Many end-point systems are applications that have both publicly supported APIs and
underlying databases. Such systems present an opportunity to combine both the API and
database techniques when implementing an adapter. In the inbound direction, the adapter
accepts a message and uses the API to interact with the application. In the outbound
direction, the adapter uses the database trigger technique to capture events. The
combination can be further leveraged to minimize the dependency on the database schema,
which is likely to be proprietary. This is accomplished by using the trigger to just capture
the bare-bones identification information about the event, perhaps as little as an identifier
(i.e., primary key). The adapter then uses this identifier in conjunction with the (presumably
standard and publicly supported) API to retrieve the rest of the relevant information. Many
commercial adapters are built using this technique.

File-Based Adapters

The oldest style of interface typically found on applications is based on the production and
consumption of files. In the outbound direction, the application either periodically or on
command generates (or updates) a file containing the needed information. The adapter can
then recognize (via operating system polling) that the file has been created or changed.
This recognition of change serves as the triggering event, at which point the adapter opens
the file and publishes the needed information as a message. The adapter may, in addition,
delete, rename, or move the file to indicate that the file has been processed.

In the inbound direction, the adapter reverses these operations. It receives the inbound
message and either creates or updates a file with the content of the message. Optionally,
the adapter may invoke an application operation (generally through a command line
interface) that causes the application to then consume the file.

The primary problem with most file-based interfaces is that they are unable to recognize
actual business process events and use them to trigger the generation of files.
Consequently, the triggering event that causes the generation of a file tends to be either a
scheduled time or the interaction of a user with an interface. In either case, this lack of
correlation between the real business events and the generation of the files tends to make
this type of adapter more suitable for the "batch" style of interaction than the event-driven
style.

Protocol-Based Adapters

Many applications are beginning to appear on the market with protocol-based interfaces.
Newer applications are providing web services access to their functionality via SOAP over
HTTP. These protocol-based interfaces are very similar to API interfaces, except that the
operations are invoked over a communications protocol rather than directly through a
programming language API. As such, they also tend to have similar strengths and
weaknesses: good in the inbound direction and weak in the outbound direction.

Documenting Adapter Usage

Once you have determined that adapters are required, the architecture needs to be updated
to reflect this decision. One approach is to simply add swimlanes to the high-level activity
diagrams to represent the adapters. Unfortunately, this makes those activity diagrams
larger and more complex, so it obscures the fundamental pattern of interactions among the
top-level components.

Preferably, you create an activity diagram that shows the details of a single interaction and
identifies the adapter patterns for the two end points (Figure 18-3).

Figure 18-3. Adapter Patterns

[View full size image]

Once the adapter patterns have been identified, you can then update the top-level
diagrams by labeling them with the patterns being used (Figure 18-4). With this approach
you have a precise design for the details and preserve the simplicity of the top-level
diagrams. If the adapter pattern is used in many places, you can define it once and then
reference it wherever it is used.

Figure 18-4. Documenting Usage of Adapter Patterns

Summary

When you have decided to use a protocol that an end-point system cannot use directly, you
need an intermediary to map the chosen protocol to and from the available end-point
interfaces. Such intermediaries are referred to as adapters.

The design of the adapter is heavily influenced by the nature of the interfaces available on
the end-point systems. These interfaces generally fall into four categories: API, database,
file, and protocol. API and protocol interfaces tend to make it easy to take inbound
messages and initiate activity in the end-point systems. These interfaces generally do not
provide mechanisms for recognizing end-point system events and triggering the sending of
messages. Database adapters tend to work well in the outbound direction, but are weak in
the inbound direction. Many adapters combine the API and database techniques to create
an adapter that works well in both directions.

The use of adapters in the architecture must be documented. The preferred mechanism for
doing this is to detail the patterns of adapter usage independent of the top-level
architecture diagrams, name those patterns, and then reference the usage of the pattern in
the top-level diagrams.

Key Adapter Questions

1. Have the needed adapters been identified?

2. For each end-point system requiring an adapter, have the available
interfaces been identified and an adapter style chosen?

3. Has each pattern of adapter utilization been documented and named? Have
the top-level activity diagrams been updated with these pattern names to
indicate where each pattern is being employed?

4. Have the network locations of the required adapters been determined? Have
the deployment diagrams been updated?

Chapter 19. Enterprise Architecture:
Communications
The need for communications and adapters becomes apparent at the project level, but there
is value in achieving consistency from project to project in terms of how these decisions are
made. The benefits range from minimizing investments in software, hardware, and training
to making it easier for people to move from project to project. The following sections
explore the enterprise architecture responsibilities associated with communications.

Defining a Communications Strategy

It is a good practice for an enterprise to establish a well-defined communications strategy.
The strategy identifies the preferred communications protocols and the conditions under
which each should be used. It also categorizes other protocols as being either (a)
acceptable for existing usages (generally with no new usage permitted) or (b) deprecated,
with the admonition that deprecated protocols should be migrated to preferred protocols at
the earliest opportunity.

The establishment of preferred protocols does not imply that a project should be undertaken
whose primary purpose is simply to replace old protocols with new ones. Such projects
typically do not provide a positive return on their investment. Instead, adopt a policy
directing that when noncompliant interfaces are being worked on (for reasons that truly do
have an ROI associated with them), the opportunity should be taken to upgrade the
protocol as well. Note that, over time, the execution of such a strategy may eventually lead
to a situation in which a project could be justified to migrate a small number of remaining
interfaces from a deprecated protocol to a standard one. Here the ROI comes from
completely retiring the deprecated protocol and its supporting infrastructure.

Simply documenting a communications strategy, however, is not sufficient. There must be
governance processes in place to ensure that projects actually comply with the chosen
strategy, and there must be a group (generally the enterprise architects) that is responsible
for the evolution of the strategy as well.

Keeping the communications strategy current and relevant requires more than just a
periodic review and update. When project teams are having trouble selecting a
communications protocol for an application from the approved list, the enterprise
architecture group must get involved quickly to determine whether the selection problem
lies in the articulation of the strategy or in the strategy itself. It may be that none of the
"standard" protocols will satisfy the requirements of the project. The hypertext transport
protocol (HTTP), for example, does not support asynchronous communications. Emerging
requirements, such as those surrounding the evolution towards event-driven service-
oriented architectures, will often provide the first indication that the current strategy may
not be adequate. Active involvement in the application of the communications strategy will
keep this guidance team in touch with the evolving needs of the business. You need to bear
in mind that the strategy will not be particularly useful if its evolution lags behind the actual
business needs.

Chapter 19. Enterprise Architecture:
Communications
The need for communications and adapters becomes apparent at the project level, but there
is value in achieving consistency from project to project in terms of how these decisions are
made. The benefits range from minimizing investments in software, hardware, and training
to making it easier for people to move from project to project. The following sections
explore the enterprise architecture responsibilities associated with communications.

Defining a Communications Strategy

It is a good practice for an enterprise to establish a well-defined communications strategy.
The strategy identifies the preferred communications protocols and the conditions under
which each should be used. It also categorizes other protocols as being either (a)
acceptable for existing usages (generally with no new usage permitted) or (b) deprecated,
with the admonition that deprecated protocols should be migrated to preferred protocols at
the earliest opportunity.

The establishment of preferred protocols does not imply that a project should be undertaken
whose primary purpose is simply to replace old protocols with new ones. Such projects
typically do not provide a positive return on their investment. Instead, adopt a policy
directing that when noncompliant interfaces are being worked on (for reasons that truly do
have an ROI associated with them), the opportunity should be taken to upgrade the
protocol as well. Note that, over time, the execution of such a strategy may eventually lead
to a situation in which a project could be justified to migrate a small number of remaining
interfaces from a deprecated protocol to a standard one. Here the ROI comes from
completely retiring the deprecated protocol and its supporting infrastructure.

Simply documenting a communications strategy, however, is not sufficient. There must be
governance processes in place to ensure that projects actually comply with the chosen
strategy, and there must be a group (generally the enterprise architects) that is responsible
for the evolution of the strategy as well.

Keeping the communications strategy current and relevant requires more than just a
periodic review and update. When project teams are having trouble selecting a
communications protocol for an application from the approved list, the enterprise
architecture group must get involved quickly to determine whether the selection problem
lies in the articulation of the strategy or in the strategy itself. It may be that none of the
"standard" protocols will satisfy the requirements of the project. The hypertext transport
protocol (HTTP), for example, does not support asynchronous communications. Emerging
requirements, such as those surrounding the evolution towards event-driven service-
oriented architectures, will often provide the first indication that the current strategy may
not be adequate. Active involvement in the application of the communications strategy will
keep this guidance team in touch with the evolving needs of the business. You need to bear
in mind that the strategy will not be particularly useful if its evolution lags behind the actual
business needs.

Interaction Standards

In the IT community the complexity of designing, implementing, and maintaining point-to-
point intermediaries resulted in the development of architectural styles and supporting
technologies that standardize the interactions between participants. Examples include e-
mail[1], fax, the Open Software Foundation's Distributed Computing Environment (DCE),
Microsoft's COM/DCOM, the Object Management Group's Common Object Request Broker
Architecture (CORBA), IBM's MQ-Series, TIBCO's Rendezvous, HTTP (HyperText Transport
Protocol), JMS (Java Messaging Service), and SOAP (Simple Object Access Protocol).

[1] This is actually a collection of standards that include various choices for the transportation interface
and for the content representation.

When you consider the use of standards for interactions, you need to be clear about
precisely which aspects of the interaction you are establishing standards for: transport
technology, content representation technology, or both. Each of the examples just
mentioned establishes a standard for communications transport, and most establish a
standard for the technology of content representation as well.

The bottom line is that the identification of a standardized technology for use in a given
interface only partially specifies that interface. In general, application teams will still need
to specify the operation and data structures associated with each interaction. The drive
towards standards in this area is the impetus behind common data models, which are
discussed in Chapter 23.

Standardizing Adapters

Architecting an adapter requires a significant effort and a deep understanding of the end-
point system architecture. Because of this, and the repeated need of different projects to
access the same end-point system, it is good practice to standardize the adapter approach
for each end point. It takes a fair amount of research to explore the different interface
capabilities of a given end point and decide upon the best approach for providing adapters.
The approach must define the design patterns to be used for both inbound and outbound
communications.

Standardized adapter patterns provide a cookie-cutter approach for implementing interfaces
to the application. The design of these patterns should take into consideration the volume
of the data involved in each exchange, the frequency with which interactions will occur, and
the latency that is acceptable in the communications. When there are significant variations
in these requirements, it may be appropriate to provide two or more patterns in each
direction along with design rules for selecting the appropriate pattern. Note that these
patterns encapsulate the end-point system functionality as a service, and thus define at
least part of the internal architecture of that service.

Summary

There are many communications protocols available today. To avoid chaos, it is good
practice to standardize on a few protocols and restrict or prohibit the use of others. The
enterprise architecture group is responsible for selecting these protocols and overseeing
their usage. Part of this oversight responsibility includes an ongoing evaluation of the
suitability and adequacy of the preferred protocols as technologies and enterprise needs
evolve.

It is likely that some end-point systems will be unable to directly use the preferred protocol.
In such cases an adapter will be required to act as an intermediary between the end point
and the preferred protocol. The architecture and design of adapters requires a deep
understanding of the end-point system. To avoid repeating this effort, the enterprise
architecture group should standardize the design for each end-point system requiring an
adapter. The design must specify the usage patterns for both inbound and outbound traffic.
Significantly different utilization patterns (i.e., time-critical request-response versus large
batch interactions) may require different design patterns.

Key Enterprise Architecture Communications Questions

1. Have the enterprise's preferred communications mechanisms and patterns
been identified and documented? Is the documentation sufficient to guide
application teams in the proper use of the selected mechanisms? Does the
documentation provide guidelines as to when each mechanism should be
used? Does the documentation tell application teams how to proceed if none
of the chosen mechanisms seem suitable for the application?

2. Have standard adapter patterns been identified and documented for end-
point systems? Is the documentation sufficiently detailed to guide
application teams in the proper use of the patterns? Does it tell application
teams how to proceed if there is no documented pattern for a given end
point or if the documented pattern does not appear appropriate?

3. Is there a governance process in place that ensures compliance with
transport and adapter policies?

4. Is there a procedure in place that enables an application team to engage
the enterprise architecture group when the communications or adapter
policies do not appear to provide appropriate mechanisms for the
application? Is the time it takes to engage the group and resolve the issue
appropriate given the project schedules?

Part V: Data and Operations

Chapter 20. Data Challenges
At this point you have chosen the mechanisms for interaction. Now you need to consider the
data being exchanged in those interactions. This data is as fundamental to the business
processes as the processes' activities. A sales order, for example, must include the
identification of the merchandise being purchased, a method of payment, and a shipping
address. In reality, most of the activities in business processes do nothing other than
acquire, manipulate, and deliver data. Only at key points in the process is physical action
taken. The goods are not shipped until after the order information has been entered, the
availability of the goods has been checked, and the credit has been checked.

Business process data is expected to reflect what is going on in the real world. The
customer's name, address, and billing information are expected to be correct and current.
Inventory numbers are expected to reflect the actual count of goods on the shelf.
Inaccuracies, inconsistencies, and ambiguity in the data all can result in business process
errors. Thus you need to pay attention to the handling of data. You need to look at the
activities that are the touch points between the data and the real worldâ!”points at which
the data is synchronized with reality. These are the points at which the warehouse ships the
order and then updates the inventory, or the bank teller gives cash to the customer and
updates the account balance. For robust business operation, the design of these activities
must minimize the likelihood of errors. Wherever data is used in the business processes, it
must be current and accurate.

If all of the enterprise's data were stored in a single database, data-related design activities
would largely focus on the data representations in that database and the business rules
governing the update of that data. But most enterprises have multiple systems. Each
system manages data associated with some aspect of the business. The sales order
management system manages the lifecycle of orders, while the warehouse management
system manages the inventory of goods in the warehouse. These systems share data, and
the systems architecture must manage this sharing. Customer information is present in the
order management system, but some customer information is also present in the
warehouse system. Each movement of data provides opportunities to create data
inconsistencies. This is where you need to focus your attention.

There are a number of key issues related to the management of data in the enterprise:

The semantics (meaning) of data both in communications and at rest

The representation of data and the transformation between representations

The consistency of data

The management of identities

The validation of results

Data semantics tells you the meaning of the dataâ!”what it actually represents. The data
representation clarifies the structure of the data, and the presence of different
representations usually requires transformation between those representations. Data
consistency deals with maintaining a single version of the "truth" throughout the enterprise.
Ideally, no matter where you look, you want to see the same information. Identity
management ensures that customers, accounts, orders, and claims can be clearly and
unambiguously identified across multiple systems. Results validation ensures that the
results generated by business process activities make sense and are consistent with other
information in the enterprise.

Part V: Data and Operations

Chapter 20. Data Challenges
At this point you have chosen the mechanisms for interaction. Now you need to consider the
data being exchanged in those interactions. This data is as fundamental to the business
processes as the processes' activities. A sales order, for example, must include the
identification of the merchandise being purchased, a method of payment, and a shipping
address. In reality, most of the activities in business processes do nothing other than
acquire, manipulate, and deliver data. Only at key points in the process is physical action
taken. The goods are not shipped until after the order information has been entered, the
availability of the goods has been checked, and the credit has been checked.

Business process data is expected to reflect what is going on in the real world. The
customer's name, address, and billing information are expected to be correct and current.
Inventory numbers are expected to reflect the actual count of goods on the shelf.
Inaccuracies, inconsistencies, and ambiguity in the data all can result in business process
errors. Thus you need to pay attention to the handling of data. You need to look at the
activities that are the touch points between the data and the real worldâ!”points at which
the data is synchronized with reality. These are the points at which the warehouse ships the
order and then updates the inventory, or the bank teller gives cash to the customer and
updates the account balance. For robust business operation, the design of these activities
must minimize the likelihood of errors. Wherever data is used in the business processes, it
must be current and accurate.

If all of the enterprise's data were stored in a single database, data-related design activities
would largely focus on the data representations in that database and the business rules
governing the update of that data. But most enterprises have multiple systems. Each
system manages data associated with some aspect of the business. The sales order
management system manages the lifecycle of orders, while the warehouse management
system manages the inventory of goods in the warehouse. These systems share data, and
the systems architecture must manage this sharing. Customer information is present in the
order management system, but some customer information is also present in the
warehouse system. Each movement of data provides opportunities to create data
inconsistencies. This is where you need to focus your attention.

There are a number of key issues related to the management of data in the enterprise:

The semantics (meaning) of data both in communications and at rest

The representation of data and the transformation between representations

The consistency of data

The management of identities

The validation of results

Data semantics tells you the meaning of the dataâ!”what it actually represents. The data
representation clarifies the structure of the data, and the presence of different
representations usually requires transformation between those representations. Data
consistency deals with maintaining a single version of the "truth" throughout the enterprise.
Ideally, no matter where you look, you want to see the same information. Identity
management ensures that customers, accounts, orders, and claims can be clearly and
unambiguously identified across multiple systems. Results validation ensures that the
results generated by business process activities make sense and are consistent with other
information in the enterprise.

Chapter 21. Messages and Operations
The selection of a communications protocol establishes the technology that will be used to
transport the data and perhaps the technology that will be used to represent the data. It
generally does not establish either the semantics (meaning) or syntax (structure) of the
message itself. When interacting components differ in their expectations concerning the
semantics or syntax of the messages they exchange, some form of transformation is
required as part of the exchange.

Message Semantics and Operation Names

When you look at a message, there are two relevant semantic questions: What does the
content of the message represent? And what does the message as a whole represent? One
does not necessarily imply the other.

Message Semantics

The meaning of a message is not necessarily implied by its content. Consider a message
containing a representation of a sales order. What does this message actually represent? It
might be a request for the order to be placed, the result of a query for the order, or an
announcement that the represented order has been placed. Just looking at the data, you
can't tell the difference.

It is not always obvious how to discern the meaning of a message. Many messages do not
contain explicit indicators of the message intent. While protocols such as SOAP have an
explicit soap action header to indicate the meaning of the message, the meaning of many
messages is indicated by the destination to which the message is sent rather than the
message itself. One of your responsibilities as an architect is to ensure that the meaning of
each message is clear.

Broadly speaking, any given message plays one of three roles:

1. It is a request for some action to be taken.

2. It is a response to a request.

3. It is an announcement that some event has occurred.

The first two are the communications commonly associated with a request-reply exchange.
The third is the basis of broadcast-style event-driven notifications.

Messages are exchanged between components, and are sent either to or from specific
operations being provided by those components. The meaning of the message is thus
closely related to the semantics of the operation. A placeOrder request message might
be the input to the placeOrder operation, whose reply might be a placeOrder reply
(Figure 21-1).

Figure 21-1. Labeling Messages to Indicate Their Roles

Operation Naming

At this point in assembling the architecture you should begin thinking about naming the
operations and identifying the roles that the various messages are playing. It is good
practice to place this information in the name field of the object representing the message
in the activity diagrams. One test of your naming is to try to read the diagram as a
sentence, for example, "The front-end system submits a placeOrder request (of
type SalesOrder) to the Sales Order Management Service. The service validates
and persists the order and sends a placeOrder reply (of type SalesOrderACK) to the
front-end system that is waiting for this acknowledgment. Use this as an opportunity to
refine the terminology that you are using so that what is going on is clear even to someone
not familiar to the system. With appropriate terminology, these diagrams provide an easy-
to-understand introduction to the systems.

At the same time that you are updating the activity diagram, you should add the operations
you are identifying to the class model of the component (Figure 21-2). The parameters of
the operations are the data structures being passed in, and the return types of the
operations are the data structures being returned.

Figure 21-2. Adding Operations to the Sales Order Management Service

When the transport and representation technology such as SOAP provides for an explicit
representation of the operation name, then the name you give to the object in the activity
diagram becomes an explicit reference to the operation. However, in many message-based
systems there is no explicit operation name. The message sender directs a message to an
abstract destination name (e.g., a JMS topic or queue name). The operation provider
subscribes to that destination and processes the messages, possibly sending other
messages in response. In such situations, the message name should be the name of the
destination, and the name of the destination should reflect the semantics of the messages.

The syntax and semantics of the content define what the content is and how it is organized.
It might be a purchase order from a customer represented in a particular XML schema, or a
list of customers and their credit history in a file format, or the description of a product as
free-form ASCII text.

Chapter 21. Messages and Operations
The selection of a communications protocol establishes the technology that will be used to
transport the data and perhaps the technology that will be used to represent the data. It
generally does not establish either the semantics (meaning) or syntax (structure) of the
message itself. When interacting components differ in their expectations concerning the
semantics or syntax of the messages they exchange, some form of transformation is
required as part of the exchange.

Message Semantics and Operation Names

When you look at a message, there are two relevant semantic questions: What does the
content of the message represent? And what does the message as a whole represent? One
does not necessarily imply the other.

Message Semantics

The meaning of a message is not necessarily implied by its content. Consider a message
containing a representation of a sales order. What does this message actually represent? It
might be a request for the order to be placed, the result of a query for the order, or an
announcement that the represented order has been placed. Just looking at the data, you
can't tell the difference.

It is not always obvious how to discern the meaning of a message. Many messages do not
contain explicit indicators of the message intent. While protocols such as SOAP have an
explicit soap action header to indicate the meaning of the message, the meaning of many
messages is indicated by the destination to which the message is sent rather than the
message itself. One of your responsibilities as an architect is to ensure that the meaning of
each message is clear.

Broadly speaking, any given message plays one of three roles:

1. It is a request for some action to be taken.

2. It is a response to a request.

3. It is an announcement that some event has occurred.

The first two are the communications commonly associated with a request-reply exchange.
The third is the basis of broadcast-style event-driven notifications.

Messages are exchanged between components, and are sent either to or from specific
operations being provided by those components. The meaning of the message is thus
closely related to the semantics of the operation. A placeOrder request message might
be the input to the placeOrder operation, whose reply might be a placeOrder reply
(Figure 21-1).

Figure 21-1. Labeling Messages to Indicate Their Roles

Operation Naming

At this point in assembling the architecture you should begin thinking about naming the
operations and identifying the roles that the various messages are playing. It is good
practice to place this information in the name field of the object representing the message
in the activity diagrams. One test of your naming is to try to read the diagram as a
sentence, for example, "The front-end system submits a placeOrder request (of
type SalesOrder) to the Sales Order Management Service. The service validates
and persists the order and sends a placeOrder reply (of type SalesOrderACK) to the
front-end system that is waiting for this acknowledgment. Use this as an opportunity to
refine the terminology that you are using so that what is going on is clear even to someone
not familiar to the system. With appropriate terminology, these diagrams provide an easy-
to-understand introduction to the systems.

At the same time that you are updating the activity diagram, you should add the operations
you are identifying to the class model of the component (Figure 21-2). The parameters of
the operations are the data structures being passed in, and the return types of the
operations are the data structures being returned.

Figure 21-2. Adding Operations to the Sales Order Management Service

When the transport and representation technology such as SOAP provides for an explicit
representation of the operation name, then the name you give to the object in the activity
diagram becomes an explicit reference to the operation. However, in many message-based
systems there is no explicit operation name. The message sender directs a message to an
abstract destination name (e.g., a JMS topic or queue name). The operation provider
subscribes to that destination and processes the messages, possibly sending other
messages in response. In such situations, the message name should be the name of the
destination, and the name of the destination should reflect the semantics of the messages.

The syntax and semantics of the content define what the content is and how it is organized.
It might be a purchase order from a customer represented in a particular XML schema, or a
list of customers and their credit history in a file format, or the description of a product as
free-form ASCII text.

Transport Destinations and Operation Bundling

When a messaging service is being used to deliver operation requests, it is common
practice (though not always a good idea) to use a common messaging service destination
for different kinds of requests. This is particularly the case with SOAP services defined with
the Web Services Description Language (WSDL): All of the operations defined in a single
WSDL interface[1] are usually provided through a single destination. Such bundling can
provide advantages, but it needs to be approached with caution.

[1] Called a portType in WSDL 1.x.

Bundling Advantages

Bundling is attractive for two reasons: administrative simplicity and sequencing. From a
messaging administration point of view, bundling definitely makes life simpler. Having a
single destination for all operations provided by a single service interface makes the setup
of the communications infrastructure straightforward: Each interface corresponds to a
messaging system destination.

A more compelling argument in favor of bundling is the issue of sequencing. When different
operations impact a common shared state, the sequence in which these operations are
applied is usually important. If you perform a credit operation followed by a debit operation,
it is important that these operations be performed in the correct order. This is not usually
an issue when the operations are performed in a synchronous request-reply, since the party
invoking the transaction will wait for the first transaction to complete before invoking the
second. However, when there are asynchronous interactions involved, preserving the
sequence is important.

Messaging systems, in general, guarantee the ordering of messages between pairs of
components. By bundling together the operations requiring sequencing and using a single
destination, the messaging system will preserve the required sequencing. Thus, it is
beneficial to bundle the CRUD (create, read, update, and delete) operations for a given
entity.

Bundling Disadvantages

There are a couple of disadvantages to bundling related to change management and tuning.
From a change management perspective, bundling the operations together can complicate
adding or altering operations. Bundling effectively requires a logical case statement to take
the incoming requests, determine which operation has been invoked, and direct the request
to the appropriate implementation. Adding a new operation or altering the implementation
of an existing operation requires the modification of this case statement. Depending upon
the implementation technology, this can make it awkward for different people to make
changes to different operations at the same time. Furthermore, the fact that this logic has
been altered may require a complete retest of all operationsâ!”an expensive and time-
consuming task. Finally, changes that actually alter the interface definition now impact all
users of all operations in the bundle.

Another disadvantage of bundling is that it may make it difficult to tune the service
provider. In many implementations, tuning is done at the interface (bundle) level. If the
same interface happens to contain both small operations requiring a quick response time
(e.g., a status request coming from an interactive user) and large resource-intensive
operations (e.g., a batch submission of 10,000 insurance claims) it may be a practical
impossibility to optimally tune the service provider for both operations.

Compromises

As the architect, it is your responsibility to sort out the bundling dilemma and decide what
approach should be taken for the solution. You might, for example, segregate short-
response-time operations and resource-intensive operations into separate interfaces (Figure
21-3). This achieves some of the administrative simplification while preserving the ability to
tune the resulting implementation. Of course, to make such decisions you need to be
familiar with the likely implementation technologies along with their strengths and
limitations. As much as you would like the abstraction of services to mask such underlying
implementation details, the reality is that they often show through in the form of observable
differences in performance.

Figure 21-3. Bundling Operations

As you define the interface bundles, you need to define the destinations associated with
each bundle (Table 21-1). If this turns out to be a SOAP service, this information will
eventually end up in the WSDL defining the service interfaces. Bear in mind that you may
want to have multiple destinations (representing multiple transports) for each interface to
facilitate access.

Table 21-1. Service Interfaces and Destinations

Service Interface Destination

XYZ Service Short
Response Time
Operations

MyCo.Sales.XYZService.interactiveOperations

XYZ Service Resource-
Intensive
Operations

MyCo.Sales.XYZService.batchOperations

Mediated Transports

There is a trend towards increasing levels of abstraction in the interactions between service
consumers and service providers. The Java Business Interface (JBI) specification is an
example of such an abstraction.[2] These abstractions seek to hide transport details,
allowing service consumers to simply indicate the desired operation and interface without
having to specify a destination for the request. The mediated transport then determines the
actual destination and routes the request.

[2] Sun Microsystems Inc. Java Business Integration (JBI) 1.0 Final Release
http://jcp.org/aboutJava/communityprocess/final/jsr208/index.html (2005).

While mediated transports relieve the service consumer (and provider) from the necessity of
indicating the destinations for messages, the actual destinations still need to be
determinedâ!”now by the mediating transport. Far from eliminating operation bundling as
an architectural concern, you must now understand enough of how the mediating transport
determines destinations to determine the impact of operation bundling upon the
performance of the solution.

Content Representation

At this point in defining the architecture you identify the data representations that will be
used for each interaction. This consists of identifying the schema of the representation along
with any constraints on the data content. For example, if the component is presenting a
SOAP interface, the defining WSDL schema defines all of the interface's operations. For a
particular interaction, you want to identify not only the WSDL, but also the specific
operation involved in the interaction.

In some cases you will have no choice in the data representation being used. The data
structures involved in existing end-point system interactions are generally defined by the
interfaces of those systems, and you have to use them as-is. Similarly, many commercial
adapters produce data structures that are automatically derived from the end-point
system's data structures. However, for all other interfaces you must determine the data
representation.

When you are determining the data representations, your goal at this point is simply to
identify the schema that will be required. The actual definition of the schema will come later
after you are satisfied with the architecture. In some cases a suitable schema already exists
and you just need to reference it. In all other cases you need to identify the type of the
schema and give the yet-to-be-defined schema a name.

The purpose of the exercise is primarily to determine whether the sending and receiving
components in an interaction are using the same schema or different schemas. In
particular, you need to identify those cases in which the interacting components are using
different schemas, for these cases require an additional activity to transform the content
from one format to the other.

Content Transformation

If two interacting participants differ with respect to the data representation, you need to
introduce a content transformation to convert the message from the form supplied by the
sender to the form required by the recipient. This activity might be performed by one of the
existing components or by a separate component dedicated to this task. Figure 21-4 shows
the content transformation being performed by a dedicated content transformer.

Figure 21-4. Standardized Protocol and Content Transformer Communications
Pattern

[View full size image]

The content transformation could just as well have been incorporated into one of the two
adapters and there are valid arguments for architecting the solution either way. The data
structures produced and consumed by many adapters are determined by the end-point
systems and tend to be relatively fixed. The content transformation, on the other hand, is
driven by the solution's need for one end-point system to interact with another. Placing the
transformation in its own component means that transformation changes are isolated from
the adapters, simplifying the lifecycle of the change. This approach also allows the same
adapter (or end-point system) interface to participate in many different transformations. On
the other hand, making the content transformation part of the adapter eliminates one
interaction and therefore simplifies the overall design. This approach is often used when the
data structure being produced is a common data model representation (discussed in Chapter
23). Note that if you are using commercial adapter and transformation components, their
design may dictate which approach is used.

Reference Data in Content Transformation

On the surface, the role of Content Transformer appears to be straightforward: Given
an understanding of both data structures, convert one into the other. Although the
computations involved can be messy, the details are generally not an architectural concern
beyond simply understanding the feasibility of the transformation (i.e., knowing whether
there is actually enough information present in one data structure to generate the other)
and the level of resources (mostly CPU and memory) that will be required to perform the
transformation.

But transformations often require reference data. The source system uses different
customer identifiers than the target system. The source data structure has prices in US
dollars and the target data structure requires prices in euros. In such cases, the content
transformation requires reference data such as a cross-reference between the two sets of
identifiers or a conversion rate from US dollars to euros. This need for reference data is an
important architectural issue. It creates a dependency between the business process
requiring the reference data and the business process that creates and maintains that
reference data. The mechanics of actually accessing the reference data need to be worked
out.

When reference data is involved, you have to add the reference data creation and
maintenance processes to the use case inventory along with whatever additional business
processes are necessary to place that reference data where it can be accessed by the
Content Transformer. You may have to go back to the business community to learn
about the origin of this information and how it is maintained. You will also need to
determine whether any of these business processes will require alteration. If they do require
alteration, then they need to be added to the inventory of processes requiring work, and
that work must be included in the project plan.

You need to be vigilant in your search for reference data dependencies and make a
conscious effort to identify these dependencies as early in the project as possible. Every one
of these dependencies is realâ!”the reference data is truly needed to perform the work. If
that data is not already in a location and format suitable for this usage, then there is work
to be done. The longer you wait before you identify the dependency, the less time will be
available to do the work. Often the reference data is not under your controlâ!”it comes
from another system, and possibly from an organization that is not presently involved in the
project. It will take calendar time to negotiate with that organization, even if the work to be
done is trivial. Early identification of these dependencies can avoid fire-fighting later in the
project. It will also reduce project costs, as fire-fighting tends to consume more resources
than properly scheduled work.

Summary

A message can play one of three roles: It can be a request for some action to be taken, it
can be the response to such a request, or it can be an announcement that some event has
occurred. Indicating the role being played by each message brings clarity to the overall
design and serves as a guide to the naming of the operations. As you identify these roles,
you also identify the operations being performed by the components and thus begin to build
an understanding of the required component interfaces.

Component operations must be accessed via the transport, and the association of transport
destinations with operations requires careful consideration. Associating bundles of
operations with a single transport destination may make it difficult to tune the component
implementing the operations when some operations require rapid response times while
others are time-consuming resource hogs.

The data structures being produced and consumed by interacting components need to be
identified along with the schemas that define those structures. When two interacting
components employ different data structures, the content of one must be transformed into
the form of the other for the interaction to occur. The responsibility for this content
transformation activity must be assigned to a component and may result in the addition of
a new component dedicated to this task. Content transformation may also require reference
data for lookup and substitution of values. The business process origin of the reference data
must be identified.

Key Messages and Operations Questions

1. Has each interaction been characterized as a request, a reply, or an
announcement?

2. Have the operations of the components been identified? Have the
associated data structures been identified?

3. Is there a need for content transformation? If so, has this responsibility
been assigned to a component?

4. Do any of the content transformations require reference data? If so, what
business process is creating this reference data?

5. Have the bundling of operations and the associations between operation
bundles (interfaces) and transport destinations been established?

Chapter 22. Data Consistency: Maintaining One
Version of the Truth
When you look at data elements in the business processes, you want to see the same values
regardless of where you look. If you look up the shipping address in the warehouse
management system, you want to see the same shipping address that is in the order entry
system, even if the customer just went online to the order entry system and changed it.
Discrepancies in values are, in fact, errorsâ!”errors that can cause mistakes in business
processes.

Since data inconsistencies can cause errors in business processes, you would naturally want
to avoid such inconsistencies. But actually the siloed systems that typically populate the
enterprise IT landscape were never designed to coordinate their information updates with
those of other systems. In addition, the geographic distribution of the enterprises and the
latency and less-than-perfect availability of wide-area communications often make it
impractical to guarantee 100 percent consistency across all systems at all locations all of the
time. Therefore, to some extent, you have to live with some level of inconsistency in
business processes. But this does not mean you can afford to ignore the issue. Shipping
goods to the wrong address or shipping the wrong goods costs the enterprise money. While
you may not be able to guarantee complete consistency, you can design the business
processes and manage the data updates so that you minimize the likelihood of
inconsistencies and the impact they have on the business processes.

Approaches to Maintaining Data Consistency

The simplest way to achieve data consistency is for each data element to reside in exactly
one system. This system is then the system of record for that piece of data. If you need
that piece of data, you must go to that system to obtain it. But there are three problems
with this approach. One is that some level of data sharing between systems is unavoidable.
It is not possible for an order to be in the order management system (the system of record)
and to have the shipment information in the warehouse management system without the
warehouse management system having at least a reference to the order. Therefore, the
order identifier must be present in both systemsâ!”and now you have duplicated a piece of
information.

The second problem with the single system of record approach is performance. If the data
is frequently used, it may be impractical for the system of record to support a high rate of
access to the data. Imagine the impact on an online bookseller if every time a customer
ordered a book the system queried every warehouse in the enterprise to determine whether
that book was in stock! The query load on the warehouse system would vastly exceed the
capacity required to support the normal warehouse operations. In addition, the latency
incurred in aggregating all of this data together would slow down the response to the
customer, thus degrading the customer experience. Better to support the customer queries
with a central inventory cache and update that cache when items are actually shipped from
the warehouse. Once again, this results in replicated information.

The third single system-of-record problem is availability. If you have to go to each of the

warehouses to get inventory information, then each of those systems must be available and
every communications link has to be operable in order to obtain the inventory. All of that
for just one piece of information! In distributed systems, the strategy of obtaining every
piece of data from its system of record can create so many inter-system operational
dependencies that the availability of the overall business processâ!”the percentage of the
time that the process is working properlyâ!”suffers. Maintaining a high-availability business
process would then require extraordinarily large investments in high-availability systems
and communications linksâ!”investments that eat into (or overwhelm) any benefits the
enterprise might realize from the single system of record.

For all of these reasons, you often need to replicate data. But replication immediately raises
the specter of data inconsistency, so now you need to determine how to go about
maintaining consistency. What strategy should you employ, and how should you go about
implementing that strategy? Your choice of strategy will be heavily influenced by both the
design of the business process and the impact that a data inconsistency will have on the
business process. Conversely, your consideration of available data management strategies
might lead you to alter the business process design to minimize the business impact of data
inconsistencies. Let's explore the possibilities.

There are three basic strategies available for maintaining replicated data. The first involves
a single system of record for each data element combined with managed replicas (caches)
of that data. The second abandons the notion of system of record and seeks to
simultaneously update all copies of the data. The third, also abandoning the system-of-
record notion, allows the data to be edited anywhere it appears and then attempts to
reconcile the discrepancies. As we shall see shortly, the first and second options can
guarantee data consistency (if you ignore the time lag in updating the cache), while the
third can never provide such a guarantee. So why should you even consider this third
possibility? Because, unfortunately, it is the one you most commonly encounter in existing
systems. You must learn how to deal with it.

Chapter 22. Data Consistency: Maintaining One
Version of the Truth
When you look at data elements in the business processes, you want to see the same values
regardless of where you look. If you look up the shipping address in the warehouse
management system, you want to see the same shipping address that is in the order entry
system, even if the customer just went online to the order entry system and changed it.
Discrepancies in values are, in fact, errorsâ!”errors that can cause mistakes in business
processes.

Since data inconsistencies can cause errors in business processes, you would naturally want
to avoid such inconsistencies. But actually the siloed systems that typically populate the
enterprise IT landscape were never designed to coordinate their information updates with
those of other systems. In addition, the geographic distribution of the enterprises and the
latency and less-than-perfect availability of wide-area communications often make it
impractical to guarantee 100 percent consistency across all systems at all locations all of the
time. Therefore, to some extent, you have to live with some level of inconsistency in
business processes. But this does not mean you can afford to ignore the issue. Shipping
goods to the wrong address or shipping the wrong goods costs the enterprise money. While
you may not be able to guarantee complete consistency, you can design the business
processes and manage the data updates so that you minimize the likelihood of
inconsistencies and the impact they have on the business processes.

Approaches to Maintaining Data Consistency

The simplest way to achieve data consistency is for each data element to reside in exactly
one system. This system is then the system of record for that piece of data. If you need
that piece of data, you must go to that system to obtain it. But there are three problems
with this approach. One is that some level of data sharing between systems is unavoidable.
It is not possible for an order to be in the order management system (the system of record)
and to have the shipment information in the warehouse management system without the
warehouse management system having at least a reference to the order. Therefore, the
order identifier must be present in both systemsâ!”and now you have duplicated a piece of
information.

The second problem with the single system of record approach is performance. If the data
is frequently used, it may be impractical for the system of record to support a high rate of
access to the data. Imagine the impact on an online bookseller if every time a customer
ordered a book the system queried every warehouse in the enterprise to determine whether
that book was in stock! The query load on the warehouse system would vastly exceed the
capacity required to support the normal warehouse operations. In addition, the latency
incurred in aggregating all of this data together would slow down the response to the
customer, thus degrading the customer experience. Better to support the customer queries
with a central inventory cache and update that cache when items are actually shipped from
the warehouse. Once again, this results in replicated information.

The third single system-of-record problem is availability. If you have to go to each of the

warehouses to get inventory information, then each of those systems must be available and
every communications link has to be operable in order to obtain the inventory. All of that
for just one piece of information! In distributed systems, the strategy of obtaining every
piece of data from its system of record can create so many inter-system operational
dependencies that the availability of the overall business processâ!”the percentage of the
time that the process is working properlyâ!”suffers. Maintaining a high-availability business
process would then require extraordinarily large investments in high-availability systems
and communications linksâ!”investments that eat into (or overwhelm) any benefits the
enterprise might realize from the single system of record.

For all of these reasons, you often need to replicate data. But replication immediately raises
the specter of data inconsistency, so now you need to determine how to go about
maintaining consistency. What strategy should you employ, and how should you go about
implementing that strategy? Your choice of strategy will be heavily influenced by both the
design of the business process and the impact that a data inconsistency will have on the
business process. Conversely, your consideration of available data management strategies
might lead you to alter the business process design to minimize the business impact of data
inconsistencies. Let's explore the possibilities.

There are three basic strategies available for maintaining replicated data. The first involves
a single system of record for each data element combined with managed replicas (caches)
of that data. The second abandons the notion of system of record and seeks to
simultaneously update all copies of the data. The third, also abandoning the system-of-
record notion, allows the data to be edited anywhere it appears and then attempts to
reconcile the discrepancies. As we shall see shortly, the first and second options can
guarantee data consistency (if you ignore the time lag in updating the cache), while the
third can never provide such a guarantee. So why should you even consider this third
possibility? Because, unfortunately, it is the one you most commonly encounter in existing
systems. You must learn how to deal with it.

Cached Data with a Single System of Record

The simplest strategy for maintaining data consistency across the enterprise is to establish
a single system of record for each piece of data. This system is the only place that the data
may be altered, whether it is being created, modified, or deleted. All other instances of the
data in other systems are read-only copies of the system-of-record data.

Cached copies only work if they are kept consistent with the system-of-record data.
Accomplishing this requires two things: an event-recognition mechanism that recognizes
changes in the original data and a data update mechanism to get the revised version of that
data into the data caches. Generally, the recognition of the change event presents the
greatest design challenge. The design issues surrounding this event recognition are the
same as those of the communications adapters that were discussed in Chapter 18. Ideally,
the system-of-record application would be designed to recognize the change and
immediately announce changes to the data (Figure 22-1). It would send a message out
each time a new order was entered, modified, or cancelled. This message would then serve
as the triggering event for updating the cached information in other systems. Problem
solved.

Figure 22-1. Ideal Cache Update Pattern

[View full size image]

Unfortunately, in the real world you rarely find systems that are either designed to
announce such changes (in standard form via standard protocols) or to receive such generic
notifications and update local copies. In such cases you must employ adapters (Figure 22-
2). You might, for example, employ an adapter using database triggers to capture the
change to the original data. On the receiving end, another adapter is used here to accept
the standardized change notification and invoke the necessary interfaces on the caching
system to update the cache.

Figure 22-2. Typical Event-Driven Cache Update Pattern

[View full size image]

If you are unable to capture the change events associated with altering the source data, you
can employ the batch approach (Figure 22-3). This approach, commonly referred to as ETL
(Extract, Transform, and Load), is frequently found in older batch-oriented architectures.
Depending upon the circumstances, it can have some significant drawbacks. In many
systems it is difficult to identify exactly what information has changed. In such
circumstances, all of the system-of-record data (regardless of whether or not it has
changed) must be extracted and used to update the cache. This is computationally
expensive, as the volume of data being moved tends to be far greater than what is strictly
necessary. This puts a burden on both the networks and the machines involved in the
movement of the data. Because of this computational expense, the operation tends to be
performed infrequently, typically once a day. Consequently, there may be a considerable
delay between the time that the updates are made to the system of record and the time
that corresponding changes are made to the cached data. During this time the cached data
is in error and may adversely impact the business processes using the cached data.

Figure 22-3. Typical ETL Cache Update

[View full size image]

Batching, as a strategy, extends the period of time during which the cached data is
inconsistent with the original data. It therefore increases the likelihood that business
processes will use out-of-date data and cause problems. For this reason, the event-driven,
near-real-time update of cached data is generally preferred. Despite that on a per-item
basis the computational cost for event-driven updates will likely be greater than for batch
updates, fewer items will need to be processed, and the processing will more than likely be
distributed over time. The peak load will therefore be lessened, and less machine and
network capacity will be required. The combination of quick update and lower peak-capacity
requirements makes a compelling case for event-driven updates.

Regardless of which approach is taken to updating the cache, caches are not perfect. There
will always be a lag between the time the original data is edited and the time the cache is
updated. During that period, the cached data will be inconsistent. You must therefore
examine the business processes that are using the cache and determine whether the
business risks arising from such inconsistencies are tolerable. Ultimately this is a judgment
call that can only be made by the business community. Therefore, you must engage the
business community to attain an understanding of these consequences, and then let that
understanding guide your actions.

Another issue you need to consider with cache updates is the impact of communications

failures. If nothing else, the loss of communications will lengthen the period of time during
which the cache will be out of date. But you also need to ensure that all of the needed
cache updates are applied after communications is restored. Another kind of
communications failure is the outright loss of a cache update message. You need to
understand the consequences of such a loss. If the consequences are serious enough, you
must determine how you will know when the cache is in error, how will it get refreshed with
the latest data, and what level of effort is warranted for these activities.

One simple thing you can do to minimize the impact of losing a cache update message is to
avoid sending updates in the form of incremental changes. Rather than sending a message
indicating that one book has been removed from inventory, send a message giving the
latest total inventory for that title. With this approach, even if one inventory update
message is lost, the next inventory message related to that title will automatically correct
the error.

The same type of thinking can be applied to sending collections of related data rather than
individual data element updates. When a customer moves, instead of sending a billing
address update followed by a phone number update, it is better to wait until the editing has
been completed and then send a full set of customer data. This not only makes the updates
more efficient, but it will correct any previous breakdowns in updating other information
related to this customer. Of course, it does introduce another kind of problem: How do you
know when the editing is "done"? You need to understand what defines the boundaries
around a given transaction so that you can ignore the activity going on within it and only
capture information when the transaction has been completed.

Coordinated Updates via Distributed Transactions

A second alternative for maintaining data consistency is to allow multiple copies of the data,
but to update them all at once. There are some characteristics of this distributed transaction
approach (the mechanics of which are discussed in Chapter 28) that may make it unsuitable
in some business processes:

1. All participants must be designed to participate in a distributed transaction, and many
of the participants are likely to be existing systems that do not have this capability.

2. All of the participants must be operational at the same time in order to perform the
update. Thus if any participant is unavailable, no update can occur and the business
process grinds to a halt. Operational interdependencies such as this make it difficult
to maintain a high level of business process availability, particularly when the
participants are geographically distributed and communications are unreliable.

3. The time it takes for all of the communications and updates to occur may introduce
unacceptable delays into the business process.

For these reasons, distributed transactions are rarely used for coordinated data updates:
They are complicated to implement; most existing systems lack the support for the needed
protocols; no update can occur if any participant is unavailable; and the time it takes to do
all the updates slows down the overall business process. Taken together, this unattractive
set of circumstances explains why you generally do not see distributed transactions used to
maintain data consistency.

Edit Anywhere, Reconcile Later

The third alternative for maintaining data consistency is to allow the editing of information
in more than one system and then attempt to reconcile the information after the fact. The
major problem with this approach is that it is literally impossible to guarantee that you end
up with the correct value in every system. The reason for this is that while you may be able
to detect a difference in values, you don't know which value is correct. Intuition may
suggest some approaches, such as time-stamping the updates, but what do you do if both
values have the same time stamp? You could spend a lot of time trying to develop
approaches to guaranteeing consistency, but such efforts are futileâ!”and provably so! No
matter what you do, there will always be circumstances that will lead to ambiguity. If you
are interested in understanding why this is so, Lamport, Shostak, and Pease provide an
elegant proof in their paper "The Byzantine Generals Problem."[1]

[1] Leslie Lamport, Robert Shostak, and Marshall Pease, "The Byzantine Generals Problem," ACM
Transactions on Programming Languages and Systems, 4(3):382â!“401, July 1982.

So if this approach can't guarantee consistency, why are we even talking about it? Because
you are often forced into this approach by the design of existing systems. Customer data is
all over the place. It is in the order entry system, the warehouse system, and the billing
system. Product information is in the manufacturing system and in the online catalog
system. Each of these systems has its own mechanisms for entering the data, and none of
them have been designed to coordinate their updates with those of other systems.

There is another source of data inconsistency that you must consider as well, and this is an
inconsistency between the data you have in the system and the physical reality it is
supposed to represent. The inventory level in the warehouse system is supposed to reflect
the actual number of items on the warehouse shelf, but there is no guarantee that the two
are consistent. Loss, breakage, theft, and human error can all result in inconsistencies.
These are realities that you will encounter in business processes, and you must design
accordingly at both the business process and system level.

Dealing with Data Inconsistencies

Given that you are going to encounter data inconsistencies, you need to think about how
they are going to be managed. Managing inconsistencies boils down to looking for
inconsistencies and then reconciling them. The reason companies do physical inventory is to
check the consistency between the records and the actual on-shelf stock level. When there
are discrepancies, the company may just correct the records (writing off the losses) or may
start a search for the missing items. Similarly, you can compare the data in different
systems and begin a process of reconciling their differences. Whether checking and
reconciliation are manual or automated, they constitute yet another business process that
you need to add to the inventory.

When you consider the design of a checking and reconciliation process (or whether it should
be done at all), the starting point has to be an understanding of the consequences of an
inconsistency. What is the risk if your checkbook balance differs from the bank's record?
What is the risk if the enterprise promises immediate delivery to a customer and later finds
out that the inventory is in error and there is nothing to deliver? What is the risk if the
wrong dosage of medicine is delivered to a patient? Once you understand the risk, you will
have a better understanding of the level of effort that is warranted in detecting and
resolving inconsistencies. You have already acquired some insight into thisâ!”it was part of
the business process ranking when you asked about the business impact of each business
process. You simply need to augment this with an understanding of whether the specific
inconsistency you are considering is likely to cause a breakdown in the business process.

If an inconsistency warrants action, what action can you take? Basically, you have three
choices: change the data management strategy, manage the way the systems are used to
avoid inconsistencies (e.g., restrict editing to just one system), or detect and fix the
discrepancies. To alter the data consistency strategy, you change the design of the business
process and systems to either avoid replication at all or adopt a replication strategy that
can guarantee consistency. This is often more easily said than done for existing business
processes and systems. The extent of the systems impact can make this is a relatively
expensive approach. Such changes often end up as a long-term goal rather than a short-
term solution.

The second option is to impose business process policy on the use of the systems to avoid
creating inconsistencies in the first place. This is actually a poor-man's approach to
achieving a single system of record. You identify one system as a de-facto system of record
and (by policy) avoid using the editing interfaces on the other systems to make changes to
the data. The only time those interfaces are used is to enter updates that originate in the
newly designated system-of-record. Unfortunately, while such a policy may reduce the
likelihood of inconsistencies, it does not prevent those interfaces from being used.
Implementing such policies is a business process design issue. Whenever the information
needs to be updated, the business process must be altered to use the newly designated
system of record, and a cache update scheme must be implemented. The challenge lies in
finding all of the business processes that may update the informationâ!”particularly during
exception handling!

The third option is to find and fix discrepancies. Despite the fact that you cannot tell which

of two differing values is correct, you can always tell whether they differ! A simple
comparison of the data will identify whether or not the values are the same. Of course,
there is work involvedâ!”both design work and runtime computations, and you need to
factor these into your thinking. But there are also options. Rather than comparing every
data element of two data sets to discover a discrepancy, you might compute a check-sum
from each and compare the check-sums. This is less expensive (particularly with respect to
communications costs) and more easily done. Of course, it doesn't tell you which data
elements are different. That would have to be part of a follow-on reconciliation process.

Once a discrepancy has been identified, you need to determine what the reconciliation
process will be. This reconciliation process may involve some form of assumption (the data
in system A is in error less often than the data in system B, so system A's data will be
considered correct) or it may involve a human investigation. Regardless of the reconciliation
strategy, you need to determine what the reconciliation process is.

Data Management Business Processes

One thing that has become clear in this discussion of data consistency is that if you have
replicated data, there is extra work to do. If you have a data cache, the cache needs to be
updated when the source data is changed. If you are using distributed transactions, the
transaction itself needs to be designed and probably offered as a service. If you allow
editing of the data wherever it appears, you need a process that detects and reconciles data
discrepancies.

Each of these data management tasks is yet another process that needs to be performed so
that the primary business processes work properly. Some, such as the distributed
transactions, may only be services and not complete business processes. Nevertheless, they
are all processes on some scaleâ!”even the service. As such, you need to treat each as you
would any other process. You need to identify the collaboration, add the process to the
inventory, understand its business risks and required performance metrics, and rank it. You
need to design it along with its supporting systems, deploy it, and operate it. The existence
of a data management process alters the scope of the project and must become part of the
project plan.

Summary

There are a number of approaches to maintaining data consistency. The simplest is to have
only one copy of the data, but that is often impractical. The next simplest is to have a
single system of record for each data element but allow cached copies in other systems. The
use of caching, however, requires a cache update mechanism. Distributed transactions can
be used to keep multiple copies in synch, but this approach has drawbacks that limit its use.
The worst case is to allow editing of the data wherever it appears, a common situation
when there are legacy systems involved. In such cases, data consistency can never be
guaranteed.

When data inconsistencies are a possibility, the business risks arising from the
inconsistencies must be assessed. Higher risks may warrant investments in detecting and
reconciling inconsistencies.

Key Data Consistency Questions

1. Is there a clearly defined system of record for each concept and relationship
involved in the business process?

2. If there is no single system of record for a concept or a relationship, do
discrepancies pose a significant business risk? If there is significant risk,
have processes been defined for detecting and reconciling data
discrepancies?

3. Is data being replicated? If so, have the processes been defined for
managing the replicated data? Is auditing required to detect discrepancies
in the replicated data?

Suggested Reading

Bernstein, Philip A., and Eric Newcomer. 1997. Principles of Transaction Processing for the
Systems Professional. San Francisco, CA: Morgan Kaufmann.

Lamport, Leslie, Robert Shostak, and Marshall Pease. "The Byzantine Generals Problem,"
ACM Transactions on Programming Languages and Systems, 4(3):382â!“401, July 1982.

Chapter 23. Common Data Models (CDM)
When information is moved from one system to another and those systems organize that
information differently, the information originating in one system's representation must be
transformed to that of the other. When such transformations are required, you have a
design choice to make: Should you simply transform this information directly from one
system's format to the other, or should you transform it first to a system-neutral data
format and then to the recipient's format? Such a system-neutral format is generally
referred to as a common data model. Designed properly, common data models can make
the information more accessible. Their power increases further when they become the data
representations that end-point systems actually work with.

What Is a Common Data Model?

A common data model is simply a well-engineered and standardized representation of a set
of information. It is a standardized view of some aspect of the enterprise. But do not be
confused by the term "standard." The standardization required is relative to the enterprise
and does not need to be an industry standard. Calling it a standard just means that the
enterprise has decided to use it (as opposed to some other representation) universally
within the enterprise.

A brief comment on industry standards is in order here. Even though industry standards are
very useful as the basis for common data models, they are rarely used in their industry
standard form. In most cases, some data needs to be added to support internal business
policies and practices. Some industry standards allow for variations within their schema
definition, but even so, the schema extension must be formalized to accurately represent
the required information as needed by the enterprise. Other industry standards do not allow
for such extensions at all. In either case, these standard schemas must be augmented to
incorporate the information required to support the enterprise's proprietary way of doing
business. Consequently, industry standards are usually used as a starting point for defining
common data models.

The actual representation you choose for a common data model will have a significant
impact on how much benefit will result from its use. If you choose an obscure binary
format, it will be difficult for people to understand what the data structure represents.
Mapping between this format and the formats of the end-point systems will be a miserable
task. While you may have established a standard, the enterprise will not derive any benefit
from its use. What you want instead is a format that is easy to understand and work with.
A good common data model is a representation of information that is both standardized and
easy to understand.

So let's consider data models and data structures. Figure 23-1 is an example of the
information you might expect in a monthly bank statement. The statement includes a set of
transactions and an address. An individual transaction or an individual address is
represented by a well-structured set of fieldsâ!”a structure that can be readily understood
and reused in other contexts. When information is organized this way, the meaning of each
field in the data structure is clear. Of course, in the formative stages of the architecture you

most likely will not have this level of detail, but you would have its basic structure.
Regardless, for clarity, Figure 23-1 shows the full structure as it will appear after the
component and service specifications have been completed. This detail will help to illustrate
the points about common data models.

Figure 23-1. Information Model of a Bank Statement

Now consider a couple of choices for the physical representation of this information. First,
look at the simplified XML representation of a bank statement shown in Listing 23-1. It has
the same structure as the class diagram of the statement, and it is easy to identify each
individual data field and each block of data. This is an example of a self-describing data
structure. Self-describing structures are easy for people to work with. Using them greatly
reduces the likelihood of errors in defining mappings to other data structures. XML data
structures are equally easy for systems to work with. Not only are standard parsers readily
available, but standard software is available to check the correctness of the data structure
using the referenced schema definition. Using XML simplifies programming all around.

Listing 23-1. Simplified XML Statement Representation

Code View:

<?xml version = "1.0" encoding = "UTF-8"?>
<BankAccountStatement
 xmlns:xsi = http://www.w3.org/2001/XMLSchema-instance

 xsi:noNamespaceSchemaLocation = "BankStatement.xsd"
 StatementDate = "2007-01-31"
 PeriodStartingBalance = "4375.22"
 PeriodEndingBalance = "7078.56" >
 <BankAccount
 AccountType = "Checking"
 AccountNumber = "1239854639">
 <AccountHolder
 AccountHolderRoleType="PrimaryAccountHolder"
 <Person Name="John Q. Smith" />
 </AccountHolder>
 </BankAccount>
 <Address
 StreetAddress1 = "123 Anywhere Drive"
 City = "MyCity"
 State = "New York"
 Country = "USA"
 PostalCode = "10000"/>
 <Transaction
 dateTime = "2007-01-15T08:05:13-05:00"
 TransactionType = "Deposit"
 Amount = "2743.34"
 Description = "Payroll Deposit - XYZ Manufacturing Inc."/>
 <Transaction
 dateTime = "2007-01-14T13:20:04-05:00"
 TransactionType = "Withdrawal"
 Amount = "40.00"
 Description = "ATM Withdrawal - 14th St. Garden Center"
 Reference = "123067843"/>
</BankAccountStatement>

However, despite their advantages, XML data representations are not a panacea. While they
present information in a manner that is readily understandable by both human and
machine, they are a bit verbose. They tend to consume three to four times as much space
as just the raw data, and thus impact network bandwidth utilization and storage
requirements. The parsing and assembling of the data structures takes more machine time
than straight string manipulations, at least in simple cases. However, the advantages of
XML are so strong that as long as the expanded size and performance impact do not
actually jeopardize the feasibility of the project, it is a good practice to employ such
representations.

Now contrast the XML representation with the more traditional file format for the same
information shown in Listing 23-2. Take a look at the listing first before you read the
explanation of its structure.

Listing 23-2. Comma-Separated Value (CSV) Representation of a Bank Statement

01,John Smith,2007-01-31,123 Anywhere Drive,MyCity,New York,10000
02,4375.22,7078.56,Checking,1239854639
03,2007-01-15T08:05:13-05:00,2743.34,Payroll Deposit - XYZ Mfg.
04,2007-01-14T13:20:04-05:00,40.00,ATM 14th St. Garden Center,123067843

This file format has four types of records, with the first two characters of the record
indicating the record type. The rest of the data in the record consists of fields separated by
commas. There is no indication of the meaning of any of the fields contained in the record.
You have to know, from some other source, that the position of each field in a given record
type (first position, second position, etc.) indicates the meaning of that field. This
requirement to have knowledge from some source other than the data structure itself in
order to interpret (or construct) the data representation is the biggest drawback to this
approach. Furthermore, the interpretation of this external knowledge, usually written in
plain text, and the verification of the data structure conformance are two design time
activities that need to be performed by every developer generating or consuming this data
structure. It is difficult to maintain consistency with imprecise textual descriptions and so
many people involved.

In this particular example, record type "01" contains the account holder's name, statement
date, and address. Record type "02" contains the starting and ending balances, the type of
account, and the account number. Record type "03" is a credit to the account, with the
date-time, amount, and description. Record type "04" is a debit against the account, with
the date-time, amount, description, and an optional transaction reference number.

There is more to the structure of this file than just the structure of the individual records. A
set of rules governs the overall structure of the fileâ!”the order of the different record
types. For example, in order to have a valid bank statement you must at least have both a
record "01" and a record "02." Records "03" and "04" are optional, as there may not have
been any transactions in the period. However, when transactions do occur, they may be
more than one of each type. Are there rules governing the organizations of these
transaction records? Are they grouped by type and then ordered chronologically, or are they
ordered chronologically regardless of type? Producers and consumers of the data structure
need to know what is allowed and what to expect.

This file-based representation gets even more complex if you allow more than one
statement in a file. When you do this, you must adopt a convention that the transaction
records ("03" and "04" records) appear immediately after the appearance of the header
records ("01" and "02" records) for an account. The occurrence of a header record after a
transaction record then marks the end of one account and the beginning of the next.

The problem with this type of representation is that you have to read and understand these
rules in order to know how to construct or read it. When the data structures become
complex, so do the rules. It becomes increasingly difficult to ensure that the rules are self-
consistent and unambiguous. Developers need to write custom parsers and generators to
read and write the representation with the rules for interpreting the data embedded in the
parsing logic.

Sometimes handwritten parsing logic accidentally embeds rules that were never actually
defined! For example, the rules may not state that record "01" must appear before record
"02." Common sense tells us that it does not matter as long as both records appear
together. However, when you are writing a parser it will take more work for it to accept the
records in either order. Developers are likely to simply assume that record type "01" occurs
before record type "02." Such parsers will break when presented with the records in the
opposite order regardless of the fact that the rules do not require this ordering. The more
complicated the rules, the more complicated the parsing logic. The more complicated the

logic, the less likely it is that the logic will be correct. Every time the data structure
changes, the parser has to be rewritten. Seemingly simple changes, such as the
introduction of a third transaction type (for bank fees), may require major changes to the
parsing logic. Because of this, designs using this type of data representation tend to be
fragile and expensive to change. It is exactly this set of circumstances that led to the
development of XML.

You obviously have many data structure choices, but it should be clear from this discussion
that self-describing data structures (such as XML) with standard parsers and generators
offer some significant advantages. Systems can produce and consume these data structures
without special programming. People can understand the data without first studying
reference material, and this can greatly speed up development, testing, and
troubleshooting. Overall, self-describing data structures yield lower development costs and
systems that are more robust. Thus, they are the preferred choice for common data models.

Chapter 23. Common Data Models (CDM)
When information is moved from one system to another and those systems organize that
information differently, the information originating in one system's representation must be
transformed to that of the other. When such transformations are required, you have a
design choice to make: Should you simply transform this information directly from one
system's format to the other, or should you transform it first to a system-neutral data
format and then to the recipient's format? Such a system-neutral format is generally
referred to as a common data model. Designed properly, common data models can make
the information more accessible. Their power increases further when they become the data
representations that end-point systems actually work with.

What Is a Common Data Model?

A common data model is simply a well-engineered and standardized representation of a set
of information. It is a standardized view of some aspect of the enterprise. But do not be
confused by the term "standard." The standardization required is relative to the enterprise
and does not need to be an industry standard. Calling it a standard just means that the
enterprise has decided to use it (as opposed to some other representation) universally
within the enterprise.

A brief comment on industry standards is in order here. Even though industry standards are
very useful as the basis for common data models, they are rarely used in their industry
standard form. In most cases, some data needs to be added to support internal business
policies and practices. Some industry standards allow for variations within their schema
definition, but even so, the schema extension must be formalized to accurately represent
the required information as needed by the enterprise. Other industry standards do not allow
for such extensions at all. In either case, these standard schemas must be augmented to
incorporate the information required to support the enterprise's proprietary way of doing
business. Consequently, industry standards are usually used as a starting point for defining
common data models.

The actual representation you choose for a common data model will have a significant
impact on how much benefit will result from its use. If you choose an obscure binary
format, it will be difficult for people to understand what the data structure represents.
Mapping between this format and the formats of the end-point systems will be a miserable
task. While you may have established a standard, the enterprise will not derive any benefit
from its use. What you want instead is a format that is easy to understand and work with.
A good common data model is a representation of information that is both standardized and
easy to understand.

So let's consider data models and data structures. Figure 23-1 is an example of the
information you might expect in a monthly bank statement. The statement includes a set of
transactions and an address. An individual transaction or an individual address is
represented by a well-structured set of fieldsâ!”a structure that can be readily understood
and reused in other contexts. When information is organized this way, the meaning of each
field in the data structure is clear. Of course, in the formative stages of the architecture you

most likely will not have this level of detail, but you would have its basic structure.
Regardless, for clarity, Figure 23-1 shows the full structure as it will appear after the
component and service specifications have been completed. This detail will help to illustrate
the points about common data models.

Figure 23-1. Information Model of a Bank Statement

Now consider a couple of choices for the physical representation of this information. First,
look at the simplified XML representation of a bank statement shown in Listing 23-1. It has
the same structure as the class diagram of the statement, and it is easy to identify each
individual data field and each block of data. This is an example of a self-describing data
structure. Self-describing structures are easy for people to work with. Using them greatly
reduces the likelihood of errors in defining mappings to other data structures. XML data
structures are equally easy for systems to work with. Not only are standard parsers readily
available, but standard software is available to check the correctness of the data structure
using the referenced schema definition. Using XML simplifies programming all around.

Listing 23-1. Simplified XML Statement Representation

Code View:

<?xml version = "1.0" encoding = "UTF-8"?>
<BankAccountStatement
 xmlns:xsi = http://www.w3.org/2001/XMLSchema-instance

 xsi:noNamespaceSchemaLocation = "BankStatement.xsd"
 StatementDate = "2007-01-31"
 PeriodStartingBalance = "4375.22"
 PeriodEndingBalance = "7078.56" >
 <BankAccount
 AccountType = "Checking"
 AccountNumber = "1239854639">
 <AccountHolder
 AccountHolderRoleType="PrimaryAccountHolder"
 <Person Name="John Q. Smith" />
 </AccountHolder>
 </BankAccount>
 <Address
 StreetAddress1 = "123 Anywhere Drive"
 City = "MyCity"
 State = "New York"
 Country = "USA"
 PostalCode = "10000"/>
 <Transaction
 dateTime = "2007-01-15T08:05:13-05:00"
 TransactionType = "Deposit"
 Amount = "2743.34"
 Description = "Payroll Deposit - XYZ Manufacturing Inc."/>
 <Transaction
 dateTime = "2007-01-14T13:20:04-05:00"
 TransactionType = "Withdrawal"
 Amount = "40.00"
 Description = "ATM Withdrawal - 14th St. Garden Center"
 Reference = "123067843"/>
</BankAccountStatement>

However, despite their advantages, XML data representations are not a panacea. While they
present information in a manner that is readily understandable by both human and
machine, they are a bit verbose. They tend to consume three to four times as much space
as just the raw data, and thus impact network bandwidth utilization and storage
requirements. The parsing and assembling of the data structures takes more machine time
than straight string manipulations, at least in simple cases. However, the advantages of
XML are so strong that as long as the expanded size and performance impact do not
actually jeopardize the feasibility of the project, it is a good practice to employ such
representations.

Now contrast the XML representation with the more traditional file format for the same
information shown in Listing 23-2. Take a look at the listing first before you read the
explanation of its structure.

Listing 23-2. Comma-Separated Value (CSV) Representation of a Bank Statement

01,John Smith,2007-01-31,123 Anywhere Drive,MyCity,New York,10000
02,4375.22,7078.56,Checking,1239854639
03,2007-01-15T08:05:13-05:00,2743.34,Payroll Deposit - XYZ Mfg.
04,2007-01-14T13:20:04-05:00,40.00,ATM 14th St. Garden Center,123067843

This file format has four types of records, with the first two characters of the record
indicating the record type. The rest of the data in the record consists of fields separated by
commas. There is no indication of the meaning of any of the fields contained in the record.
You have to know, from some other source, that the position of each field in a given record
type (first position, second position, etc.) indicates the meaning of that field. This
requirement to have knowledge from some source other than the data structure itself in
order to interpret (or construct) the data representation is the biggest drawback to this
approach. Furthermore, the interpretation of this external knowledge, usually written in
plain text, and the verification of the data structure conformance are two design time
activities that need to be performed by every developer generating or consuming this data
structure. It is difficult to maintain consistency with imprecise textual descriptions and so
many people involved.

In this particular example, record type "01" contains the account holder's name, statement
date, and address. Record type "02" contains the starting and ending balances, the type of
account, and the account number. Record type "03" is a credit to the account, with the
date-time, amount, and description. Record type "04" is a debit against the account, with
the date-time, amount, description, and an optional transaction reference number.

There is more to the structure of this file than just the structure of the individual records. A
set of rules governs the overall structure of the fileâ!”the order of the different record
types. For example, in order to have a valid bank statement you must at least have both a
record "01" and a record "02." Records "03" and "04" are optional, as there may not have
been any transactions in the period. However, when transactions do occur, they may be
more than one of each type. Are there rules governing the organizations of these
transaction records? Are they grouped by type and then ordered chronologically, or are they
ordered chronologically regardless of type? Producers and consumers of the data structure
need to know what is allowed and what to expect.

This file-based representation gets even more complex if you allow more than one
statement in a file. When you do this, you must adopt a convention that the transaction
records ("03" and "04" records) appear immediately after the appearance of the header
records ("01" and "02" records) for an account. The occurrence of a header record after a
transaction record then marks the end of one account and the beginning of the next.

The problem with this type of representation is that you have to read and understand these
rules in order to know how to construct or read it. When the data structures become
complex, so do the rules. It becomes increasingly difficult to ensure that the rules are self-
consistent and unambiguous. Developers need to write custom parsers and generators to
read and write the representation with the rules for interpreting the data embedded in the
parsing logic.

Sometimes handwritten parsing logic accidentally embeds rules that were never actually
defined! For example, the rules may not state that record "01" must appear before record
"02." Common sense tells us that it does not matter as long as both records appear
together. However, when you are writing a parser it will take more work for it to accept the
records in either order. Developers are likely to simply assume that record type "01" occurs
before record type "02." Such parsers will break when presented with the records in the
opposite order regardless of the fact that the rules do not require this ordering. The more
complicated the rules, the more complicated the parsing logic. The more complicated the

logic, the less likely it is that the logic will be correct. Every time the data structure
changes, the parser has to be rewritten. Seemingly simple changes, such as the
introduction of a third transaction type (for bank fees), may require major changes to the
parsing logic. Because of this, designs using this type of data representation tend to be
fragile and expensive to change. It is exactly this set of circumstances that led to the
development of XML.

You obviously have many data structure choices, but it should be clear from this discussion
that self-describing data structures (such as XML) with standard parsers and generators
offer some significant advantages. Systems can produce and consume these data structures
without special programming. People can understand the data without first studying
reference material, and this can greatly speed up development, testing, and
troubleshooting. Overall, self-describing data structures yield lower development costs and
systems that are more robust. Thus, they are the preferred choice for common data models.

CDM Relationship to the Domain Model

One of the things you strive for in designs is stabilityâ!”but not the stability of an arbitrary
declaration that there will be no further changes or the "cast in concrete" stability that
arises from the encumbrance of inflexible systems. You want your design to be able to
evolve gracefully as the business needs change, adapting business processes to those
changing needs. The kind of stability you want is for the basic building blocks of the
business processes, systems, and data structures to remain relatively unchanged as they
are recombined into new or modified business processes to suit new purposes. This is the
goal of a well-designed service-oriented architecture, but this same stable building block
principle also applies to the design of data structures in general and common data models in
particular. In fact, stability at this level is an essential prerequisite for a stable service-
oriented architecture.

The key to data structure stability lies in the use of a well-considered domain model as a
guide for its construction. The domain model captures the concepts and relationships as
they inherently are found in the application domain. As long as this world remains stable,
the domain model will remain consistent. You gain stability in the CDM data structures by
first deriving their building blocks from the concepts and relationships of the domain model,
and then by ensuring that the structure of the information in the domain model is preserved
and obvious in the CDM.

In the account statement example, every concept and relationship in the account statement
information model is explicitly represented in the XML example. In contrast, many of the
relationships are only implicit in the record sequencing of the file example (hence the
discussion about the complicated rules governing the structure of the file).

The bank account statement information model in Figure 23-1 is obviously not a complete
domain model. Take a look at the more complete domain model for accounts and
statements in Figure 23-2. Note that a Bank Account can have many account holders,
with each Person playing a specific Account Role. The Bank Statement representation
in Figure 23-1 contains only one account holder, namely the primary account holder.
A well-engineered common data model represents a strict subset of the domain model and
preserves the structure of the domain model. While the domain model represents the full
set of transactions belonging to the account, the Bank Statement common data model in
Figure 23-1 only represents those transactions associated with the current statement. Are
these deviations from precise correspondence between domain models and CDM
representations? The answer is no, but we need to refine what we mean by "representation"
to understand why.

Figure 23-2. Simplified Domain Model Showing Accounts and Statements

[View full size image]

The representation of a bank statement in Figure 23-1 does not include all of the
information from the domain model. Instead, the domain model serves as a reference,
providing a means of being clear about what information is actually contained in the bank
statement. The transactions that are included are clearly definable in terms of the domain
model: They are the transactions associated with the specific bank statement. The account
holder in the bank statements is the account holder playing the primaryAccountHolder
role. It is a best practice to always relate common data models back to the domain model in
this manner.

There are any number of possible common data model representationsâ!”different subsets
of the domain model. Which one(s) should be used? What information should be included,
and what should be excluded?

The Need for Multiple CDM Representations

The intent of a common data model is to establish a singular common representation of a
concept. In the example being discussed, this concept is an account statement. However, a
bank statement in printed form contains information from several related concepts: the
account statement, the account transactions related to the statement, the statement
address, the account to which the statement belongs, and the primary account holder for
that account. These concepts have additional relationships with concepts such as the
people, addresses, and phone numbers associated with the bank account. Just how many of
these concepts and relationships should be carried along in the CDM representation of a
bank statement? The answer isâ!”it depends! The amount of detail carried in the
representation of an individual concept depends upon the intended use of that
representation. Conversely, different uses may warrant different levels of detail.

From the perspective of a bank statement, even though the statement references the
associated bank account, it clearly does not make sense to drag the entire set of attributes
and relationships associated with that bank account into a communication that is focused on
a single bank statement. The reader of a bank statement will not need to know about all of
the account holders, addresses, and phone numbers, nor will he or she need to know about
the transactions that are not directly related to the current statement. Thus for the bank
statement, it seems appropriate to have a simplified representation of a bank account. On
the other hand, there will be times when someone will, indeed, want to see the full set of
account information. For example, when a customer has a question about his or her bank
account, the customer service representative will need to see this full set of information.
Such situations call for a more complete representation of the account.

This leads to an understanding that for each major concept in the domain model you will
most likely need not one but several representations of that concept. Typically, you will
need at least four:

1. The Basic Concept: the representation of just the concept and its attributes,
excluding any related concepts. In the bank statement example, this would be just
the Bank Statement object and its attributes.

2. An Inclusive Representation: a comprehensive representation of a concept including
at least a minimal representation of all related concepts. An example would be a
representation of a Bank Account that included all of the People who are account
holders, the current statement addresses, the transactions and the
statements. An inclusive representation includes a representation of every concept
directly related to the core concept and all relationships to those concepts. Where
one of these relationships has an unbounded multiplicity, such as the transactions
relationship for the Bank Account, the representation should allow for the inclusion
of an arbitrary number of instances of the referenced concept. The inclusive
representation does not, however, require an inclusive representation of each related
concept.

3. A Pure Reference: the simplest possible representation of a unique instance of a

concept. A pure reference is simply a unique identifier for that instance. The
accountNumber, for example, is a pure reference to a Bank Account.[1] In
database terms, a pure reference is a primary key for the record representing the
concept.

[1] In a context that included multiple banks, you would need to augment the account number
with a unique identifier for the bank, for example, the routing number on a check.

4. A Minimal Representation: a minimal representation is a pure reference augmented
with the most commonly required information about the concept. The reason you
need a minimal representation is that the pure reference is generally not very helpful
to a person viewing the information. When the intended use of the representation is
to present information to people, you need to augment the pure reference with
enough of the inclusive representation so that people can understand just what is
being referenced. In the case of the Bank Account, this minimal representation
might augment the account number with the type of account, the name of the
primary account holder, and the current statement address.

Different circumstances call for different representations. The goal of a common data
modeling effort, therefore, should not be to define a singular representation for each
concept. Rather, you should seek to minimize the number of representations and then
standardize them. Given the characterization of different representations above, the
complete representation of a bank statement (Figure 23-1) comprises:

An inclusive representation of the Bank Statement

A basic representation of each Transaction directly related to the statement

A basic representation of the current statement address

A minimal representation of the Bank Account that includes a minimal
representation of a Person

To summarize then, a common data model is a standardized representation of a concept
found in the domain model. In other words, it is a view of the domain model. In defining
common data models, you seek to avoid re-inventing representations every time there is a
need to communicate. It is a best practice to minimize the number of representations used
in an architecture.

Planning for CDM Changes

Despite your best intentions and best efforts, you will never produce the perfect common
data model. Inevitably, some business process will come along that needs a field that is not
in the current representation, or some business process change will require the addition of a
new field, concept, or relationship. However, if you plan properly all you will need to do is
add the new information without altering the rest of the structure. For example, the
business might want to associate a bank branch with an account and then include a minimal
representation of the bank branch in the statement.

It is relatively easy to accommodate the addition of a new field or relationship into a data
structure. Aside from changing the schema definition, the only changes required to the
applications using the data are directly related to the creation or use of the new data. In
contrast, the type of change you want to avoid is a restructuring of the existing data
representation. Since applications must navigate through data structures to find the fields of
interest, changing the structure will require changes to every application navigating the
affected portion of the data structure. If typically you only have to add a field or a
relationship when you need to make changes, you will have achieved the business
objectives in the design of common data models.

Regardless of whether you are simply adding fields or altering the structure of the data, you
still need to revise the schema that defines the data structure. Making schema changes is a
complex problem. Every component using the schema needs to be altered to utilize the new
data structure. The more components using a data structure, the more complex it becomes
to introduce the change. Yet, at the same time, your goal is to have as many components
as possible use the same common data model! Unless you make provisions in the design for
gracefully introducing schema changes, you will force the modification of all of these
components at once. Such big-bang approaches to change are complex to orchestrate and
risky to execute. The more components that need to be changed at once, the greater the
likelihood at least one of them will experience a problem.

The last thing you want is for your efforts at improving and standardizing communications
through the use of common data models to result in a situation that actually makes it
difficult for the enterprise to evolve. Consequently, you need to make provisions in the
design for changing common data model schemas. There are basically two approaches you
can take. One is to allow for two versions of the schema to be in use at the same time so
that components can be migrated gradually from the old to the new. The other is to design
the schemas to allow for additive changes.

Schema Versioning

Allowing two versions of a schema to be in use at the same time is actually an issue of
interface design more than schema design. How you go about introducing the change
depends upon the pattern of communication. The two basic patterns of concern are a
targeted point-to-point request (possibly with a reply) and a broadcast to many recipients.
The evolution strategies for these two patterns are different.

Versioning with Point-to-Point Communications

For point-to-point requests, you can evolve to the new schema as follows:

1. Modify the recipient of the request to accept the new schema as well as the old.
Depending upon the communications technology in use, this either requires the
modification of one interface to accept both versions of the data representation or it
requires the versioning of the interfaces and the simultaneous deployment of both
the old and new versions.

2. Modify the senders of the request to use the new version.

3. Modify the recipient of the request to retire the old version of the data
representation.

Versioning with Broadcast Communications

For broadcast requests, the sequence is slightly different:

1. Modify the sender to broadcast both the old version and the new version of the data
representation. The broadcast channels for the two versions will be different. Note
that initially there will be nobody "listening" to the new version.

2. Migrate individual recipients from the old version to the new version.

3. After the last recipient has been migrated, modify the sender to cease broadcasting
the old version.

Both of these approaches accomplish the transition one change at a time, thus lowering the
risk associated with each individual change. Note that executing these transition plans
requires a significant level of organizational discipline, particularly in the broadcast case.
You cannot eliminate the old version from the design until the last user of the old version is
retired. If the owner of that system is short on budget or has other priorities, their
reluctance to change will create a situation that perpetuates the use of multiple versions.
This not only complicates the maintenance and support of the overall system, but it also
effectively foregoes the business benefits expected from the use of common data models.

Versioning with Additive Changes

When you are making additive changes, you can use a simplified variant of these migration
strategies. The simplification requires the ability to initially add information to the
representation (not modify what is already there) without having to alter any of the
recipients. This can be accomplished with XML, for example, through the use of wildcards.
The trick is to make provisions for the addition of new fields (called attributes in XML) and
new elements. You can make provision for new attributes for an element by including an
optional anyAttribute to the list of each element's attributes. Similarly, you can make
provision for new sub-elements by including an optional any element in the sequence of
sub-elements for an element.

If you have made these provisions, then the following approach can be taken for additive
data structure changes:

1. The creator of the message adds the new attributes and elements to the data
structures in the wildcard locations. The change is placed in production.

2. The consumers of the message that require the changes are modified to use them and
are placed in production. Functionally, the change is complete.

3. The formal schema definition of the representation is then updated to include the new
attributes and elements. When components using the schema are subsequently
updated, they will pick up the revised schema definition. The sequence in which the
components are modified does not matter.

This strategy for evolution does carry with it some level of risk, but the risk can be
managed with suitable governance. The risks are twofold. First, because there is no formal
checking of the extensions during the transition (prior to completing step 3), it is possible
that there will be errors in the modified portions of the data structures that will not be
caught until runtime. This risk can be mitigated by keeping changes simple and performing
adequate testing. The bigger risk, however, is that the final updating of the schema will
never occur. This leaves portions of the data structure unchecked by the schema. The
danger is not so much in the first change, but in the cumulative effect of multiple changes
that are never formalized with schema updates. The result will be that significant portions
of data structures are no longer being formally defined. In other words, you are foregoing
the very benefits you sought in using common data models with formal schemas.

Schema Migration Governance

This risk of incomplete schema migration can be mitigated with a simple governance
process that involves two steps.

1. Projects wishing to use the schema extensions must first obtain permission from the
enterprise architecture group. The request must include a formal specification of what
the ultimate data structure will look like (i.e., the revised schema) and a release plan
for all components involved, including the final incorporation of the updated schema.
Note that this release plan must, by definition, include at least two releases for each
component using the new dataâ!”one for the data change and one for the schema
update. The enterprise architecture group approves both the technical aspects of the
extension and the migration plan.

2. Each component production release review incorporates a check against the in-
progress release plans for schema migration. For the first release (including the data
without the schema extension), the review checks to ensure that the actual data
representation modification conforms to the intended schema. This can be
accomplished by validating data structures in the test environment against the revised
schema. The production release review for the subsequent schema update simply
checks to see that the revised schema has, indeed, been incorporated.

The importance of this governance in the migration of schemas cannot be emphasized

enough. Without the governance, development groups are liable to get sloppy and fail to
update the formal schemas. Over time, the quality of the data representations will
deteriorate, and the benefits of a common data model will be lost.

A final note on schema migration: It is not unusual to take one of the end-point system
data formats and "bless" it as being a common data model, even though this representation
may not be structured for long-term stability. This eliminates the need for a transformation
between that end-point system and the common data modelâ!”at least initially. But what
happens if the next release of that end-point system changes its data representation?
Unless you take precautionary steps, this change would force an immediate change to the
common data model, and hence to all systems and transformations involving that common
data model. Because of this, it is wise to incorporate an architectural "placeholder" for a
transformation between the end-point system with the "blessed" data structure and the
common data model. This placeholder will initially be a simple pass-through of the
unmodified data structure, but its presence now makes it architecturally possible to alter
the end-point data format and map this revised format into the original common data model
without any other modifications. This will make it easier for the overall enterprise to evolve
its common data model schemas.

When to Use Common Data Models

While common data models can provide some significant benefits, they have some
drawbacks as well. In particular, the use of common data models requires extra work, both
at design time and runtime. The diagram in Figure 23-3 shows the transformations required
to convert data from the format of one system to the formats of a number of other systems
both with and without common data models. The left-hand side of Figure 23-3 shows the
pattern that emerges when each consumer of a data structure requires its own unique
format. This is not an unusual situation in the enterprise when systems have evolved
independently. In such situations, the number of transformations required equals the
number of data structure consumers. If there are n participants, one being the producer and
the others being the consumers, then you need n-1 transformations.

Figure 23-3. Transformations and Common Data Models

[View full size image]

On the right side of the figure is the pattern that emerges if a common data model (CDM) is
used. The initial structure is first transformed into the common data model and then into the
formats required for each consumer. The number of transformations required is equal to the
number of publishers plus the number of consumers. In other words, if there are n
participants, you need n transformations. Comparing these two patterns, the use of the
common data model obviously involves more work, so why would you ever want to do this?

Well, to begin with, you must first dispel a myth that is often used to present an argument
in favor of the use of common data models. The myth is that if you are using the direct
transformation approach and you have n participants, the number of transformations
required is n(n-1), which is often approximated as n2. While this is, strictly speaking,
correct, this situation only arises when each participant in the process is both a producer
and a consumer of the data structure, which hardly ever occurs in practice. In fact, as
Chapter 22 discussed, such situations lead to intractable problems in data management!
Most of the time, any given system is either a producer or a consumer of the data in
question, in which case you need n-1 transformations for direct transformation or n
transformations using common data models.

So why would you choose common data models? The answer is simplicity. If the common

data model is a self-describing data structure, the task of defining mappings is simpler and
less prone to error. If structures with formal schemas (e.g., XML) are used, then the data
structure can be checked for correctness on the producing side, making error handling
simpler. Furthermore, many modern components and systems are now directly producing
and consuming XML data structures, which provides the potential for eliminating at least
some of the transformations altogether. If you specify that new systems are required to
produce or consume the common data model structure, then transformations are also
eliminated.

The common-data-model style of data representation, backed by formal schema definitions,
lies at the heart of service-oriented architectures. The ability to both specify the universe of
acceptable data structures (through the schema) and independently validate the compliance
of any given data structure against the specification makes it possible to completely define
an interface independently of any specific implementation. The down side, of course, is that
there may be transformation work required on both sides of the interface if the participants
do not natively use this form.

Criteria for Choosing Direct Transformation

Returning to the tradeoff discussion, direct transformation makes sense when:

1. There are only two participants involved in the communication

2. The participant interfaces are stable (unlikely to change)

3. No other participant will ever need to use that particular set of data

When these circumstances exist, it does not make much sense to use a common data
model. There is a dedicated communication between the two participants, and inserting a
common data model will simply cost more at both design time and runtime and provide no
benefit.

However, before you reach the conclusion that a common data model is actually
unwarranted, you need to validate the assumptions. If you look into the future, are there
truly only two systems involved? Is it likely that some other system will, at some point,
need to either produce or consume that data set? Is it likely that one of the two systems
being considered will be replaced in the not-too-distant future? Is it likely that the data
structures used by the participants will change over the next few years? If any of these
conditions exist, it is worthwhile to at least consider the use of a common data model.

Criteria for Choosing a Common Data Model

The benefits of the common data model generally accrue when the CDM becomes a point of
stability in a world of ever-changing systems. This emphasizes the importance of having an
active enterprise architecture group participate in the specification of the common data
model. If the common data model is significantly less likely to change than the data
structures of the participants, then its use will reduce the level of effort required to
accommodate changes in the data structures of the participants. It's a pay-me-now-or-pay-
me-later type of situation. Spending more now (and it will cost more!) to design the
common data model and the extra transformation that goes with its use will not only save
you money in the long run, but it will shorten the time it takes to accommodate the change.
The more systems that are involved, the greater the potential savings. But there is another
issue you need to consider before you make a final decision: performance.

As has been mentioned a number of times, the use of a common data model usually carries

with it a runtime performance penaltyâ!”an extra transformation and an extra inter-process
communication. Before you decide to use a common data model, you must assess whether
that penalty is acceptable. There are three aspects of performance you need to consider:

1. The network bandwidth required

2. The resources required to perform the extra transformation

3. The increased latency caused by the extra hops in the communications chain

Starting with the network bandwidth, the common data model itself must be exchanged
between the first data transformation and the second. If the two transformations are in
separate components, as they normally would be, this communication will generally occur
over the network. As a result, an exchange between two parties in the network will increase
the network bandwidth requirement somewhere around 50 percent. This increase will be
proportionately less as the number of message consumers increases. In most cases, this
increase is acceptable as long as it does not push the demand for bandwidth over the edge
in terms of either feasibility or cost.

If, on the other hand, a single component provides all of the transformations, then the
common data model becomes an internal data structure within that component. While this
avoids the network cost, it renders the data structure inaccessible without modifying the
transformation component. This presents a problem. There is a significant benefit to making
the easy-to-understand common-data-model data structure readily accessible to other
components. When it is moved via a transport (such as a messaging protocol) that enables
easy access, this promotes the sharing of information. Furthermore, the actual movement of
the data itself often indicates the occurrence of a business meaningful event such as the
placement of an order. Making the movement observable in the CDM form makes it possible
to observe and understand these business events. This makes it possible to monitor
business processes, which in turn makes it possible to detect business process breakdowns
and measure business performance. It also makes it possible to trigger other work based on
the occurrence of events. For all of these reasons, it is a best practice to make the
movement of these common data model representations as widely observable as possible.
CDM representations provide little value when they are buried inside components.

Beyond network bandwidth, you also need to consider the processing power required to
execute the extra transformation and the increase in latency (delay) caused by its
introduction. Obviously, if the increase in processing power or latency makes it impossible
to satisfy the business process requirements within the cost and schedule guidelines, you
cannot use the common data model approach. However, if you are able to achieve the
required performance and do so at a reasonable cost, you should not let these increases
deter you from using a common data model.

Summary

A common data model (CDM) is a system-neutral data representation used for the
exchange of information between components. A well-engineered CDM derives its structure
from the domain model and represents a point of stability in the design.

Each common data model represents a subset of the concepts and relationships in the
domain model. Different common data models (different subsets) will require different levels
of detail about individual concepts and relationships. It is good practice to standardize and
limit the number of concept and relationship representations used to construct common
data models.

Despite the best of analysis and planning, it is inevitable that eventually changes will be
required to common data models. The process of adding new information can be facilitated
by introducing "wildcard" placeholders for new information in the CDM data structure
representation. However, in all cases, changing these representations requires versioning
and an associated governance discipline.

The use of common data models introduces some additional overhead into the interactions
between components. For some dedicated point-to-point interfaces, the use of CDM does
not make sense. But when there are three or more participants in the exchange, there are
significant benefits as long as the overhead is tolerable.

The true benefit of a common data model is the flexibility it brings to the overall enterprise
architecture. It makes information more widely available and makes it possible to observe
the events that drive the business. It lowers the cost of accommodating future changes in
the participant's data structures. Therefore, as long as you can arrive at a common data
model that will be relatively stable over time (as compared to the rate of change in the
participant's data structures), and as long as the performance and cost penalties are
acceptable, it is good practice to use common data models when exchanging information
between systems.

Key Common Data Model Questions

1. Which interactions will use common data models?

2. Are the common data models derived from a domain model? Did the
enterprise architecture group participate in their design?

3. Have the extra transformation components required for CDM been
incorporated into the architecture?

4. Have provisions been made for evolving and versioning the CDM?

Chapter 24. Identifiers (Unique Names)
Many business processes require distinguishing one individual from another. When you
place an online order, the business needs to be able to distinguish you as an individual from
your next-door neighbor. Similarly, the business needs to distinguish the order you place
today from the one you placed yesterday. The way this is approached is to give a unique
name to each objectâ!”each person or order. Such unique names are called identifiers.

Identifiers are simply unique numbers or strings that are created and assigned to individual
objects. These identifiers are then used to represent individual objects in the systems.
When a customer places an online book order, he or she creates an account (if one doesn't
already exist). As part of creating the account, the system generates a unique identifier for
the accountâ!”an account number. This account number then becomes a surrogate to
represent the customer in the order management system. Since the customer is not
physically present in the system, the system cannot associate orders directly with the
customer. Instead, the system associates the account number with each order, implying
that the customer placed each of those orders.

This association of identifiers with the individual objects they represent is as much a part of
the identity game as are the identifiers themselves. You can generate as many identifiers as
you want, but until you associate them with individual objects, the identifiers have no
meaning. So when you consider identity, you must consider both the creation of the
identifier and its subsequent association with the object it is supposed to represent. The
goal, of course, is for each identifier to uniquely designate a specific object.

This goal of maintaining a unique mapping from identifier to object is difficult to achieve in
practice. There are often data quality issues, and these quality problems can have a
significant impact upon the enterprise's business processes. You need to understand what
these quality problems are so that you can manage them. But before you can explore the
sources of these problems, you must first understand the process of creating identifiers and
associating them with objects. This is the job of the identity authority.

Identity (Unique Name) Authorities

An identifier, by definition, uniquely represents a single object. This means that the value
you come up with for the identifier must be unique (there can be no other objects with the
same identifier). Most identity systems impose a second requirement: Each object can only
have one identifier. This is how driver's licenses are supposed to work. Your driver's license
has an identifier on it, and you are the "object" that the identifier is associated with. Of
course, it is always possible to have more than one type of identifier for a given object. In
addition to your driver's license identifier, you probably also have a national income tax
identifier, and you may even have a passport with a passport number on it as well. So the
uniqueness properties of an identifier are with respect to a particular type of identifier.

The only way that the uniqueness properties can be guaranteed is to have a central
authority managing themâ!”an identity authority. This authority keeps track of the
identifiers that have been issued and the objects they are associated with. Each type of

identifier requires a corresponding identity authority. In the case of your driver's license,
the authority is your state's Department of Motor Vehicles. More than likely, the authority
employs a system that maintains the driver's license records. This system keeps track of
which driver's license numbers have already been issued and identifying information about
the people they have been issued to. When a new license is issued, the system issues a
new[1] number, checks to ensure that the person does not already have a driver's license
(at least in this state), and associates the person's identifying information (name, hair color,
height, picture, etc.) with the driver's license.

[1] Some identity authorities recycle old identifiers under the assumption that the objects they identify no
longer exist. This violation of the uniqueness assumption can lead to errors in business processes.

Thus the identity authority has two primary responsibilities:

1. To issue unique identifiers.

2. To uniquely associate identifiers with the objects they are supposed to identify.

The basic issuing of unique identifiers is a relatively straightforward task. The common
approach is for the naming authority to maintain a list of identifiers in a repository
(generally a database) and simply ensure that each new identifier issued is not already in
the repository. But sometimes it is impractical to have one central identity authority. In
such cases, you have to use hierarchical identifiers.

Chapter 24. Identifiers (Unique Names)
Many business processes require distinguishing one individual from another. When you
place an online order, the business needs to be able to distinguish you as an individual from
your next-door neighbor. Similarly, the business needs to distinguish the order you place
today from the one you placed yesterday. The way this is approached is to give a unique
name to each objectâ!”each person or order. Such unique names are called identifiers.

Identifiers are simply unique numbers or strings that are created and assigned to individual
objects. These identifiers are then used to represent individual objects in the systems.
When a customer places an online book order, he or she creates an account (if one doesn't
already exist). As part of creating the account, the system generates a unique identifier for
the accountâ!”an account number. This account number then becomes a surrogate to
represent the customer in the order management system. Since the customer is not
physically present in the system, the system cannot associate orders directly with the
customer. Instead, the system associates the account number with each order, implying
that the customer placed each of those orders.

This association of identifiers with the individual objects they represent is as much a part of
the identity game as are the identifiers themselves. You can generate as many identifiers as
you want, but until you associate them with individual objects, the identifiers have no
meaning. So when you consider identity, you must consider both the creation of the
identifier and its subsequent association with the object it is supposed to represent. The
goal, of course, is for each identifier to uniquely designate a specific object.

This goal of maintaining a unique mapping from identifier to object is difficult to achieve in
practice. There are often data quality issues, and these quality problems can have a
significant impact upon the enterprise's business processes. You need to understand what
these quality problems are so that you can manage them. But before you can explore the
sources of these problems, you must first understand the process of creating identifiers and
associating them with objects. This is the job of the identity authority.

Identity (Unique Name) Authorities

An identifier, by definition, uniquely represents a single object. This means that the value
you come up with for the identifier must be unique (there can be no other objects with the
same identifier). Most identity systems impose a second requirement: Each object can only
have one identifier. This is how driver's licenses are supposed to work. Your driver's license
has an identifier on it, and you are the "object" that the identifier is associated with. Of
course, it is always possible to have more than one type of identifier for a given object. In
addition to your driver's license identifier, you probably also have a national income tax
identifier, and you may even have a passport with a passport number on it as well. So the
uniqueness properties of an identifier are with respect to a particular type of identifier.

The only way that the uniqueness properties can be guaranteed is to have a central
authority managing themâ!”an identity authority. This authority keeps track of the
identifiers that have been issued and the objects they are associated with. Each type of

identifier requires a corresponding identity authority. In the case of your driver's license,
the authority is your state's Department of Motor Vehicles. More than likely, the authority
employs a system that maintains the driver's license records. This system keeps track of
which driver's license numbers have already been issued and identifying information about
the people they have been issued to. When a new license is issued, the system issues a
new[1] number, checks to ensure that the person does not already have a driver's license
(at least in this state), and associates the person's identifying information (name, hair color,
height, picture, etc.) with the driver's license.

[1] Some identity authorities recycle old identifiers under the assumption that the objects they identify no
longer exist. This violation of the uniqueness assumption can lead to errors in business processes.

Thus the identity authority has two primary responsibilities:

1. To issue unique identifiers.

2. To uniquely associate identifiers with the objects they are supposed to identify.

The basic issuing of unique identifiers is a relatively straightforward task. The common
approach is for the naming authority to maintain a list of identifiers in a repository
(generally a database) and simply ensure that each new identifier issued is not already in
the repository. But sometimes it is impractical to have one central identity authority. In
such cases, you have to use hierarchical identifiers.

Hierarchical Identifiers

Some identifiers are actually composed of a hierarchy of smaller identifiers. The familiar
Internet host names such as www.ieee.org are an example. The overall identifier is
actually a name for a specific computer and is associated with the specific Internet protocol
(IP) address assigned to that computer. Thus, instead of remembering the IP address of the
machine (www.ieee.org is associated with 209.18.36.42 as of this writing) you can use
the more easily remembered host name.

This host name actually comprises several identifiers organized into a hierarchy. The right-
most field is a top-level identifier that is (literally) globally unique. The Internet Corporation
for Assigned Names and Numbers (ICANN) serves as the identity authority for this top-level
domain. It establishes the allowed values for the names in the domain (.com, .org,
.net, etc.), and for each value assigns an identity authority to manage the next-level
domain. For example, the Public Interest Registry serves as the identity authority for names
within the .org domain while Verisign Global Registry Services serves as the identity
authority for the .com and .net domains.

The identifiers issued by the second-level identity authorities are not globally uniqueâ!”they
are unique only within the scope of the top-level domain. The identity authority that owns
the .org domain does not have to check the uniqueness of its identifiers with the identity
authority of any other top-level domain. Instead, it simply appends its own identifier to
those it generates. Since its own identifier is guaranteed to be unique, the identifiers it
issues will be similarly unique. Thus both the .org domain and the .com domain can (and
have) issued the identifier ieee. However, ieee.org remains a separate and distinct
identifier from ieee.com.

The identity authority for the second-level domain assigns allowed values for the third-level
domain and designates the identity authority for managing that domain. In this example,
the Public Interest Registry assigned the .ieee domain name and gave the responsibility
for its management to the organization known as the Institute for Electrical and Electronics
Engineers (IEEE). The IEEE then assigned the name www in its .ieee.org domain and
designated an authority (more than likely itself) to manage fourth-level values. It also
associated www.ieee.org with a specific machine having the IP address 204.2.160.14.

In the case of Internet host names, the naming authorities do not attempt to make host
names the unique representatives of the entities they are associated with. The machine
being referred to as www.ieee.org can also be accessed using the hostname
www.ieee.org.edgesuite.net. The host-naming scheme also allows multiple domain
names to be assigned to one identity authority and even to the same IP address. For
example, the IEEE manages the domains ieee.net and ieee.com as well as ieee.org.
As of this writing the hostnames ieee.org, ieee.net, and ieee.com are all associated
with the same IP address!

Hierarchical Identifiers within the Enterprise

As the IEEE example illustrates, a structured namespace with a hierarchy of identity
authorities makes it possible to have unique identifiers without requiring a central identity
authority. This approach becomes essential when there are multiple organizations involved.
Hierarchical namespaces with separate identity authorities for each level in the hierarchy
make it practical to uniquely identify objects without introducing the bottleneck of a central
identity authority.

Hierarchical identifiers are of particular interest to enterprises comprising relatively
independent organizations. A central organization (such as the enterprise architecture
group) is still required to establish the overall structure of the namespace and directly
manage the first level of the hierarchy. In this role it assigns top-level values and, for each
value, designates the organization that will be the identity authority for the next tier in the
hierarchy. The designated organization then assigns the next-level values and, for each
value, may designate yet another organization (or project) to administer the third-tier
values, and so on. Note that if the enterprise itself is designated by an Internet domain
name, appending that domain name to the identifiers it issues guarantees that those
identifiers will be globally unique! This approach can be used to uniquely name Java objects,
Eclipse plug-ins, JMS topics and queues, XML schemas, SOAP services, or anything that
requires unique names.

UUIDs and GUIDs

While it may not seem so at first glance, a Universally Unique Identifier (UUID)[2] is actually
a hierarchical identifier. Each identifier is a 128-bit value comprising two parts, one
identifying the issuer of the identifier and the other being an identifier locally assigned by
that issuer. The combination is then used to uniquely identify a specific object. In this
scheme, the issuer is acting as the identity authority for the second part of the identifier.
Assuming that the identity of the issuer is unique, and the identifiers it issues are also
unique, then combination of the two parts constitutes a unique identifier for a specific
object.

[2] ISO/IEC 9834-8:2005 Information technologyâ!”Open Systems Interconnectionâ!”Procedures for the
operation of OSI Registration Authorities: Generation and registration of Universally Unique Identifiers
(UUIDs) and their use as ASN.1 Object Identifier components.

One common implementation of this UUID standard is the Globally Unique Identifier (GUID)
shown in Figure 24-1. A GUID[3] uses the 48-bit MAC address of the computer's network
interface card (NIC) as a unique identifier for the issuer. The MAC address, itself, is
composed of two 24-bit parts. The first part identifies the manufacturer of the NIC card,
and the identity authority that manages these values is the IEEE Registration Authority.[4]

The remainder of the MAC address is assigned by the manufacturer to uniquely identify the
NIC card. Thus the manufacturer becomes the identity authority for the second part of the
MAC address.

[3] This is actually a description of a Version 1 Microsoft GUID; there are other versions as well.

[4] This description applies to universally administered MAC addresses, so indicated by the first (most
significant) bit of the address being a "0". MAC addresses may also be locally administered, in which
case the first bit is a "1".

Figure 24-1. GUID Structure

The remainder of the GUID, the part that uniquely identifies the object, is the elapsed time
(measured in 100-nanosecond intervals) between the adoption of the Gregorian calendar
and the issuance of the identifier. This serves as the individual object identifier. As long as
the machine designated by the MAC address is not generating identifiers within 100
nanoseconds of each other, this will result in a unique identifier for each object.

You can see then that a GUID (as it is described here) involves three hierarchical naming
authorities:

1. The IEEE Registration Authority issued the identifier for the manufacturer of the NIC
card, which became the first part of the MAC address assigned to the NIC card

2. The manufacturer issued the identifier for the individual NIC card, which became the
second part of the MAC address assigned to the NIC card

3. The component running on the computer with the NIC card that issued the GUID.
The component used the MAC address to uniquely identify itself.[5] This becomes the
first part of the GUID. It then used the clock to determine the value for the second
part, which it then used to uniquely identify the object.

[5] Here there's a potential flaw in this particular system, as there could be more than one
component running on the machine and generating GUIDs.

There are other schemes for creating UUIDs besides this particular GUID approach, but they
all share the same general pattern: The first part of the UUID uniquely designates the
component issuing the identifier, and the second part uniquely designates the specific
object.

Note that while the UUID approach seeks to generate unique identifiers, it does not
absolutely guarantee uniqueness. Two processes running on a multi-CPU machine might
invoke two independent GUID libraries at exactly the same time and thus generate the

same GUID. Resetting the clock on a computer might also result in a duplicate being
generated. Admittedly, the likelihood is low, but if you need an absolute guarantee then you
must use an identity authority that actually keeps track of which identifiers have already
been issued so that identifiers can never be duplicated.

Coping with Identity Errors

The goal in using identifiers (unique names) is to have each identifier designate exactly one
object. Often, you want to further require that each object have exactly one identifier (of a
particular type). Unfortunately, in the real world, you often cannot guarantee that this ideal
state will be achieved. Consequently, you must design systems and business processes to
be tolerant of such errors. At a minimum, you want to design systems so that if the
uniqueness assumption turns out to be false, the system at least handles the situation in a
graceful wayâ!”it doesn't crash. Beyond that, you might want to design the systems to
actually recognize and report a violation of the uniqueness assumption (or at least a
potential violation). Going even further, you might want to design the business process that
will resolve the discrepancy should one be found. All of this, of course, requires work. The
amount of work that is justified will depend on the business impact of the error.

Consequences of Identity Errors

Companies that prepare tax returns long ago learned that tax identifiers, which are
supposed to uniquely identify a single individual, occasionally end up being used by more
than one person. But assume for a moment that this possibility for non-uniqueness has not
yet been recognized and accounted for in the systems design. The database of tax returns
might well put a "unique" constraint on the field containing the tax identifier in the
customer record. In fact, it would be tempting to use this field as the primary key for this
record. This design would then throw a database error if a second person was entered with
the same tax identifier. Uncaught, this would cause a failure of the process attempting to
enter that second person's information. The recovery from this error would require nothing
less than a redesign of the database and the systems using it to remove the "unique"
constraint and generate new identifiers for all individuals. Not a happy prospect!

Recognizing that the non-uniqueness of the tax identifier is a possibility, the system might
be designed to catch the duplicate tax identifier error while the data is being entered. This
would allow the employee entering the data to be alerted that the tax identifier is already in
the system and associated with another person. However, while this would avoid an
outright crash of the system, it would not enable the processing of the new tax return. The
presence of a "unique" constraint would still prevent the data for the second person from
being entered with the same tax identifier. Once again, the design would have to be
changed before this tax return could be processed.

Sources of Identity Errors

Assumptions about the uniqueness of identifiers can turn out to be erroneous, and designs
can easily fail as a result. To help you identify such situations, let's take a look at how such
errors can arise. There are actually three types of identifier error:

1. The identifier may actually be associated with the wrong object (i.e., a different
object than the one it is supposed to identify)

2. The same identifier may be associated with more than one object

3. More than one identifier may be associated with the same object (this may or may
not be an error depending upon the intent of the identifier).

The reason that these errors cause systems problems is illustrated in Figure 24-2. Systems
use identifiers as surrogates for the real-world objects they are supposed to represent.
When you want to associate information with real-world objects, you associate the
information with the identifier within the system, with the assumption that this identifier
uniquely designates the real-world object. Thus a name and address become associated
with an identifier that is supposed to represent a unique person.

Figure 24-2. Using Identifiers to Associate Information with Objects

When there are errors in identifiers, the result is that there are errors in associating the
information in systems with the real-world objects.

Associating an Identifier with the Wrong Object

When an identifier is associated with a real-world physical object, you generally cannot be
absolutely sure of the actual identity of the physical object. Sometimes this occurs through
fraud, as when false identity papers are use to obtain a driver's license. Sometimes it
occurs by accident, as when a radio-frequency ID (RFID) tracking tag or bar-code label is
accidentally placed on the wrong pallet of goods.

This type of error does not generally pose a problem with respect to system design. The
existence of the error will not cause a breakdown in the system itself. However, the error
may well cause problems for the enterprise and its business processes. A false name and
address on a driver's license may cause problems for law enforcement. A wrongly placed
RFID tag may result in the goods being shipped to the wrong destination.

You need to think about the impact of such errors on the enterprise, and then let the
severity of that impact guide your efforts. At a minimum, if such situations can arise and
they are serious, you need to include the facilities in the system to correct the error once it
is recognized. Otherwise, the enterprise will be stuck with the error and unable to correct it.
If it is discovered that the RFID tag has been placed on the wrong pallet, the system needs
to provide the interfaces to edit this relationship. At a minimum, this will require an
interface that allows such editing, but the changes may be more extensive if the identity
information has been replicated in other systems. You now have to design mechanisms for
updating the replicas. This is a serious design issue, for you tend to think of identity
information as being immutable, and thus overlook the modify and delete operations with
respect to identifiers.

Beyond simply making provisions for correcting the error, if the consequences are serious
enough, you might want to reexamine the business process that first associated the
identifier with the object and determine whether an alteration of that process might reduce

the likelihood of such an error occurring. Similarly, you might want to alter the business
processes that rely on the accuracy of the object identity to re-verify that identity before
taking actions that might expose the enterprise to the risk. When a loan is about to be
made, for example, the bank may well ask for additional forms of identification to verify that
the customer is, indeed, the person he or she claims to be. Similarly, the shipping clerk
might verify the actual content of the pallet before it is shipped. In any case, you want to
let the level of risk that the error poses guide the level of design effort you put into
mitigating that risk. And do not forget to include the design of the business process itself in
your thinking.

Associating an Identifier with More than One Real-World Object

Associating more than one real-world object with the same identifier is an errorâ!”one that
presents greater system challenges than simply associating the identifier with the wrong
object. The systems now have information from two or more real-world objects all
associated with a single identifier. When it is discovered that the same identifier is actually
associated with more than one real-world object, the recovery can be very complicated.
The easy part is to create a new identifier for the second object. The difficult part is
correcting the associations between the information elements and the identifiers. This
involves determining which of the information elements currently associated with the
original identifier now should be associated with the new identifier, and then correcting the
associations. The correction requires editing facilities for making those changes. If any of
the information has been replicated, additional facilities are required to propagate the
changes to the replicas.

There are a number of ways this type of error can arise. The recycling (reuse) of identifiers,
mistakes made in merging information, and identity theft are a few examples.

Recycling Identifiers

The recycling (re-use) of identifiers, whether intentional or accidental, can cause a single
identifier to become associated with multiple objects. The reason that the identifiers are
recycled is usually because there is a finite size for the identifier and this limits the number
of possible identifiers. Perhaps the best known example is the infamous "Y2K" problem that
occurred at the end of the last century. Years were being represented in many systems with
just two digits, so the "1/1/00" identifier for January 1, 2000 could not be distinguished
from January 1, 1900. The same identifier represented two different dates.

Because of this possibility, when you consider the design of the identifier you need to
consider the likelihood that the finite representation will result in the inadvertent reuse of
the identifier. Even the timestamp used in the low-order 80 bits of a GUID will eventually
roll over to all zeroes so that they begin to be reused. The good news is that this will not
happen until around AD 3400, by which time it is unlikely that any of the systems being
designed today and the objects being identified will still exist! However, these two examples
illustrate the thought process you need to go through in evaluating such situations:

1. Is there a circumstance that will result in identifiers being reused? In both examples,
the answer was yes.

2. Is that circumstance likely to present itself in reality? In the Y2K example, the

answer is yes. In the GUID example, the answer is no.

3. If the reuse is likely, does it pose a risk? In the Y2K example, the answer was yes.

4. What level of effort is warranted by that risk? In the Y2K example, many systems
were modified because the business processes they supported would not execute
properly once the reuse began.

Mistakes in Merging Information

Mistakes made in joining information can cause more than one real-world object to become
associated with one identifier. Many enterprises with multiple lines of business are today
trying to assemble a unified picture of their customers across all of their lines of business.
Others are merging customer records from acquired businesses with their existing customer
records. These synthesized customer views are assembled from the information available in
different systems. You might find two John Smiths, both with the same address and phone
number, in two different systems. Based on this, you might design the process that merges
the data to conclude that they are the same customer and give that customer an identifier.
Unfortunately, at a later date, a customer service representative, looking at this information
while talking with John Smith, discovers that there are, in fact, two John Smiths in the
household: one is the son of the other! Now a second identifier needs to be created, and
the correct information associated with each identifier.

Design Considerations

You need to consider the business impact arising from having more than one real-world
object associated with an identifier and let the level of risk determine the commensurate
level of design-time and runtime effort. The task of determining which data belongs to
which identifier is non-trivial, and it is generally difficult to completely automate. If the
editing involved is relatively simple and the situation does not arise very frequently, a
completely manual editing procedure may suffice, but this still requires the design and
implementation of the editing interfaces.

If there is a lot of information involved, some level of automation may be required with
human input identifying the required changes. In extreme cases, when the amount of
editing is large or the frequency with which it must be performed makes it impractical to
involve people, a fully automated solution may be required. But before you decide to do
this, you need to determine the technical feasibility of such automation. Just because you
would like to automate this editing activity does not necessarily mean that all of the
information needed to carry out the operation is present in the system. Nor does it
necessarily mean that you can, in a practical sense, write down all the rules needed to cover
all of the possibilities. Feasibility is a key consideration in automating this type of error
recovery operation. Even if you conclude that automation is feasible, you also need to keep
in mind that the more automation that is included, the greater the design effort and
runtime performance impact. You may encounter cost issues as well as feasibility issues.

Multiple Identifiers for the Same Object

The third type of situation you may encounter is multiple identifiers for the same object.
Depending upon the context, this may or may not actually be an error. In the case of the

Internet hostnames we discussed earlier, it is perfectly acceptable to have multiple
hostnames for one machine. On the other hand, it is generally not acceptable for you to
have multiple driver's licenses from the same state or multiple tax identification numbers
from the same country.

When having multiple identifiers is not acceptable and you actually find such an error, you
need to be able to merge the two identifiers into one. Basically this requires removing one
of the identifiers and re-associating all of its information with the other identifier. Once
again, you need to determine how this will be accomplished, whether through manual
editing, partial automation, or complete automation. And, once again, the feasibility of
complete automation needs to be determined. One common problem that occurs in this
merger of information is that conflicting information may be associated with the two
identifiers. Each identifier may have a different address or phone number associated with it.
When this occurs, there is generally insufficient information in the systems to determine
which one is correct. The term "correct" is used somewhat loosely here, as there is often
judgment involved. It may be the case that both addresses are valid. One just happens to
be the residence, while the other is the work address. Unraveling such situations usually
requires human assistance.

Mapping Identifiers

There are many real-world situations in which different identity authorities have each issued
identifiers for the same object. One individual person may have a tax identification number,
a driver's license number, and a passport number. You find this in systems as well: It is not
unusual for an object to be assigned different identifiers by different systems. This poses
some interesting problems when these systems need to exchange information.

A real example of the identifier mapping problem is found in the automotive industry. An
automobile manufacturer has two computer systems: one used by its dealers and the other
used by the factory. Customers are present in both systems. If a potential customer goes to
the manufacturer's web site and requests information about a car, he or she ends up with
an identifier in the factory system. If a customer walks into a dealership and orders a car,
this person ends up with an identifier in the dealer's system. Each of these systems acts as
its own identity authority.

In the normal course of doing business, these two systems need to interact with each other
and exchange customer information. The dealer system, for example, needs to move the
order into the factory system so that the car can be built. During this movement, the
factory system needs an identifier for the customer. Which identifier should it use?

Answering this question is not simple. You might consider using the dealer system's
identifier, but it was issued by a different identity authority and might not be unique in the
factory system. You might consider using the identifier in the factory system that was
created when the customer went to the web site, but you might not even know that this
identifier exists. You might create a new identifier in the factory system, but now you would
have a duplicate in the factory system. If there are different identifiers in the different
systems, you need to determine which component will keep track of the correspondence
between the identifiers.

These types of identifier-mapping questions arise all the time in enterprise systems. Even in
this example, there is a second set of identifiers associated with the order itself. The dealer
system needs an identifier for the order, and so does the factory system. Where will these
identifiers come from, and how will they be managed? These questions bring you back to
the data consistency questions discussed in Chapter 22.

The simplest solution, of course, is to have a single system of record for all identifiers. In
fact, there has been such a system in place for identifying individual automobiles since
1978â!”the Vehicle Identification Number or VIN system.[6] The VIN is another example of
a hierarchical identifier. Part of the VIN identifies the manufacturer, who then becomes the
identity authority for issuing the remainder of the VIN number. The International Standards
Organization (ISO) serves as the identity authority and system-of-record for the
manufacturer's ID, which is known as the World Manufacturer's Identifier (WMI).[7] The
manufacturer then serves as the identity authority and system-of-record for the VIN
number itself.

[6] The standard for VIN numbers is specified in ISO Standard 3779 first issued in February 1977 and
was last revised in 1983.

[7] The standard for the WMI is defined in ISO 3780.

The single system-of-record approach to creating identifiers is the only way to avoid the
possibility of duplicate identifiers.[8] Thus when the business consequences of duplicate
identifiers are significant, this approach should always be taken. In fact, it was the business
consequences of not being able to accurately identify automobiles (for ownership records,
insurance, and theft purposes) that motivated the world-wide automobile industry to
establish the VIN system.

[8] The formal proof of this is again the Byzantine General's problem referenced earlier in Chapter 22.

Unfortunately, much as you might like to have a single system-of-record for identifiers, you
are often faced with situations in which different systems, each acting as an identity
authority, end up generating different identifiers for the same object. Since scrapping or
modifying these systems is often not a viable option (at least in the short term), you must
come up with real-world approaches for coping with this situation.

Correlating Identifiers

When you have different identifiers for the same object in different systems, you are faced
with the problem of matching them up, particularly when you are creating new identifiers.
Figure 24-3 illustrates a typical scenario involving two systems and a cross-reference
manager. The cross-reference manager is a role that might be played by either one of the
systems or by a third component. system A creates a new identifier and notifies the
cross-reference manager about its creation. This notification includes both the new
identifier and sufficient information to allow the cross-reference manager to determine
whether a corresponding identifier already exists in system B. If the system B identifier is
not found, one is created using the information that came along with the system A
identifier. In either case, once the cross-reference manager has a system B identifier,
the two identifiers are added to the cross-reference table. This table is used in subsequent
interactions between the systems to substitute one system's identifier with that of the
other.

Figure 24-3. Correlating Identifiers between Systems

[View full size image]

For performance reasons, it is desirable to reduce the two interactions between the cross-
reference manager and system B to a single interaction. However, this requires moving
the logic of checking for an existing identifier and conditionally creating a new one into
system B. Often, for technical and/or organizational reasons, this option will not be
available. You may find, for example, that system B already provides search and identifier
creation operations but does not provide a combined operation.

The process described here seems straightforward on the surface, but there is a potentially
serious problem that can arise. The information used to perform the identifier lookup in
system B may not exactly match the information currently present in system B,
particularly when identifying people. The address might not match exactly, or the phone
numbers in the two systems might be different. One system contains a person's given name
while the other contains a nickname. As a result, the search may fail to locate the correct

identifier. The consequence is that a second identifier for the same person will be created in
system B, and you will have multiple identifiers for the same person.

Data quality problems are common in the enterprise, and duplicate identifiers are a common
consequence. So what should you do about them? You must once again be guided by the
level of business risk associated with duplications. That understanding should then guide the
level of effort that the enterprise expends in detecting and removing duplicates. These
efforts will manifest themselves as new business processes for duplicate detection and
removal, supported by new operations on the systems to "merge" the entries associated
with the duplicate identifiers. And even here you must recognize that a guaranteed 100%
clean-up is impossible.

Summary

Identifiers are intended to uniquely identify individual real-world objects. Identifiers are
issued by identity authorities whose responsibility is to ensure the uniqueness of the
identifier and that the identifier is only associated with one real-world object. Some identity
authorities further ensure that no more than one identifier is associated with a single real-
world object.

The identity authority is a potential bottleneck in the issuance of identifiers. Hierarchical
identifiers provide a means of avoiding such bottlenecks. The hierarchical identifier consists
of a series of fields, each issued by a different identity authority. The value in the first field
identifies the authority for assigning values for the second field, and the value in the second
field identifies the authority for assigning values for the third field, and so on. This hierarchy
distributes the work of assigning identifiers while maintaining a guaranteed uniqueness of
identifier values.

Different types of errors can arise with respect to identifiers. The identifier might be
associated with the wrong real-world object, or with more than one real-world object. There
might be more than one identifier associated with one real-world object when there is not
supposed to be more than one.

Identifier errors can cause both business and systems problems, and the possibility of such
errors needs to be taken into consideration in designing both business processes and
systems. Detecting and correcting such errors requires additional design-time and runtime
work. The level of effort that goes into detecting and correcting errors should be guided by
the business consequences arising from the errors.

Key Identifier Questions

1. Are identifiers present in the systems? Have the corresponding identity
authorities been clearly identified?

2. Is there a potential for identity errors? What are the associated business
risks? What level of design-time and runtime effort is warranted for
detecting and correcting these errors?

3. Is identity mapping required in the business process? Which component is
responsible for maintaining the map? Have the business processes for
managing the mapping been defined and implemented?

Chapter 25. Results Validation
When you do work, it is good practice to check the quality of it after you have finished. The
same is true in systems. When an activity generates a result, you should consider the
extent to which the system should perform quality checks on that result. The problem that
you run into, however, is that validation is potentially a very open-ended activity. To
perform a full quality check on the result may actually take more computational resources
(and time) that it took to create the result itself. So once again, you must ask yourself
what is prudent and reasonable.

Start by considering what might be checked in the results, at least for data sets. The things
that might be checked are:

1. The syntactic correctness of individual fields; that is, does the date field actually
contain a well-formed date?

2. The syntactic correctness of the overall structure: Is the structure itself correct in
form; that is, are all required fields present and are all optional fields in the correct
places?

3. The internal semantic correctness of the result; that is, if the result is an order, is the
requested ship date for the order later than the order placement date?

4. The external semantic correctness of the result in the context of the enterprise; that
is, if the result is an order cancellation, does the order being referenced actually
exist?

As you progress down this list, the work involved in performing the validation checks
increases. The syntactic checking of individual fields is relatively straightforward except for
the issue of enumerated values (which will be discussed in a moment). Checking the overall
structure gets a bit more complicated because it involves the allowed variations of the data
structure. Checking the internal semantic correctness requires the comparison of values of
various fields according to some rules. Finally, checking the external semantic correctness
requires access to data outside the data structure. In a distributed system, such data access
can be very expensive and will almost certainly have a performance impact. From a
practical perspective, the complexity and performance impact of any check is usually the
limiting factor in how much "correctness checking" is actually implemented.

Checking Enumerated Values

Enumerated values are the list of allowed values for a given field. A commonly enumerated
value in order entry systems is a unit of measureâ!”how the quantity is to be interpreted.
The unit of measure might be kilograms, tons, or gallons. Gender is another common
example of an enumerated value, with the allowed values of male and female.

The problem presented by enumerations is simply finding the list of allowed values. Modern
schema representations such as XML can include the list of values, and some designs use a

database table to hold the list of allowed values; however, in many cases there is no
centralized list of allowed values. In these cases, the allowed values end up being
embedded in the code that does the checking. This makes value checking complex to
implement and requires changing the code to add new values. Placing values in databases
is more flexible, but accessing those values for checking purposes requires extra design and
has performance implications.

XML has changed the picture for enumerations. XML schemas make it possible to include
the list of allowed values as part of the schema. Standard XML validation code can then
compare an XML data structure against the schema to determine whether it is correct.
Furthermore, since the schema itself is an input to the validation process, adding a new
value to the enumeration does not require code changes to the components providing
validation. Yes, you still have to worry about rolling out the change across multiple
components, but at least you have avoided making code changes. And you have removed
the need to access an external data source in order to validate the data structure.

Chapter 25. Results Validation
When you do work, it is good practice to check the quality of it after you have finished. The
same is true in systems. When an activity generates a result, you should consider the
extent to which the system should perform quality checks on that result. The problem that
you run into, however, is that validation is potentially a very open-ended activity. To
perform a full quality check on the result may actually take more computational resources
(and time) that it took to create the result itself. So once again, you must ask yourself
what is prudent and reasonable.

Start by considering what might be checked in the results, at least for data sets. The things
that might be checked are:

1. The syntactic correctness of individual fields; that is, does the date field actually
contain a well-formed date?

2. The syntactic correctness of the overall structure: Is the structure itself correct in
form; that is, are all required fields present and are all optional fields in the correct
places?

3. The internal semantic correctness of the result; that is, if the result is an order, is the
requested ship date for the order later than the order placement date?

4. The external semantic correctness of the result in the context of the enterprise; that
is, if the result is an order cancellation, does the order being referenced actually
exist?

As you progress down this list, the work involved in performing the validation checks
increases. The syntactic checking of individual fields is relatively straightforward except for
the issue of enumerated values (which will be discussed in a moment). Checking the overall
structure gets a bit more complicated because it involves the allowed variations of the data
structure. Checking the internal semantic correctness requires the comparison of values of
various fields according to some rules. Finally, checking the external semantic correctness
requires access to data outside the data structure. In a distributed system, such data access
can be very expensive and will almost certainly have a performance impact. From a
practical perspective, the complexity and performance impact of any check is usually the
limiting factor in how much "correctness checking" is actually implemented.

Checking Enumerated Values

Enumerated values are the list of allowed values for a given field. A commonly enumerated
value in order entry systems is a unit of measureâ!”how the quantity is to be interpreted.
The unit of measure might be kilograms, tons, or gallons. Gender is another common
example of an enumerated value, with the allowed values of male and female.

The problem presented by enumerations is simply finding the list of allowed values. Modern
schema representations such as XML can include the list of values, and some designs use a

database table to hold the list of allowed values; however, in many cases there is no
centralized list of allowed values. In these cases, the allowed values end up being
embedded in the code that does the checking. This makes value checking complex to
implement and requires changing the code to add new values. Placing values in databases
is more flexible, but accessing those values for checking purposes requires extra design and
has performance implications.

XML has changed the picture for enumerations. XML schemas make it possible to include
the list of allowed values as part of the schema. Standard XML validation code can then
compare an XML data structure against the schema to determine whether it is correct.
Furthermore, since the schema itself is an input to the validation process, adding a new
value to the enumeration does not require code changes to the components providing
validation. Yes, you still have to worry about rolling out the change across multiple
components, but at least you have avoided making code changes. And you have removed
the need to access an external data source in order to validate the data structure.

Where and When to Validate

The question as to where and when to validate data usually spawns a lengthy debateâ!”and
rightfully so. It is not a simple question to answer. The issue is that validation requires
work, both at design time and runtime. To answer the question, you must turn once again
to the pragmatic questionâ!”what is the risk resulting from incorrect data in the data
structure? Once you understand the consequences of error, then you can let this
understanding guide the decision.

If you have decided that a validation check is warranted, you need to determine where the
validation should be performed. In general, the closer the validation is to the source of the
error, the easier it will be to handle the error. Just imagine an online catalog-ordering
process that does not validate the type of item being ordered until the order reaches the
warehouse. What can the warehouse do if it does not recognize the type of item that has
been ordered? The warehouse would have to notify the order entry people, and someone
there would have to contact the customer for clarification. Contrast this with a validation
that is performed by the order entry system at the moment the order is entered and before
the customer is told that the order has been accepted. If the validation check fails here, the
customer can be told immediately and the error can be readily corrected.

As part of this discussion, you should also consider the difference in computational cost
between syntactic checking and semantic checking. When you are using XML, the
availability of standardized libraries for validating the XML against its schema makes
syntactic checks almost trivial to implement and the computational cost is generally a few
milliseconds or less. If you implement a syntactic check each time an XML data structure is
generated, you will have an effective means of isolating the source of the error. Since
determining the source of errors in a distributed system is notoriously difficult,
implementing syntactic checks at the source is good practice, provided that the small
computational cost is tolerable.

Semantic checks, on the other hand, tend to be more costly than syntactic validation. They
require explicit design effort to define what is acceptable, and the runtime effort often
involves data lookups that require cached data for efficiency. Recovery from these errors
almost always requires some form of process design as well. For these reasons, it is good
practice to indicate the location and nature of semantic validation checks in the process
design itself. If there is reference information involved, its access should be designed and
treated the same way as any other required input to a process.

Summary

Data errors can be disruptive to the business process. Explicitly validating results raises the
visibility of errors at known points in the process, making it easier to design error recovery.
The potential impact of the disruption should guide the level of effort (both design-time and
runtime) expended on validation.

Validation checks fall into four categories: syntactic validation of individual fields, syntactic
validation of the overall data structure, semantic validation within the data structure (i.e.,
self-consistency), and semantic validation with respect to external reference data. In
general, the level of effort required for validation increases as you move down this list. XML
schema validation is relatively inexpensive and covers the first two types of checking.

The location of the validation checks should be carefully considered. In general, the closer
the validation check is to the source of the error, the easier it is to design the business
process to recover from the error. It is good practice to routinely validate XML data
structures, as this functionality is readily available in most environments. Semantic checks,
however, require design work. They frequently involve accessing reference data as well. As
such, the semantic validation activities should be explicitly added to the process flow and
treated like any other activity in the business process.

The bottom line is that data validation cannot be treated as an afterthought. The location of
the check, the need to access reference data, the performance impact, and the process of
recovering from errors must all be taken into consideration in the basic process design.

Key Data Validation Questions

1. What is the business consequence of data errors in the business process?
What level of effort is warranted in mitigating these errors?

2. Where are data validation checks being performed? What type of check is
being performed? Is access to reference data required?

3. What is the business process response to data errors discovered in
validation checks?

Chapter 26. Enterprise Architecture: Data
Many data issues are strategic in nature. Decision making on these issues requires a perspective that
extends well beyond the bounds of any single project. The enterprise architecture group, on the other
hand, exists specifically to provide this broad perspective. Thus, the enterprise architecture group should
both make these strategic decisions and see that they are appropriately applied in day-to-day project
designs. This participation is necessary to achieve consistency across the enterprise, for it is only through
the consistent application of the decisions that the benefits accrue to the enterprise as a whole.

Naming Schemes

Many things in an architecture require names: message destinations, operations, services, and schemas to
name but a few. Names are identifiers, and to avoid the identifier problems described in Chapter 24, they
require a naming authority or, more appropriately in the enterprise, a hierarchy of naming authorities.

The enterprise architecture group, with its enterprise-scale charter, is the appropriate group for managing
the approach to naming. These responsibilities include:

Establishing the hierarchical naming structure for message destinations, operations, services,
schemas, processes, and whatever else requires consistent naming across the enterprise.

Acting as the naming authority for the top-level values in this hierarchy, possibly interacting with
external parties (e.g., ICANN) to obtain top-level values that will make the names globally unique.
This is particularly important for external-facing services, operations, and data structure schemas.

Establishing the policies for identifying naming authorities within the enterprise for lower-level
names in the hierarchy.

Identifying the naming authority to be associated with each name the enterprise architecture group
issues.

For example, if the enterprise is using SOAP over JMS for its services, it needs to name the services,
interfaces, operations, and JMS destinations. A consistent naming scheme across these elements will make
it easy to understand the purpose of each item and the correspondence among them. A general naming
scheme such as the following can provide a common framework for these names:

<Company>/<Domain>/<Service>/<Interface>/<Operation>/<Version>/<Format>

The specific character separating the fields will be dependent upon the particular usage. The "/" used here
is typical of URL (universal resource locator) designators, but a decimal point (".") is common in other
usages.

The enterprise architecture group would be responsible for defining this overall structure, obtaining the
<Company> designator from ICANN (or some external authority), assigning values for the <Domain> field,
and designating the naming authority for fields below the <Domain> field. The <Company> field is a hedge
against mergers and acquisitions to ensure that the names remain unique after two companies are
combined.

Of course, the enterprise architecture group could choose to remain the naming authority for the
<Service> and <Interface> levels as well. Typically the authority for naming the <Operation> and
below is temporarily delegated to the project team.

Taking this approach for the ATM example and its underlying services, the specific service operation used

to acquire authorization for disbursing funds might be named:

//MyBank.com/Retail/Account/BalanceMgmt/DisbursalAuthorizationRequest/10

Note the presence of the version number as the last field. This sets the stage for evolving this operation
should that become necessary.

When namespaces are used to identify message destinations, it is good practice to explicitly identify the
role the message is playing and the format of the message. Thus the JMS destination for requests invoking
the operation would be named:

Code View:

MyBank.com.Retail.Account.BalanceMgmt.DisbursalAuthorization.Request.10.SOAP

The response destination would be named:

MyBank.com.Retail.Account.BalanceMgmt.DisbursalAuthorization.Reply.10.SOAP

If notifications of new disbursal authorizations were being provided for some reason, the destination for
that would be named:

MyBank.com.Retail.Account.BalanceMgmt.DisbursalAuthorization.Notify.10.SOAP

The message format field at the end serves to disambiguate related messages that happen to be in
different formats but use the same transport. If the SOAP request had to be transformed into a legacy
format and delivered over JMS, the information content would be the same, but the format would be
different. The resulting message would be named:

Code View:

MyBank.com.Retail.Account.BalanceMgmt.DisbursalAuthorization.Notify.10.TargetFormat

Here is a final but important note on names. As much as possible, try to avoid using organization names
and system names. These names tend to be arbitrary and subject to change without notice. Changing
names in a namespace tends to be a lengthy and time-consuming process. For stability, use names from
the domain model that represent the generic roles and concepts.

Chapter 26. Enterprise Architecture: Data
Many data issues are strategic in nature. Decision making on these issues requires a perspective that
extends well beyond the bounds of any single project. The enterprise architecture group, on the other
hand, exists specifically to provide this broad perspective. Thus, the enterprise architecture group should
both make these strategic decisions and see that they are appropriately applied in day-to-day project
designs. This participation is necessary to achieve consistency across the enterprise, for it is only through
the consistent application of the decisions that the benefits accrue to the enterprise as a whole.

Naming Schemes

Many things in an architecture require names: message destinations, operations, services, and schemas to
name but a few. Names are identifiers, and to avoid the identifier problems described in Chapter 24, they
require a naming authority or, more appropriately in the enterprise, a hierarchy of naming authorities.

The enterprise architecture group, with its enterprise-scale charter, is the appropriate group for managing
the approach to naming. These responsibilities include:

Establishing the hierarchical naming structure for message destinations, operations, services,
schemas, processes, and whatever else requires consistent naming across the enterprise.

Acting as the naming authority for the top-level values in this hierarchy, possibly interacting with
external parties (e.g., ICANN) to obtain top-level values that will make the names globally unique.
This is particularly important for external-facing services, operations, and data structure schemas.

Establishing the policies for identifying naming authorities within the enterprise for lower-level
names in the hierarchy.

Identifying the naming authority to be associated with each name the enterprise architecture group
issues.

For example, if the enterprise is using SOAP over JMS for its services, it needs to name the services,
interfaces, operations, and JMS destinations. A consistent naming scheme across these elements will make
it easy to understand the purpose of each item and the correspondence among them. A general naming
scheme such as the following can provide a common framework for these names:

<Company>/<Domain>/<Service>/<Interface>/<Operation>/<Version>/<Format>

The specific character separating the fields will be dependent upon the particular usage. The "/" used here
is typical of URL (universal resource locator) designators, but a decimal point (".") is common in other
usages.

The enterprise architecture group would be responsible for defining this overall structure, obtaining the
<Company> designator from ICANN (or some external authority), assigning values for the <Domain> field,
and designating the naming authority for fields below the <Domain> field. The <Company> field is a hedge
against mergers and acquisitions to ensure that the names remain unique after two companies are
combined.

Of course, the enterprise architecture group could choose to remain the naming authority for the
<Service> and <Interface> levels as well. Typically the authority for naming the <Operation> and
below is temporarily delegated to the project team.

Taking this approach for the ATM example and its underlying services, the specific service operation used

to acquire authorization for disbursing funds might be named:

//MyBank.com/Retail/Account/BalanceMgmt/DisbursalAuthorizationRequest/10

Note the presence of the version number as the last field. This sets the stage for evolving this operation
should that become necessary.

When namespaces are used to identify message destinations, it is good practice to explicitly identify the
role the message is playing and the format of the message. Thus the JMS destination for requests invoking
the operation would be named:

Code View:

MyBank.com.Retail.Account.BalanceMgmt.DisbursalAuthorization.Request.10.SOAP

The response destination would be named:

MyBank.com.Retail.Account.BalanceMgmt.DisbursalAuthorization.Reply.10.SOAP

If notifications of new disbursal authorizations were being provided for some reason, the destination for
that would be named:

MyBank.com.Retail.Account.BalanceMgmt.DisbursalAuthorization.Notify.10.SOAP

The message format field at the end serves to disambiguate related messages that happen to be in
different formats but use the same transport. If the SOAP request had to be transformed into a legacy
format and delivered over JMS, the information content would be the same, but the format would be
different. The resulting message would be named:

Code View:

MyBank.com.Retail.Account.BalanceMgmt.DisbursalAuthorization.Notify.10.TargetFormat

Here is a final but important note on names. As much as possible, try to avoid using organization names
and system names. These names tend to be arbitrary and subject to change without notice. Changing
names in a namespace tends to be a lengthy and time-consuming process. For stability, use names from
the domain model that represent the generic roles and concepts.

Architecting Content Transformation

One of the roles of the enterprise architecture group is to establish standard patterns for
solving common problems. One of these common problems is content transformation.
Looking narrowly back at the communications pattern shown in Figure 21-4, it would be
tempting to identify content transformer as a type of architectural component and then
standardize the technology to be used for its implementation. In fact, you might even
consider content transformation a candidate to become a service. However, the context of
this figure is too narrow to support such conclusions. In it you are not seeing enough of a
typical overall process to decide whether this architectural partitioning is appropriate.

Consider the slightly larger slice of a business process shown in Figure 26-1. This process
involves a process managerâ!”a component that is orchestrating at least some portion of
the process. In this particular scenario, the initial message being received by the process
manager triggers the retrieval of some additional data. The results of this retrieval are
combined with information from the initial message, transformed into a form suitable for the
target system, and sent.[1]

[1] If you are thinking that the need for the request reflects a poor design decision (i.e., the information
ought to have been in the initial message), consider instead that this request might have been directed
to a third system.

Figure 26-1. Process Management Communications Pattern

[View full size image]

What you see here is a typical systems integration scenario involving a process manager.
The content transformation is but one of a number of activities being performed by the
process manager. If you make the content transformer a component (service) of its
own, then you will add another communications round-trip between the process manager
and the content transformer every time a content transformation is required.

In practice (and this has been done many times), making the content transformer a
separate component has, for the most part, turned out to be a poor architectural decision.
Most transformations are relatively simple, and the data marshalling, communications
overhead, and data un-marshalling required by this architectural partitioning adds
significant cost (not to mention delay) to the transformation operation. Furthermore, it
significantly increases the network load. Most successful architectures tend to treat content
transformation as a functional feature of a more broadly capable process manager
component.

Systems of Record

Establishing a system of record is an enterprise-wide decision that impacts every project
and system using the information. The Enterprise Architecture group should establish a
policy regarding defining systems of record for each concept and relationship found in the
domain. As appropriate, this policy must take into consideration the realities of operating
over a wide geographic area and the impact of communication interruptions. This may
require strategies for continuing business operations when the system of record is either
unavailable or inaccessible. The enterprise architecture group should also establish a policy
regarding the replication of data, stating a preferred approach (e.g., single system of
record), the allowed alternatives, and the conditions under which the use of the alternative
approaches are acceptable.

You should note that these decisions involve more than just an understanding of the domain
model. They must take into consideration the dynamic usage of the data in different
business processes and under different operational circumstances. A data modeling group,
by itself, is not in a position to make these decisions and establish policies. The broader
perspective of the complete enterprise architecture group is required.

These policy statements should be accompanied by a description of the preferred patterns
for the maintenance of data, including the preferred patterns for updating data caches.
These patterns will serve as guidelines for project teams and will ensure consistency across
projects. Where it is expected that a pattern will be repeatedly implemented in a particular
set of technologies, the enterprise architecture group should document a reference
architecture for that pattern showing the use of those technologies.

In a practical sense, it is impossible for the Enterprise Architecture group to foresee every
possible data management issue. Therefore, the group must establish procedures by which
project teams can quickly engage group and resolve open issues.

Common Data Models

As discussed back in Chapter 23, when you employ common data models it is likely that
you will need more than one representation of each major concept. Determining the
number of representations that will be needed and the required information content of each
representation presents a design challengeâ!”one that requires broad understanding of the
potential usages of the representations. Without this broad perspective, it is unlikely that
you will be able to design a stable and reusable data structure. It is the enterprise
architecture group that has this perspective, and therefore defining common data models
should be an enterprise architecture group responsibility. This group should establish
policies regarding the use of common data models covering:

1. The circumstances under which a common data model should be used and where the
use of one would be inappropriate.

2. The preferred approach to implementing common data models and the acceptable
alternatives along with the criteria for deciding which approach to use in a given
situation.

3. The operational approach to making changes to the common data model. This policy
must allow for a graceful transition to the new form rather than a big-bang update of
all affected components.

4. Who will define common data models (generally the enterprise architecture group).

5. The mechanisms by which common data models will be defined and their relationship
to the domain model will be documented.

6. Where common data model definitions will be stored and how they will be accessed.

A word of caution is warranted here. Do not become entrapped in the search for a
technology solution for the management of common data model information. The
management of metadata is a very complex problem, encompassing the definition of all
data structures (including common data models and database schema) and the mappings
between these metadata structures. There is a lot of research going on in this area in both
academia and industry. As of this writing, there are no comprehensive solutions available
for the management of all of the different types of metadata typically found in the
enterprise. The good news is that you do not absolutely need such a tool, as nice as it
might be to have such a thing. What you need is a readily accessible and managed
repository of metadata information whose organization is well understood. In many cases, a
source code control system will suffice. This is the essential requirement. The rest is gravy!

The common data model policies should be accompanied by a set of design patterns
showing how the common data models will actually be employed in communications,
particularly when the end-point systems do not natively use this format. When individual
patterns will be frequently implemented with a specific set of technologies, the enterprise
architecture group should create an accompanying reference architecture for that pattern
detailing its implementation with those technologies. These patterns and reference

architectures should be placed in a readily accessible managed repository.

Since it will be the enterprise architecture group that actually designs the common data
models, it is important that this group define the procedure by which a project team
requiring a common data model can engage the group. Since the group must get involved
in a timely manner, the procedure must include the allocation of enterprise architecture
resources and the prioritization required to provide a timely response.

Identifiers

Identifiers are another area in which the decisions being made impact the entire enterprise.
The enterprise architecture group should manage all identifiers whose scope of usage
extends beyond a single system. The group should:

1. Maintain a catalog of the different types of identifiers in use

2. For each type of identifier, specify the structure of the identifier to be used and the
identity authority (or authorities in the case of structured identifiers) responsible for
the creation of the identifier

3. Specify the logic of how identifiers will be mapped when identifiers in one system
must be mapped into the identifiers of another system

4. Specify the patterns for managing cross-reference information and utilizing that cross
reference in exchanges between systems

5. Define a reference architecture for implementing the design pattern in specific
technologies when those technologies will be commonly used

6. Participate directly with project teams to resolve issues when the project team is
having difficulty incorporating the cross reference into an exchange between
components

Data Quality Management

No discussion of data would be complete without considering the quality of the data itself.
Erroneous, improper, and absent values are a fact of life in real information systems. Earlier
chapters discussed the impact of such errors on the enterprise and the detection of such
errors through validation checking, but did not discuss what to do when an error is actually
found.

The only situation in which you can automatically and correctly resolve data inconsistencies
occurs when there is a single system of record for the data. Then, and only then, can you
know definitively which copy of the data is correct (the one in the system of record) and
which copy is in error (any other copy of the data that is different from the one in the
system of record). In all other cases, an investigation is required to determine which copy is
correct. While there may be a small number of cases in which data discrepancies can be
automatically resolved, these are usually the exception, not the rule.

This raises the question as to how data discrepancies should be resolved. The answer is
that it requires a process, and that process involves people. These people investigate the
discrepancies, determine which value is correct, and correct the data. They should also,
where possible, determine and document the root cause of the discrepancy and determine
whether changes to business processes and/or systems might eliminate or reduce the
likelihood of such errors in the future.

Data quality management is so closely related to the activities of the enterprise architecture
group that the personnel involved in managing data quality should either be a part of that
group or operate under the auspices of the group. In either case, the enterprise
architecture group should establish the policies regarding data quality management. The
data quality policy should:

1. Define the approach to be taken towards data validation, both syntactic and
semantic. Guidelines should be provided as to when and where data validation should
be included in processes.

2. Define the approaches to be taken in identifying data quality problems, including
conducting system-based audits and providing mechanisms for personnel to report
suspected data quality problems.

3. Define the approach for prioritizing the correction of data quality problems based on
perceived business impact. The limited number of personnel available to resolve
discrepancies will make this necessary.

4. Define the process(es) for reconciling data discrepancies and keeping track of the
resolution status for each reported discrepancy.

If audits will be conducted as part of the data management activity, the audit itself should
be treated in the same manner as any other business process requiring design work. This is
not to say that implementing an audit should necessarily require a major design effort. On
the contrary, available interfaces should be used wherever appropriate. But the audit

process does need to be implemented, and the project implementing the audits should have
focus. Priority needs to be given to the data issues that pose the biggest risks to the
enterprise. The execution of the audit will have a performance impact on the components
involved and must be taken into consideration. In fact, any one of the full set of design
issues affecting a project might come into play. Auditing is simply another business process,
and should be treated that way.

Summary

There are a number of data-related issues whose resolution requires a perspective
extending beyond the scope of any particular project. Resolving these issues and setting
forth the policies for dealing with these issues is one of the enterprise architecture group
responsibilities. These responsibilities include:

Establishing naming schemes for services, operations, message destinations, and
other architectural elements requiring names

Establishing architectural patterns for content transformation

Establishing systems of record and policies regarding data replication and cache
management

Defining common data models and the policies for their use

Establishing the authorities for identity issuance and management

Establishing the policies and procedures for maintaining data quality

Key Enterprise Architecture Data Questions

1. Are there well-defined data policies with respect to defining and enforcing
systems of record?

2. Are there well-defined policies for creating and using common data models?

3. Are there well-defined policies for managing identities? Have the identity
authorities been established for each type of identifier?

4. Are there well-defined policies regarding data validation?

5. Is there a governance process in place that ensures compliance with these
policies?

6. Is there an organization responsible for maintenance of the policies?

7. Are processes in place for an application team to engage the relevant policy
group when the data policies do not appear to be appropriate for the
application?

8. Are there processes in place for detecting and resolving data and identifier
discrepancies?

Part VI: Coordination

Chapter 27. Coordination and Breakdown Detection
Enterprise architectures are composed of many interdependent moving parts. To bring a
business process to life, the work that is being performed by one participant needs to be
coordinated with the work being performed by others. It is this coordination that integrates
the individual participant activities and defines the structure of the business processes.

The participants in a distributed system are autonomous. Each participant manages the
execution of its own activities. Some activity management patterns involve interactions with
other participants. These activity management patterns form the basic building blocks of
coordination. These patterns are composed to form coordination patterns between pairs of
participants. These pair-wise patterns are further composed until eventually the
coordination pattern for an entire business process emerges.

Styles of overall process coordination emerge when there is consistency in the use of
coordination patterns in a process. Some business processes are tightly controlled by a
process manager: Its interactions with other participants serve, directly or indirectly, as the
triggers for the performance of activities by those participants. Other processes have no
management at all: The arrival of inputs from other participants serve as the triggers for
performing activities.

What makes the choice of coordination patterns so important is that these choices not only
define the structure of the process, they also directly impact the ability to detect
breakdowns in the process. The simplest and most efficient coordination patterns (and
therefore the ones you might be inclined to first consider using) are not capable of detecting
breakdowns at all! In contrast, the patterns that add feedback make it possible to detect
breakdowns also require additional design, communications, and participant resources. Your
job as an architect is to select the appropriate balance for each business process.

If you are wondering why the term orchestration is not being used, it is because this term
implies the existence of a leader, a process manager. While this is, indeed, one approach to
coordination, it is not the only approach. Most end-to-end business processes, for example,
do not have an overall process manager. So you need to consider all the coordination
patterns, not just orchestration. On the other hand, orchestration is so important that two
chapters are devoted to process management.

Activity Execution Management Patterns (AEMPs)
Involving Interactions

Any discussion of coordination has to begin with an examination of the role that interactions
play in activity execution management. The five basic activity execution management

patterns (AEMP) are illustrated in Figure 27-1. In pattern AEMP1, the performance of
activity A is triggered by the arrival of the input. The participant is responsible for
observing the arrival of the input and, as soon as possible, commencing the execution of
the activity. AEMP2 is similar, except that a previous activity must be completed before the
input can trigger the performance of activity A. Here the design must accommodate the
early arrival of the input, holding it until the previous activity has been completed. In
AEMP3, it is the completion of the previous activity that triggers the performance of activity
A. Here the participant design must account for the possible absence of the required
input. In AEMP4, the occurrence of some External Event (unrelated to the execution of
this process) serves as the trigger for executing activity A. The participant is responsible
for detecting the occurrence of this event. Finally, in AEMP5, the performance of the activity
is triggered by the External Event but also requires an input. Once again, the
participant design must account for the possible absence of the input.

Figure 27-1. Activity Execution Management Patterns Involving Interactions

[View full size image]

Part VI: Coordination

Chapter 27. Coordination and Breakdown Detection
Enterprise architectures are composed of many interdependent moving parts. To bring a
business process to life, the work that is being performed by one participant needs to be
coordinated with the work being performed by others. It is this coordination that integrates
the individual participant activities and defines the structure of the business processes.

The participants in a distributed system are autonomous. Each participant manages the
execution of its own activities. Some activity management patterns involve interactions with
other participants. These activity management patterns form the basic building blocks of
coordination. These patterns are composed to form coordination patterns between pairs of
participants. These pair-wise patterns are further composed until eventually the
coordination pattern for an entire business process emerges.

Styles of overall process coordination emerge when there is consistency in the use of
coordination patterns in a process. Some business processes are tightly controlled by a
process manager: Its interactions with other participants serve, directly or indirectly, as the
triggers for the performance of activities by those participants. Other processes have no
management at all: The arrival of inputs from other participants serve as the triggers for
performing activities.

What makes the choice of coordination patterns so important is that these choices not only
define the structure of the process, they also directly impact the ability to detect
breakdowns in the process. The simplest and most efficient coordination patterns (and
therefore the ones you might be inclined to first consider using) are not capable of detecting
breakdowns at all! In contrast, the patterns that add feedback make it possible to detect
breakdowns also require additional design, communications, and participant resources. Your
job as an architect is to select the appropriate balance for each business process.

If you are wondering why the term orchestration is not being used, it is because this term
implies the existence of a leader, a process manager. While this is, indeed, one approach to
coordination, it is not the only approach. Most end-to-end business processes, for example,
do not have an overall process manager. So you need to consider all the coordination
patterns, not just orchestration. On the other hand, orchestration is so important that two
chapters are devoted to process management.

Activity Execution Management Patterns (AEMPs)
Involving Interactions

Any discussion of coordination has to begin with an examination of the role that interactions
play in activity execution management. The five basic activity execution management

patterns (AEMP) are illustrated in Figure 27-1. In pattern AEMP1, the performance of
activity A is triggered by the arrival of the input. The participant is responsible for
observing the arrival of the input and, as soon as possible, commencing the execution of
the activity. AEMP2 is similar, except that a previous activity must be completed before the
input can trigger the performance of activity A. Here the design must accommodate the
early arrival of the input, holding it until the previous activity has been completed. In
AEMP3, it is the completion of the previous activity that triggers the performance of activity
A. Here the participant design must account for the possible absence of the required
input. In AEMP4, the occurrence of some External Event (unrelated to the execution of
this process) serves as the trigger for executing activity A. The participant is responsible
for detecting the occurrence of this event. Finally, in AEMP5, the performance of the activity
is triggered by the External Event but also requires an input. Once again, the
participant design must account for the possible absence of the input.

Figure 27-1. Activity Execution Management Patterns Involving Interactions

[View full size image]

Part VI: Coordination

Chapter 27. Coordination and Breakdown Detection
Enterprise architectures are composed of many interdependent moving parts. To bring a
business process to life, the work that is being performed by one participant needs to be
coordinated with the work being performed by others. It is this coordination that integrates
the individual participant activities and defines the structure of the business processes.

The participants in a distributed system are autonomous. Each participant manages the
execution of its own activities. Some activity management patterns involve interactions with
other participants. These activity management patterns form the basic building blocks of
coordination. These patterns are composed to form coordination patterns between pairs of
participants. These pair-wise patterns are further composed until eventually the
coordination pattern for an entire business process emerges.

Styles of overall process coordination emerge when there is consistency in the use of
coordination patterns in a process. Some business processes are tightly controlled by a
process manager: Its interactions with other participants serve, directly or indirectly, as the
triggers for the performance of activities by those participants. Other processes have no
management at all: The arrival of inputs from other participants serve as the triggers for
performing activities.

What makes the choice of coordination patterns so important is that these choices not only
define the structure of the process, they also directly impact the ability to detect
breakdowns in the process. The simplest and most efficient coordination patterns (and
therefore the ones you might be inclined to first consider using) are not capable of detecting
breakdowns at all! In contrast, the patterns that add feedback make it possible to detect
breakdowns also require additional design, communications, and participant resources. Your
job as an architect is to select the appropriate balance for each business process.

If you are wondering why the term orchestration is not being used, it is because this term
implies the existence of a leader, a process manager. While this is, indeed, one approach to
coordination, it is not the only approach. Most end-to-end business processes, for example,
do not have an overall process manager. So you need to consider all the coordination
patterns, not just orchestration. On the other hand, orchestration is so important that two
chapters are devoted to process management.

Activity Execution Management Patterns (AEMPs)
Involving Interactions

Any discussion of coordination has to begin with an examination of the role that interactions
play in activity execution management. The five basic activity execution management

patterns (AEMP) are illustrated in Figure 27-1. In pattern AEMP1, the performance of
activity A is triggered by the arrival of the input. The participant is responsible for
observing the arrival of the input and, as soon as possible, commencing the execution of
the activity. AEMP2 is similar, except that a previous activity must be completed before the
input can trigger the performance of activity A. Here the design must accommodate the
early arrival of the input, holding it until the previous activity has been completed. In
AEMP3, it is the completion of the previous activity that triggers the performance of activity
A. Here the participant design must account for the possible absence of the required
input. In AEMP4, the occurrence of some External Event (unrelated to the execution of
this process) serves as the trigger for executing activity A. The participant is responsible
for detecting the occurrence of this event. Finally, in AEMP5, the performance of the activity
is triggered by the External Event but also requires an input. Once again, the
participant design must account for the possible absence of the input.

Figure 27-1. Activity Execution Management Patterns Involving Interactions

[View full size image]

Coordination Pattern Styles

When you are thinking about coordination, your attention is focused on the triggering
events: what causes each of the activities to be performed. For the most timely execution
of the process, you want to have the completion of activities (or the arrival of results that
are the consequence of their completion) trigger subsequent activities. Here the activity
execution management patterns AEMP1 and AEMP2 are of primary interest. There are three
basic styles for coordinating the work of participants that can be assembled using these
patterns:

1. Fire-and-Forget

2. Request-Reply

3. Managed Coordination

These three coordination styles differ primarily with respect to which participant is in charge
of coordinating the activities. In fire-and-forget pattern, none of the participants is actually
in charge. In request-reply, the requestor is in charge of its own activity and that of the
other participant as well. In managed coordination, a third partyâ!”a process managerâ!”is
introduced solely for the purpose of coordinating the activities of the other participants.

The "Who's in charge?" question has deep significance for any design. It determines which
participant (if any) is in a position to detect breakdowns and initiate recovery actions. Since
you can fully expect that things will go wrong in the real world, you want to design the
processes with a clear understanding of which participants will be able to detect
breakdowns. Furthermore, you want to consider the design of the recovery processes, even
if they are manual in nature. Often you will find that by making relatively simple changes in
the choice of coordination patterns, you can greatly improve the system's ability to detect
and handle breakdowns. In a sense, you want to design for failure. You want to know what
is liable to go wrong, which participant will know about it, and what that participant is going
to do when it happens.

Fire-and-Forget Coordination Patterns
Event-Driven Two-Party Fire-and-Forget

Fire-and-forget is the simplest possible interaction between two participants. The event-
driven two-party fire-and-forget pattern consists of a single one-way communication
between the two participants (Figure 27-2). The sending participant produces an
artifact that is received and acted upon by the receiving participant. The
receiving participant is employing the AEMP1 or AEMP2 pattern (this and the ensuing
discussions will ignore the differences), and the artifact serves as both the input and the
trigger for the action.

Figure 27-2. Event-Driven Two-Party Fire-and-Forget Pattern

You see examples of the fire-and-forget pattern all the time. Every piece of mail you place
in your mailbox is a fire-and-forget artifact. E-mail messages are fire-and-forget artifacts
as well. In fact, any message for which the recipient is not actively waiting for an immediate
reply is a fire-and-forget artifact.

The use of fire-and-forget coordination does not imply anything in particular about the
semantics of the communications. The artifact might represent a request, an asynchronous
reply to a previous request, or an announcement of some event that has occurred.

Event-Driven Multi-Party Fire-and-Forget

The fire-and-forget pattern has an obvious extension to multiple parties, as illustrated in
Figure 27-3. Here the basic two-party pattern occurs twice, once between the sending
participant and the receiving participant, and again between the receiving
participant and the third participant. This type of pattern is often found in
systems. The first participant generates a file or message that triggers work in a second
system. The work in that second system generates a file or message that is passed to a
third system, and so on.

Figure 27-3. Multi-Party Fire-and-Forget Pattern

[View full size image]

Breakdown Detection in Fire-and-Forget

Fire-and-forget is simple to design and inexpensive to implement, but it has one significant
drawback: None of the participants are in a position to detect a breakdown in the process.
A recipient has no way of knowing that there is supposed to be an artifact coming, and
therefore it cannot detect a breakdown in either the sender or communications channel.
Similarly, a sender has no way of knowing whether the recipient got the artifact or did the
work. There is no overall process coordinator in the fire-and-forget pattern. Breakdowns will
go undetected.

Despite the inability to detect a breakdown in the fire-and-forget pattern, it can be
effectively used within the scope of a larger process that is tolerant of an individual
message loss. The phone company's use of the mail to obtain its payments is a good
example. The bill is sent via the mailâ!”a fire-and-forget communication. The customer
sends the payment back via the same fire-and-forget mechanism. Either might be lost in
the mail, yet the system as a whole works! Why? Because the billing system is tolerant of
failure. If the payment is not received (for whatever reason), the past-due amount is simply
added to the next month's bill. Thus you can see that simple and inexpensive fire-and-
forget communications can be used to implement robust business processesâ!”but only if
the overall process is designed to be tolerant of breakdowns and those breakdowns do not
happen often enough to cause additional problems.

As a side note, when you are considering communications services, you must be careful not
to be misled by the claims the service provider might make regarding the communications
quality of service. Many communications services offer a "guaranteed delivery" option.
Regardless of the claim, it is still a fire-and-forget service. To begin with, there are no
guarantees in the real world. However the service operates, it is always possible for the
message to be destroyed. In addition, even if the message is delivered, the communications
service does not guarantee that the recipient will act upon the message once it has been
delivered. The coordination pattern is still fire-and-forget.

So if communication is still fire-and-forget, despite the use of enhanced qualities of service,
why would you use the enhancements? The answer is that they reduce the likelihood that

the message will not be delivered. Just because the business process may be able to
tolerate and recover from a communications breakdown does not mean that the recovery is
without cost. If the recovery cost is significant, an investment in an increased quality of
service may be justified.

Improving the quality of service in message-based communications usually involves extra
work. In electronic communications, this usually involves making a persistent record of the
message one or more times while it is in transit. You need to consider these cost and
performance implications when you choose to specify the use of these enhancements. Extra
disk capacity or a high-performance disk may have to be purchased. The act of writing a
message to disk takes more time than simply sending it over a network. All of these things
need to be factored in to your decision. When you decide to employ an enhanced quality of
service, your goal should be to balance the probability and business impact of lost
messages against the increased cost and decreased performance of the enhancements. In
other words, you need to make a sound business decision.

Non-Event-Driven Fire-and-Forget

The event-driven fire-and-forget pattern assumes that the recipient triggers work when the
artifact arrives. In other words, it assumes that the recipient is using activity execution
management patterns AEMP1 or AEMP2. A variation on fire-and-forget is that the receiving
participant is using AEMP3, AEMP4, or AEMP5 (Figure 27-4). In other words, it is not event
driven: The arrival of the input does not itself serve as the triggering event for the action.
The completion of some other activity, the arrival of another input, or the occurrence of
some external event is what actually triggers the performance of the activity in the
recipient. This dependence upon an unrelated event is yet another potential source of
process breakdown. As such, the source of the unrelated triggering event should also be
shown in the activity diagram. You want to ensure that all potential sources of breakdowns
are readily observable in the activity diagrams so that you can fully evaluate all possible
sources of breakdown.

Figure 27-4. Non-Event-Driven Fire-and-Forget

Request-Reply Patterns
Event-Driven Two-Party Request-Reply

The second fundamental coordination pattern is the event-driven synchronous request-reply
pattern (Figure 27-5). In this pattern one party requests that another perform a service
and waits for a response. There are two interactions involved. The requestor sends a
message to the service provider that triggers the performance of the service. Once the
service has been completed, the service provider returns the result to the requestor.
The requestor is waiting for the result, and its arrival triggers the continuation of its work.
As with the two-party fire-and-forget pattern, each communication is both an input and a
triggering event.

Figure 27-5. Event-Driven Two-Party Synchronous Request-Reply Pattern

The synchronous request-reply pattern is more than just two fire-and-forget interactions.
The requesting process is waiting for the result and, when that result arrives, correlates it
with the request. This correlation can be used to determine whether or not the service was
performed as requested. This additional functionality distinguishes the synchronous request-
reply pattern from a simple combination of two fire-and-forget patterns.

Reply-Time Service-Level Agreements

The request-reply pattern is the simplest pattern capable of detecting a breakdown in a
process. The requestor not only knows that something is supposed to happen (since it
sent the service request), but it can also verify whether or not it actually did happen (via
the service result). In sharp contrast with the fire-and-forget pattern, the use of the
request-reply pattern eliminates communications breakdowns as a potential source of
undetectable failure. Because of this, when you use request-reply you can generally use

lightweight communications mechanisms and avoid the performance penalty of persisting
messages in transit.

However, there is an important caveat regarding the ability to detect breakdowns: The
absence of a reply is inherently ambiguous. The requestor does not know whether the
service provider has simply not yet completed the work or whether something has
truly gone wrong. The only way to resolve this ambiguity is to establish a service-level
agreement (SLA) for the service. This agreement establishes a time frame within which a
response is expected. Once this time has been established, then the breakdown detection
criteria become clear: Before the expiration of the SLA time interval, no conclusion can be
drawn; after the expiration, the absence of a reply clearly indicates the existence of a
problem, if nothing more than the violation of the service-level agreement itself.

Because of the inherent ambiguity of an absent reply, it is a best practice to establish a
response-time SLA for every request-reply activityâ!”even when you are asking another
person to perform a task. The time frame clarifies the expectations for both parties and
eliminates a significant source of misunderstanding. This thinking carries forward into the
specification of components and services as well. You want to ensure that both the user of
the service and the provider of the service understand the SLA expectations. This gives the
provider of the service a clearly defined performance goal and the user of the service
sufficient information to decide whether the service will actually satisfy the needs of the
process in which it will be used. The establishment of such time frames also makes it easy
to recognize potential performance issues while the design is still in its formative stages.

Event-Driven Multi-Party Request-Reply

Multi-party request-reply is a generalization of the basic two-party synchronous request-
reply (Figure 27-6). Here the service provider asks a third party to perform some
or all of the service and waits for the result. When the result is returned, a final
result is returned to the requestor.

Figure 27-6. Multi-Party Synchronous Request-Reply

[View full size image]

The essential feature of the pattern is that breakdowns in the process at any level are
detectable by the requestor as long as response-time service-level agreements are in
effect. It does, however, have a drawback: Its synchronous nature ties up all parties until
the work is completed. Depending upon the length of time involved, this can have an
adverse impact on the level of resources required for a solution.

Event-Driven Asynchronous Request-Reply

In the event-driven synchronous request-reply pattern, the requestor waits for the reply. In
its asynchronous variant (Figure 27-7), the requestor goes off and does something else
after sending the request rather than just wait for the reply. This pattern is common in real
business processes. For example, when you order a book online, you don't just sit idly and
wait for the book to arrive! You go off and do other things while you wait.

Figure 27-7. Two-Party Asynchronous Request-Reply Coordination Pattern

[View full size image]

The asynchronous request-reply pattern is useful when the performance of the service
takes a long time, as in the shipment of the book. It is also useful when the request itself
does not serve as the triggering event for the performance of the work, that is, when the
service provider is using the AEMP3, AEMP4, or AEMP5 patterns to trigger the work.
This can cause additional delays, as when the pending work rests in a queue. When you
take clothing to the dry cleaners, your request goes into a queue (even if it is a 1-hour
turnaround queue) behind other requests. You then go on about your business and come
back later to pick up the cleaning.

Complexities in Asynchronous Request-Reply

In the synchronous request-reply pattern, the requestor is waiting for a response to a
particular request: There is no ambiguity about the relationship between the request and
the result, and the requestor can easily correlate the result with the state of the
work in progress and continue the work. In the asynchronous variant, however, the
requestor has been off doing other things, and the result is logically handled in another
thread of control. In order to process the result, the state of the work in progress must
first be recovered. Furthermore, there may well be a number of outstanding requests and
work-in-progress states. Additional work may be required to correlate the result with a
particular work-in-progress state. These activities add extra design-time and runtime work.

Detecting the absence of an expected result also requires extra work. In the synchronous
model, the requestor is waiting for the result, and can easily time out on that wait. In the
asynchronous model, some event in the requestor must trigger a check (yet another
control thread) to see whether any results are overdue. This, too, adds extra design-time
and runtime work.

Synchronous Promise with Asynchronous Result

While the asynchronous request-reply pattern is eventually capable of detecting overall
breakdowns in the process, the breakdown may not be detected until after the allowed time
period for returning the result has passed. A variation on this pattern returns a promise in

an initial synchronous request-reply exchange, with the eventual result being returned
asynchronously. This pattern in shown in Figure 27-8, and is essentially a combination of a
request-reply pattern returning the promise followed by a fire-and-forget return of the
service result.

Figure 27-8. Synchronous Promise with Asynchronous Result

[View full size image]

This pattern characterizes the basic online ordering paradigm that you find in many e-
commerce businesses. The customer goes online to order a book and while waiting, the
order is confirmed. This confirmation is essentially a promise to fulfill the order and often
includes a promised delivery date (this is the SLA for the result) that may vary depending
on the transportation mechanism chosen for the delivery of the order. The advantage of this
pattern is that the customer learns immediately if there are any problems with the initial
request. It also affords the customer the opportunity to review the promise (including the
SLA) and take corrective action if required.

Delegation

Sometimes when a service is performed, the result service is not returned to the
requestorâ!”it is actually delivered to a third party. The intent here is to delegate the
responsibility for the performance of the service to a service provider, who will then
deliver the result to the third party. The simplest form of delegation is the multi-party
fire-and-forget pattern of Figure 27-3, but this pattern is subject to undetected
breakdowns. Generally, when you delegate responsibility you want some confirmation that
the responsibility has been accepted. In other words, you want a promise that the work will
be done. You can accomplish this by replacing the fire-and-forget delivery of the request
with a request-reply exchange that returns a promise. This yields the delegation pattern of
Figure 27-9.

Figure 27-9. Delegation Pattern

[View full size image]

In the delegation pattern, the requestor does not receive the actual work resultâ!”only a
promise that the service will be performed. This, of course, renders undetectable any
breakdowns that occur after the promise is returned. Because of this, to ensure that the
service request is not lost, the service provider generally makes a persistent (fault-
tolerant) record of the request before returning this promise to perform the service. This is
not a guarantee that the service will be performed, but it reduces the likelihood that the

request will be lostâ!”at the expense of persisting the request and designing a restart of
the service provider to recover the list of outstanding requests.

In the delegation pattern, triggering the service work and handling the result are exclusively
the responsibility of the service provider. The service performance may be triggered by
the arrival of the request, but it might just as well be triggered by some other event. The
service result can be sent to the third party using any one of the protocols discussed. The
communication of the result is not, strictly speaking, part of the delegation pattern.

One of the benefits of the delegation pattern is that the use of request-reply for the
exchange between the requestor and the service provider eliminates the
communications channel itself as a potential source of undetectable failure. This allows the
use of inexpensive lightweight communications for the request-promise exchange. However,
once this exchange has been completed, a breakdown in the service provider cannot be
detected by any of the participants. Thus, there is no overall process monitoring inherent in
the delegation pattern. Despite this shortcoming, this pattern is often used to transfer
responsibility between major systems involved in different parts of a business process.
When a customer orders a book online, for example, the customer has a request-reply
exchange with the order entry system in which the customer receives a promise to ship the
book. The customer has delegated the responsibility for the order to the order entry
system. It, in turn, will pass the order (at some point) to the warehouse system for
fulfillment.

Delegation with Confirmation

The inability of the basic delegation pattern to detect breakdowns after the promise can be
a serious problem. You can overcome this problem by adding an eventual asynchronous
status feedback after the service has been successfully performed, as shown in Figure 27-
10. This feedback allows the original requestor to confirm that the requested service was
actually performed and thus detect breakdowns in the performance of the work. The status
feedback gives the requestor greater visibility into the business process.

Figure 27-10. Delegation with Confirmation

[View full size image]

In this pattern, the feedback is provided after the service has been successfully performed,
but does not necessarily indicate that the result itself was successfully delivered to the third
party. If the performer uses fire-and-forget to pass on the service result, then the
confirmation only indicates that the result was sent, not that it got to its destination. You
can see the use of this pattern in the online book ordering example: When the book is
eventually shipped, the customer receives an e-mail saying that the book is on its way.

One problem with this pattern stems from the use of fire-and-forget coordination with the
third party. Once again, the use of fire-and-forget renders undetectable any breakdowns
that occur in the delivery of the service result and subsequent processing. However, you
can remedy this situation by using request-reply or delegation with confirmation to deliver
the service result. If this pattern is used recursively by all recipients, then the original
requestor can detect breakdowns anywhere in the process. When there are a number of
parties involved in such exchanges, the overall pattern of result delivery and its relationship
to status reports must be clearly understood to interpret the status reports correctly.

Summary

To form a structured process, the activities of the participants in a distributed system must
be coordinated. The basic coordination patterns for pair-wise interactions between
participants are fire-and-forget and request-reply. Fire-and-forget is simple, but it does not
provide the ability to detect breakdowns. Request-reply can detect breakdowns, but it
requires more work and may tie up resources.

Differences in how the work is triggered in these patterns provide many pattern variations.
When the arrival of inputs triggers the work, the result is an event-driven pattern. When
the triggers arise from other sources, the result is a non-event-driven pattern. In these
patterns, it is important to understand the sources of these other events, as their absence
will cause breakdowns in the process flow.

The request-response patterns differ also depending upon whether or not the requestor is
waiting for the response. Synchronous request-reply patterns, in which the requestor is
actively waiting, are simple to implement, but they tie up the resources of the requestor
while waiting for the result. Asynchronous request-reply patterns, in which the requestor
goes off and does other things until the result arrives, make efficient use of the requestor's
resources but are more complicated to design and implement.

These patterns can be composed to characterize multi-party interactions. One common
composition is represented by the delegation pattern, in which the requestor has a request-
response interaction with a service provider but receives a promise to do the work rather
than the actual work result. The service provider then executes the work at a later time. A
variation on this pattern has the service provider returning an asynchronous confirmation
that the work has been completed. This puts the requestor in a position to detect
breakdowns in the work performance.

Key Coordination Questions

1. What coordination patterns are being used in the business processes
currently being designed? Do they afford the opportunity to detect
breakdowns in the process?

2. Which participants in the business process are in a position to detect
breakdowns?

3. Would the use of a different coordination pattern improve the ability to
detect breakdowns?

Chapter 28. Transactions: Coordinating Two or More
Activities
The coordination patterns in the previous chapter focus on the execution of a single activity,
but there are times when you would like to treat the execution of two or more activities as
if they were a single operation. In other words, you want to make these activities part of a
transaction.

An ideal transaction is characterized by four properties, commonly referred to as the ACID
properties, an acronym constructed from the four property names:

1. Atomic: Either all of the activities complete successfully or none are performed. The
collection of activities appears to be a single operation.

2. Consistent: The changes made by one activity are consistent with the changes made
by another. All of the changes related to a single transaction appear at the same
time.

3. Independent: None of the changes that are in progress can influence other works in
progress until the transaction has successfully completed. Changes that are being
made are not visible until the transaction successfully commits.

4. Durable: Once the transaction has completed, the changes become permanent.
Changes cannot get lost.

These properties represent an ideal for transactionsâ!”an ideal, as it turns out, that is not
actually achievable in physically distributed systems. The good news is that you don't
necessarily need to achieve the ideal. Once you understand the situation, you can design
the processes in such a way that they are tolerant of the non-ideal behavior.

Let's begin the exploration of the issues by first examining the two-phase transaction
commit protocol, a well-established approach that attempts to achieve this ideal. The
uncontrollable communications delays on this protocol will highlight exactly why the ideal
cannot be achieved. Then the failure modes of the two-phase commit protocol will be
examined to highlight why the failure-mode behavior may not be what you want for the
business process. Finally, alternative approaches such as the use of compensating
transactions will be explored. While these approaches do not come as close to achieving the
transactional ideal, they nevertheless prove to be very practical in real process designs.

Two-Phase Commit Distributed Transactions

One of the most widely studied families of patterns for coordinating activities is the family of
distributed transaction protocols such as the two-phase commit protocol.[1] Figure 28-1
illustrates how this protocol can be employed to coordinate the updates of two participants.
The scenario begins with the application interacting with a transaction
coordinator to obtain an identifier for the transaction that is about to be executed. The

application then interacts with both participant A and participant B to initiate
the changes, passing along the transaction identifier as well as the information needed to
actually make the changes. Each of the participants checks to see whether it is already
participating in this transaction and registers itself with the coordinator if it is not. It then
makes the changes in a manner that is not visible outside the transaction. After the
application has finished initiating the changes, it interacts again with the transaction
coordinator to commit the transaction. The coordinator then interacts with the
participants in two phases. In the first phase, the coordinator asks each participant to
persist the data necessary to actually implement the changes and return a vote as to
whether the transaction should be committed. Assuming that all participants vote to
commit, the coordinator then interacts with the participants a second time to actually
commit the transaction. It is at this point that each participant makes the results visible to
other participants. Finally, the transaction coordinator reports the result of the
commit operation to the application, which then (in the case of a successful commit)
continues with its work.

[1] A more thorough description of the two-phase commit protocol can be found in Philip A. Bernstein
and Eric Newcomer. 1997. Principles of Transaction Processing for the Systems Professional. San
Francisco, CA: Morgan Kaufmann.

Figure 28-1. Simplified Two-Phase Commit Scenario

[View full size image]

There are many variations possible in this scenario, and many subtleties regarding the

responsibilities of the participants are involved. But there is a significant feature of this
pattern: For the first time there is a participant in a process, the transaction
coordinator, that is playing the role of a process manager, at least for the transaction
commit operation. Its sole purpose is to register the transaction participants and manage
their work during the transaction commit. It does not, itself, execute any of the activities
that comprise the actual business process. The transaction manager is an example of
an important class of participant, a process manager, which will be discussed in the next
chapter.

Returning to the notion of a transaction, it should be apparent from this scenario that
implementing a two-phase commit transaction is not simple. Despite the industry
standardization of the two-phase commit dialog between the parties in the form of the XA
protocol,[2] being a participant in a distributed transaction involves some nontrivial
responsibilities. Once a participant has voted "commit" on a transaction, it must be
prepared to commit that transaction at any point in the future. Regardless of
communications interruptions or system restarts, it has to be able to commit the
transaction when so directed. This means that it needs to persist all of the information
related to the transaction and yet at the same time keep that information from being visible
until the transaction commits. Furthermore, it has to guarantee that when the commit
message is received, it can actually complete its part of the transaction.

[2] X/Open Company Ltd. 1991. Distributed Transaction Processing: The XA Specification. Reading,
Berkshire UK: The Open Group.

Chapter 28. Transactions: Coordinating Two or More
Activities
The coordination patterns in the previous chapter focus on the execution of a single activity,
but there are times when you would like to treat the execution of two or more activities as
if they were a single operation. In other words, you want to make these activities part of a
transaction.

An ideal transaction is characterized by four properties, commonly referred to as the ACID
properties, an acronym constructed from the four property names:

1. Atomic: Either all of the activities complete successfully or none are performed. The
collection of activities appears to be a single operation.

2. Consistent: The changes made by one activity are consistent with the changes made
by another. All of the changes related to a single transaction appear at the same
time.

3. Independent: None of the changes that are in progress can influence other works in
progress until the transaction has successfully completed. Changes that are being
made are not visible until the transaction successfully commits.

4. Durable: Once the transaction has completed, the changes become permanent.
Changes cannot get lost.

These properties represent an ideal for transactionsâ!”an ideal, as it turns out, that is not
actually achievable in physically distributed systems. The good news is that you don't
necessarily need to achieve the ideal. Once you understand the situation, you can design
the processes in such a way that they are tolerant of the non-ideal behavior.

Let's begin the exploration of the issues by first examining the two-phase transaction
commit protocol, a well-established approach that attempts to achieve this ideal. The
uncontrollable communications delays on this protocol will highlight exactly why the ideal
cannot be achieved. Then the failure modes of the two-phase commit protocol will be
examined to highlight why the failure-mode behavior may not be what you want for the
business process. Finally, alternative approaches such as the use of compensating
transactions will be explored. While these approaches do not come as close to achieving the
transactional ideal, they nevertheless prove to be very practical in real process designs.

Two-Phase Commit Distributed Transactions

One of the most widely studied families of patterns for coordinating activities is the family of
distributed transaction protocols such as the two-phase commit protocol.[1] Figure 28-1
illustrates how this protocol can be employed to coordinate the updates of two participants.
The scenario begins with the application interacting with a transaction
coordinator to obtain an identifier for the transaction that is about to be executed. The

application then interacts with both participant A and participant B to initiate
the changes, passing along the transaction identifier as well as the information needed to
actually make the changes. Each of the participants checks to see whether it is already
participating in this transaction and registers itself with the coordinator if it is not. It then
makes the changes in a manner that is not visible outside the transaction. After the
application has finished initiating the changes, it interacts again with the transaction
coordinator to commit the transaction. The coordinator then interacts with the
participants in two phases. In the first phase, the coordinator asks each participant to
persist the data necessary to actually implement the changes and return a vote as to
whether the transaction should be committed. Assuming that all participants vote to
commit, the coordinator then interacts with the participants a second time to actually
commit the transaction. It is at this point that each participant makes the results visible to
other participants. Finally, the transaction coordinator reports the result of the
commit operation to the application, which then (in the case of a successful commit)
continues with its work.

[1] A more thorough description of the two-phase commit protocol can be found in Philip A. Bernstein
and Eric Newcomer. 1997. Principles of Transaction Processing for the Systems Professional. San
Francisco, CA: Morgan Kaufmann.

Figure 28-1. Simplified Two-Phase Commit Scenario

[View full size image]

There are many variations possible in this scenario, and many subtleties regarding the

responsibilities of the participants are involved. But there is a significant feature of this
pattern: For the first time there is a participant in a process, the transaction
coordinator, that is playing the role of a process manager, at least for the transaction
commit operation. Its sole purpose is to register the transaction participants and manage
their work during the transaction commit. It does not, itself, execute any of the activities
that comprise the actual business process. The transaction manager is an example of
an important class of participant, a process manager, which will be discussed in the next
chapter.

Returning to the notion of a transaction, it should be apparent from this scenario that
implementing a two-phase commit transaction is not simple. Despite the industry
standardization of the two-phase commit dialog between the parties in the form of the XA
protocol,[2] being a participant in a distributed transaction involves some nontrivial
responsibilities. Once a participant has voted "commit" on a transaction, it must be
prepared to commit that transaction at any point in the future. Regardless of
communications interruptions or system restarts, it has to be able to commit the
transaction when so directed. This means that it needs to persist all of the information
related to the transaction and yet at the same time keep that information from being visible
until the transaction commits. Furthermore, it has to guarantee that when the commit
message is received, it can actually complete its part of the transaction.

[2] X/Open Company Ltd. 1991. Distributed Transaction Processing: The XA Specification. Reading,
Berkshire UK: The Open Group.

Limitations of Two-Phase Commit Protocols

Much as you might like to take advantage of the ideal ACID benefits from a distributed
transaction, there are several factors that limit the use of such transactions in practice:

1. Many systems do not support distributed transactions and thus cannot participate in a
distributed transaction.

2. Consistency cannot always be guaranteed since communications and execution delays
will make different participant's transaction results visible at different times.

3. Some real-world operations simply cannot be part of a two-phase commit
transaction. These are operations whose actual execution cannot be guaranteed to
always work. One example is the dispensing of cash from the ATM. The cash cannot
be dispensed (i.e., the transaction results made available) until after the commit is
received, yet according to the protocol must be dispensed reliably once the commit is
received. How can you do this with a physical system since a mechanical failure of
the cash dispenser can cause the commit operation to fail? Some operations are just
not well-suited to be part of a distributed transaction.

4. The all-or-nothing atomicity of the transaction may not be appropriate for the
business process. When one of the transaction participants becomes unavailable, no
transaction can commit. This means that the portion of the business process following
the transaction cannot execute until all parties are back online. From a business
perspective, work halts.

This all-or-nothing behavior is generally not the desired behavior for most business
processes. Most business processes call for some alternate course of action when one of the
participants is temporarily unavailable, actions such as keeping track of what that
participant was supposed to be doing and then playing catch-up when the participant
comes back online.

Such alternate courses of action must be guided by a coordinator, but these courses of
action are beyond the scope of the two-phase commit transaction coordinator. The
mechanism commonly used to deal with participants that are unable to perform their
required activities is the compensating transaction.

Compensating Transactions

You will be challenged to coordinate the activities of multiple participants without using two-
phase commit transactions. Compensating transactions provide a useful alternative
technique. A compensating transaction is simply a transaction that reverses the net effect
of some previous transaction. If your bank accidentally deposits your paycheck twice, it
does not correct the error by deleting one of the transactions: Instead, it executes a third
transaction that debits your account by the amount of the excess deposit. This debit is an
example of a compensating transaction.

Figure 28-2 is a scenario showing the use of compensating transactions. Here the
application is doubling as the transaction manager for the transaction. To be clear, you have
marked the logical boundaries of the transaction with begin and end activities even though
these activities involve no work. The scenario begins with the application applying changes
to both participants and getting a success/fail result from each in return. Note that with this
approach these changes become immediately visible! Next, the application (in its role as
transaction manager) checks to see whether all of the changes have been successful. If
they are all successful, then the transaction is done. If any of them fail, however, then the
compensating transactions need to be applied to any of the participants that previously
reported success. After these compensating transactions have been applied, the net effect
will be as if the transaction had never executed in the first place. At this point, alternative
actions can be taken if needed.

Figure 28-2. Example Compensating Transaction Scenario

[View full size image]

Working around the Limitations of Compensating
Transactions

As attractive as compensating transactions might be, not every action has a compensating
transaction. Once you print a page, you can't take the ink back! However, compensating
transactions can still be used even when there is one participant (but no more than one)
that is incapable of performing a compensating transaction for its activity. This is
accomplished by leaving that action for last. After all the other activities have been
executed, the one without the compensating transaction is executed. If this action succeeds,
then the work is done. If the action fails, then the compensating transactions for the other
actions can be executed.

The use of compensating transactions is not without its drawbacks. For one thing,
participants expose the results of their actions immediately, even though they might need
to be compensated for almost immediately. Therefore, the sequence in which the actions
are performed must be carefully considered to minimize unwanted side-effects. Another
drawback is that the compensating transactions themselves may failâ!”particularly if the
root cause of failure is a communications breakdown. The recovery logic can be complicated
in such situationsâ!”a good place to rely upon manual recovery procedures.

Perhaps the biggest drawback of compensating transactions, however, is the need to
actually design the coordination logic and incorporate it into the management processâ
!”that is the price of flexibility. It is also the reason that the design of management
processes should be the focus of careful design reviews to ensure that all possible execution
variations have been considered and addressed appropriately.

Summary

Conceptually, transactions coordinate the activities of two or more participants in such a
way that either all parties perform their respective actions or none of the actions are
performed. Transactions always involve some form of transaction managerâ!”a participant
responsible for coordinating the activities and ensuring the desired outcome.

Transaction coordination can be either formal or informal. In formal transactions, there is a
well-defined protocol (such as the XA protocol) that defines the responsibilities of the
transaction participants and the dialog between them. Many existing systems and
applications are not designed to participate in such transactions, which limits their use in
practice.

Formal distributed transactions have a property that often limits their use as well: If any of
the participants are unavailable, the transaction cannot execute. Many business processes
need to proceed using alternate logic when some participants are unavailable. These
processes must employ other techniques as alternatives or supplements to formal
distributed transactions.

Compensating transactions provide useful alternatives to formal distributed transactions.
The compensating transaction undoes the net effect of a previous action and is invoked by
the transaction coordinator to roll back the transaction after some other participant in the
transaction fails.

Some actions, such as printing a page, do not have compensating transactions. It is still
possible to include one such participant in a transaction when all the other participants have
compensating transactions. The action without the compensating transaction is simply
executed last: If it succeeds, the transaction is complete; if it fails, the compensating
transactions on the other participants are executed to roll back the transaction.

Key Transaction Questions

1. Are there activities in the process whose execution must be treated as a
transaction?

2. What type of transaction coordination is supported by the participants in the
transaction? Do they support distributed transactions? Do they support
compensating transactions?

3. Which component is playing the role of the transaction coordinator?

Suggested Reading

Bernstein, Philip A., and Eric Newcomer. 1997. Principles of Transaction Processing for the
Systems Professional. San Francisco, CA: Morgan Kaufmann.

X/Open Company Ltd. 1991. Distributed Transaction Processing: The XA Specification.
Reading, Berkshire, UK: The Open Group.

Chapter 29. Process Monitors and Managers
In the previous chapter, you saw that every transaction has a transaction coordinatorâ!”a
participant whose job it is to manage the performance of activities by the transaction
participants. This transaction coordinator is a specialized example of a process manager, a
participant that coordinates the execution of activities. Generally, the manager also
monitors the execution of the activities as well, determining whether they are executing as
directed. A related role is that of the process monitor, a participant that monitors the
execution of activities and compares the execution against an expected plan but does not
manage the execution.

Regardless of whether the participant is managing or monitoring a process, it must have
knowledge of the process structure. The process manager actually defines the portion of the
process that it is managing by telling participants what to do and when to do it. A process
monitor, on the other hand, has a model of the process against which it can compare the
observed actions of the participants. The manager and monitor roles differ further when
there are observed differences between the actual and desired behavior. The process
manager, by virtue of the fact that it is directing the activities, can initiate recovery actions.
The process monitor, on the other hand, can only announce the existence of a discrepancy.
However, in either case, the observation of a discrepancy can be used to trigger activity
that can improve the overall reliability and availability of the process.

Process managers and monitors provide an effective solution to a surprisingly complex and
difficult problem in distributed systems: determining what is actually going on. This
seemingly simple task can be astonishingly difficult to perform. An example will help to
explain.

Figure 29-1 shows a simplified ordering process involving a customer, an order
management system, and a warehouse. The customer is in a position to monitor the
status of this process and detect breakdowns, assuming that response-time SLAs are in
place for receiving the order acknowledgment and shipped goods. The problem is that
from the enterprise perspective, none of the enterprise participants (i.e., the order
management system or the warehouse) are in a position to detect breakdowns. The
enterprise won't know anything has gone wrong unless the customer complains.

Figure 29-1. Simplified Order Process

[View full size image]

This lack of visibility into the status of business processes is a problem faced by many
companies. In a highly competitive situation, it is not good practice to rely on customers to
inform the enterprise that something has gone wrong with their business process. To
manage the customer experience, the enterprise needs to be able to determine whether or
not the business process is executing properly and to take corrective action if it is not. Let's
take a look at how the enterprise could employ process monitoring and process
management to provide greater visibility into the process status.

Process Monitoring

One approach to improving process status visibility is to add a participant to the process
whose sole responsibility is to monitor the process (Figure 29-2). The process monitor
observes the events that trigger the start of activities and mark the completion of activities.
The first event, the arrival of the order, causes the process monitor to note the beginning
of a new process execution, noting its initial state. Subsequent events update the order
state, and the monitor periodically checks to see whether there are events that should
have occurred but have not. Any variation of the actual execution from the process model
that indicates a problem results in the generation of an exception alert.

Figure 29-2. Monitoring the Order Process

[View full size image]

One of the challenges in monitoring is capturing the eventsâ!”recognizing that meaningful
things have happened to other participants. The monitor has to either retrieve status
information from each of the participants (assuming that they even retain the appropriate
status information) or directly recognize the events that mark status changes in the overall
process. Consider the mechanism by which the customer places the order in this
example. If the customer employs a user interface built into the order management
system, there is no direct way for the process monitor to observe this event. Some
means for recognizing this event will have to be added, perhaps involving an adapter
(Chapter 18) monitoring the database underlying this application or the process monitor
periodically polling the system to identify new orders. There is a similar problem with
respect to the actual shipment: There is no way for the process monitor to directly
observe the goods going onto the truck. The warehouse management system will have to
be modified, perhaps through the use of an adapter, to either send a shipment
notification or allow the process monitor to query for the status of the shipment.

Another issue of concern is the relationship between the tracking events and the details of
the process itself. If you use events that are too tightly tied to the details of the process
structure, then every time the process is modified you will have to update the process
monitor as well. To avoid this problem, it is good practice to use abstracted process
milestones for monitoring (these were discussed back in Chapter 10).

Regardless of whether you choose event recognition or periodically query for status, there is
both design-time and runtime work involved in process monitoring. Status retrieval requires
an interface, and the use of that interface will have an impact on performance. Event
recognition has its own set of design problems and performance implications that were
discussed in Chapter 18. The lesson here is that you can't just tack a monitor onto a
process: You have to plan for its impact on the overall architecture and design. A failure to
plan appropriately can easily result in a process that, literally, cannot be monitored.

Chapter 29. Process Monitors and Managers
In the previous chapter, you saw that every transaction has a transaction coordinatorâ!”a
participant whose job it is to manage the performance of activities by the transaction
participants. This transaction coordinator is a specialized example of a process manager, a
participant that coordinates the execution of activities. Generally, the manager also
monitors the execution of the activities as well, determining whether they are executing as
directed. A related role is that of the process monitor, a participant that monitors the
execution of activities and compares the execution against an expected plan but does not
manage the execution.

Regardless of whether the participant is managing or monitoring a process, it must have
knowledge of the process structure. The process manager actually defines the portion of the
process that it is managing by telling participants what to do and when to do it. A process
monitor, on the other hand, has a model of the process against which it can compare the
observed actions of the participants. The manager and monitor roles differ further when
there are observed differences between the actual and desired behavior. The process
manager, by virtue of the fact that it is directing the activities, can initiate recovery actions.
The process monitor, on the other hand, can only announce the existence of a discrepancy.
However, in either case, the observation of a discrepancy can be used to trigger activity
that can improve the overall reliability and availability of the process.

Process managers and monitors provide an effective solution to a surprisingly complex and
difficult problem in distributed systems: determining what is actually going on. This
seemingly simple task can be astonishingly difficult to perform. An example will help to
explain.

Figure 29-1 shows a simplified ordering process involving a customer, an order
management system, and a warehouse. The customer is in a position to monitor the
status of this process and detect breakdowns, assuming that response-time SLAs are in
place for receiving the order acknowledgment and shipped goods. The problem is that
from the enterprise perspective, none of the enterprise participants (i.e., the order
management system or the warehouse) are in a position to detect breakdowns. The
enterprise won't know anything has gone wrong unless the customer complains.

Figure 29-1. Simplified Order Process

[View full size image]

This lack of visibility into the status of business processes is a problem faced by many
companies. In a highly competitive situation, it is not good practice to rely on customers to
inform the enterprise that something has gone wrong with their business process. To
manage the customer experience, the enterprise needs to be able to determine whether or
not the business process is executing properly and to take corrective action if it is not. Let's
take a look at how the enterprise could employ process monitoring and process
management to provide greater visibility into the process status.

Process Monitoring

One approach to improving process status visibility is to add a participant to the process
whose sole responsibility is to monitor the process (Figure 29-2). The process monitor
observes the events that trigger the start of activities and mark the completion of activities.
The first event, the arrival of the order, causes the process monitor to note the beginning
of a new process execution, noting its initial state. Subsequent events update the order
state, and the monitor periodically checks to see whether there are events that should
have occurred but have not. Any variation of the actual execution from the process model
that indicates a problem results in the generation of an exception alert.

Figure 29-2. Monitoring the Order Process

[View full size image]

One of the challenges in monitoring is capturing the eventsâ!”recognizing that meaningful
things have happened to other participants. The monitor has to either retrieve status
information from each of the participants (assuming that they even retain the appropriate
status information) or directly recognize the events that mark status changes in the overall
process. Consider the mechanism by which the customer places the order in this
example. If the customer employs a user interface built into the order management
system, there is no direct way for the process monitor to observe this event. Some
means for recognizing this event will have to be added, perhaps involving an adapter
(Chapter 18) monitoring the database underlying this application or the process monitor
periodically polling the system to identify new orders. There is a similar problem with
respect to the actual shipment: There is no way for the process monitor to directly
observe the goods going onto the truck. The warehouse management system will have to
be modified, perhaps through the use of an adapter, to either send a shipment
notification or allow the process monitor to query for the status of the shipment.

Another issue of concern is the relationship between the tracking events and the details of
the process itself. If you use events that are too tightly tied to the details of the process
structure, then every time the process is modified you will have to update the process
monitor as well. To avoid this problem, it is good practice to use abstracted process
milestones for monitoring (these were discussed back in Chapter 10).

Regardless of whether you choose event recognition or periodically query for status, there is
both design-time and runtime work involved in process monitoring. Status retrieval requires
an interface, and the use of that interface will have an impact on performance. Event
recognition has its own set of design problems and performance implications that were
discussed in Chapter 18. The lesson here is that you can't just tack a monitor onto a
process: You have to plan for its impact on the overall architecture and design. A failure to
plan appropriately can easily result in a process that, literally, cannot be monitored.

Minimizing the Impact of Monitoring Breakdowns

One of the things you need to consider with monitoring is that the monitor itself and its
communications with the other participants are subject to the same kind of breakdowns as
the rest of the process. This is of particular concern with respect to recognizing the event
that is supposed to trigger the overall process and trigger the monitoring of the process as
well. If this event is missed (i.e., not recognized), then not only will the process not execute
but the monitor will not be aware that it was supposed to execute. For this reason, it is
good design practice to use the delegation pattern (or other request-reply exchange) for
process initiation, and to include within the scope of this interaction both the initiation of
the process and the initiation of the monitoring. With this approach, the party initiating the
process (the customer in the case of the ordering process) will be able to tell that the
process did not start correctly and take appropriate action.

Once monitoring has been initiated, it proceeds independently of the main process. At this
point it will take a failure of both the business process and of the monitor for business
process failures to go undetected. Because of this, you want to avoid failures that will bring
down both the business process and the monitor. For critical processes, you may want to go
so far as to host the monitor on a different machine than any of the other process
participants, thus avoiding a single point of failure for the process and its monitor.

The Process Manager as a Monitor

It is not unusual to have one or more of the participants in a process actively manage the
activities of other participants. In such situations, it is not difficult to extend the manager to
become a monitor as well. After all, since the manager is directing the process (or at least a
portion of it), it already knows what the process is supposed to look like.

For the manager to also be a monitor, the manager's knowledge of what is happening must
be complete. This may require altering the coordination pattern being used to interact with
the other participants to add synchronous or asynchronous feedback. Figure 29-3 shows the
order management system extended to play both the role of process manager and
process monitor. The primary modification is that the fire-and-forget interaction with the
warehouse has been replaced with an asynchronous request-reply. This provides the order
management system with feedback about the warehouse activities. The order
management system also needs to be extended to periodically evaluate progress and
check for activities that should have been completed, but have not.

Figure 29-3. Order Management System as a Process Manager

[View full size image]

One of the advantages of having the process manager also serve as the process monitor is
that it can do more than simply announce the presence of an exception. While the example
here shows the process manager only sending an alert, it could just as easily have taken an
alternative course of action. In the previous chapter you saw an example of a possible
alternative action in the form of the execution of a compensating transaction, but more
constructive alternatives might be employed as well. For example, if processing of the order

normally involves an interaction with a credit checking agency and that service is presently
unavailable, the order management system might use alternative logic involving the
customer's locally stored history to decide whether or not to accept the order. The presence
of a process manager offers you as much flexibility as your imagination.

Extending a process manager to be a process monitor does involve some extra workâ!”but
significantly less work than adding an independent process monitor. Much of this work is
simply choosing appropriate coordination patterns so that the manager is aware of the
status of other participants' activities. Remember, however, that in order to interpret the
absence of a response, a response-time SLA must be established for the performance of the
work, and the process monitor must check to see whether the work is actually completed on
time.

Process Management Limitations

Ideally, a management process's span of control would cover an entire business process
from start to finish. Its coverage would begin with the recognition of the triggering event for
the overall process and end with the confirmation of delivery of the final result. It would
actively control all of the activity in between. But this assumes that the manager is actually
in control throughout the entire processâ!”an assumption that is rarely valid in practice.

To begin with, the process manager is typically not in control at the beginning of the
business process. There is almost always at least one handoff of responsibility among
participants before the manager even gets involved. For example, when an ATM is being
used (which we will envision as the process manager for the moment), the machine is not
initially managing the withdraw cash processâ!”the customer is! The customer decides
what PIN to enter and when to do it. The customer decides what transaction is desired and
how much money is involved. In fact, up to the moment that the customer enters the
amount to be withdrawn, the customer is managing the process.

At the moment that the customer hits "Enter" after specifying the amount to be withdrawn,
there is a handoff of responsibility from the customer to the ATM. The machine now
manages a portion of the withdraw cash process, getting approval from the bank for the
withdrawal, dispensing the funds, notifying the bank that the funds were delivered, and
printing the receipt. But once these activities have been completed, the responsibility for
managing the remainder of the process is once again up to the customer. Nobody is going
to force the customer to remove the cash from the slot in the machine or take the receipt.
The customer is, once again, in control.

In situations such as this, you often find that the participant managing a portion of the
process is also monitoring more of the business process than it is actually managing. The
ATM is very aware that the customer is setting up a transaction and knows whether or not
the customer has actually removed the cash. It is an observer of those portions of the
process that the customer is managing as well as those portions over which it has direct
control. So when you are specifying this component, you need to be clear about both the
management and monitoring responsibilities. Based on these responsibilities, you need to
determine the required interactions between the management/monitoring component and
the other participants in the process in order to execute these responsibilities.

Summary

Process managers and process monitors play important roles in the overall business
process. Not only are they key participants in terms of their responsibilities, but they are the
source and destination for much of the communications traffic involved in the execution of
the business process. Because of the importance of these roles, whenever a process
manager or monitor is added to a process, it needs to be added to all top-level activity
diagrams that characterize the operation of the business process at the technical level. In
addition, any process manager needs to be added to the business process activity diagrams
as well. This reflects the fact that the assignment of management activities to the process
manager is actually a business process design decisionâ!”one that needs to be understood
and evaluated by both business and IT personnel.

There are many design issues associated with the use of process monitors and managers. A
few have been touched upon in this chapter, but only lightly. The discussion of these roles
will continue further in Chapter 38, which considers process monitoring in more detail, and
in Chapter 42, which considers the complexities of process management and workflow
design.

Key Process Monitoring and Management Questions

1. Is a process monitor or manager being used? Which portions of the process
are being managed and which portions are being monitored? Do the
coordination patterns being used to direct or observe the work enable it to
reliably detect breakdowns?

2. What actions will the process monitor/manager take when a breakdown is
detected? Are these actions adequate and appropriate given the business
consequences of the breakdown?

Chapter 30. Detecting and Responding to
Breakdowns
Earlier chapters examined a number of coordination patterns, ranging from simple fire-and-
forget up through the use of process monitors and managers. Now it is time to stand back
and evaluate the overall process design and determine which combinations of these
coordination patterns should be employed. Since you have already considered the normal
operation of the process in bringing the design this far, the primary remaining consideration
is breakdown detection.

Selecting Coordination Patterns to Improve Breakdown
Detection

Up to this point, although you have arrived at some business-level understanding of what
can go wrong with the business process, you have pretty much been focusing on the "sunny
day" scenarios. For the most part, your choices of coordination patterns have been driven
by the simple need to get a result from one participant to another. Now you want to
explore the robustness of the design. In particular, you want to ask yourself whether
selecting alternative coordination patterns might improve the system's ability to detect,
report, and respond to breakdowns in the process.

The use of activity diagrams to represent scenarios makes this exploration of breakdowns a
fairly straightforward process. The thought process is as follows:

1. For each participant in the process, consider what would happen if that component
ceased to function. What would the symptoms be? Which participants, if any, are in a
position to detect the breakdown?

2. For each communication in the process, consider what would happen if that
communication failed. Again, what would the symptoms be? Which participants, if
any, are in a position to detect the breakdown?

3. Would changes to the coordination patterns improve the ability to detect breakdowns
in the process and otherwise monitor the overall process? Do the consequences of
undetected breakdowns warrant making such changes?

Take a look at the example in Figure 30-1. There are five possible failures in this scenario:
the loss of any of the three participants and the loss of either communication. A quick
examination of this activity diagram will lead you to recognize the multi-party fire-and-
forget coordination discussed in Chapter 27. This type of coordination cannot detect any
breakdowns in the process. If this is an important business process, undetectable
breakdowns are probably not acceptableâ!”so you need to consider how to alter the
coordination to improve the breakdown detection.

Figure 30-1. Breakdown Analysis of a Simple Process

[View full size image]

One of the things you can do to make breakdown detection possible is to add some
feedback in the form of a status report as shown in Figure 30-2. Here, participant C
sends the status report after it has finished handling the result, and participant A
is waiting for that report. Now there are six possible failures in this scenario: the loss of any
of the three participants and the loss of any of the three communications. In examining the
diagram, it should be readily apparent that the loss of participant A still cannot be
detected (at least by any of the participants in the scenario). So there is still a weak spot in
the design, but one that might be mitigated by the addition of a component monitor that
can determine whether participant A is alive and well.

Figure 30-2. Modified Process to Improve Breakdown Detection

[View full size image]

Despite the inability to detect a breakdown in participant A, the modified process puts
participant A in a position to detect the other five breakdowns: the loss of the
request, participant B failing to perform the service, the loss of the result,
participant C failing to consume the result, or the loss of the status report.
Regardless of which of these breakdowns occurs, participant A will either fail to get the
status report at all or will receive a report indicating that there was a problem.

This example illustrates a common phenomenon in breakdown detection: Several different
breakdowns, and even types of breakdowns, often result in one common symptom. This can
be both a blessing and a curse. The blessing is that since several breakdowns all result in
the same symptoms, you have fewer symptoms to monitor in order to determine whether
or not a breakdown has occurred. The curse lies in that, for these very same reasons, the
symptom does not tell you exactly where the breakdown occurred. You will need to do more
investigation to determine the root cause of the symptom.

Determining the right coordination patterns to employ largely depends upon the
consequences of a breakdown. One useful litmus test in this regard is the "paycheck test":
Would you rely upon this process, as presently designed, to deliver your paycheck to you?
Remember, it's not the end of the world if your paycheck gets lost, but it certainly would be
a nuisance to obtain a replacement paycheck, and in the meantime you would be short of
cash. Two other extremes to consider are: (1) nobody would care if the process broke down
(which may make you wonder why you are implementing the process at all!); or (2) there
would be some dire consequence (bankruptcy, death) if a breakdown in the process went

undetected. In the end, you need to understand the true business consequences to make an
appropriate choice of coordination patterns.

A final note on breakdown detection: Most business processes are initiated by people, and
in the real world there is almost always some feedback to that person. The content of that
feedback, or its absence, will eventually indicate a problem with a process. Mail-order
catalogs rely almost entirely on this form of breakdown detection. Despite the use of fire-
and-forget mail to send the order and deliver the goods, the customer is ultimately
expecting the goods to arrive. In a sense, this is an ultimate "reply" to the original request.
The person who initiated the process is thus in a position to do something about it, such as
calling customer service. But in the competitive environments businesses find themselves in
today, it is generally not a good practice to rely on your customers to tell you that your
business process is broken! You want to build breakdown detection into the portion of the
business process over which you have control in order to manage the customer experience.

Chapter 30. Detecting and Responding to
Breakdowns
Earlier chapters examined a number of coordination patterns, ranging from simple fire-and-
forget up through the use of process monitors and managers. Now it is time to stand back
and evaluate the overall process design and determine which combinations of these
coordination patterns should be employed. Since you have already considered the normal
operation of the process in bringing the design this far, the primary remaining consideration
is breakdown detection.

Selecting Coordination Patterns to Improve Breakdown
Detection

Up to this point, although you have arrived at some business-level understanding of what
can go wrong with the business process, you have pretty much been focusing on the "sunny
day" scenarios. For the most part, your choices of coordination patterns have been driven
by the simple need to get a result from one participant to another. Now you want to
explore the robustness of the design. In particular, you want to ask yourself whether
selecting alternative coordination patterns might improve the system's ability to detect,
report, and respond to breakdowns in the process.

The use of activity diagrams to represent scenarios makes this exploration of breakdowns a
fairly straightforward process. The thought process is as follows:

1. For each participant in the process, consider what would happen if that component
ceased to function. What would the symptoms be? Which participants, if any, are in a
position to detect the breakdown?

2. For each communication in the process, consider what would happen if that
communication failed. Again, what would the symptoms be? Which participants, if
any, are in a position to detect the breakdown?

3. Would changes to the coordination patterns improve the ability to detect breakdowns
in the process and otherwise monitor the overall process? Do the consequences of
undetected breakdowns warrant making such changes?

Take a look at the example in Figure 30-1. There are five possible failures in this scenario:
the loss of any of the three participants and the loss of either communication. A quick
examination of this activity diagram will lead you to recognize the multi-party fire-and-
forget coordination discussed in Chapter 27. This type of coordination cannot detect any
breakdowns in the process. If this is an important business process, undetectable
breakdowns are probably not acceptableâ!”so you need to consider how to alter the
coordination to improve the breakdown detection.

Figure 30-1. Breakdown Analysis of a Simple Process

[View full size image]

One of the things you can do to make breakdown detection possible is to add some
feedback in the form of a status report as shown in Figure 30-2. Here, participant C
sends the status report after it has finished handling the result, and participant A
is waiting for that report. Now there are six possible failures in this scenario: the loss of any
of the three participants and the loss of any of the three communications. In examining the
diagram, it should be readily apparent that the loss of participant A still cannot be
detected (at least by any of the participants in the scenario). So there is still a weak spot in
the design, but one that might be mitigated by the addition of a component monitor that
can determine whether participant A is alive and well.

Figure 30-2. Modified Process to Improve Breakdown Detection

[View full size image]

Despite the inability to detect a breakdown in participant A, the modified process puts
participant A in a position to detect the other five breakdowns: the loss of the
request, participant B failing to perform the service, the loss of the result,
participant C failing to consume the result, or the loss of the status report.
Regardless of which of these breakdowns occurs, participant A will either fail to get the
status report at all or will receive a report indicating that there was a problem.

This example illustrates a common phenomenon in breakdown detection: Several different
breakdowns, and even types of breakdowns, often result in one common symptom. This can
be both a blessing and a curse. The blessing is that since several breakdowns all result in
the same symptoms, you have fewer symptoms to monitor in order to determine whether
or not a breakdown has occurred. The curse lies in that, for these very same reasons, the
symptom does not tell you exactly where the breakdown occurred. You will need to do more
investigation to determine the root cause of the symptom.

Determining the right coordination patterns to employ largely depends upon the
consequences of a breakdown. One useful litmus test in this regard is the "paycheck test":
Would you rely upon this process, as presently designed, to deliver your paycheck to you?
Remember, it's not the end of the world if your paycheck gets lost, but it certainly would be
a nuisance to obtain a replacement paycheck, and in the meantime you would be short of
cash. Two other extremes to consider are: (1) nobody would care if the process broke down
(which may make you wonder why you are implementing the process at all!); or (2) there
would be some dire consequence (bankruptcy, death) if a breakdown in the process went

undetected. In the end, you need to understand the true business consequences to make an
appropriate choice of coordination patterns.

A final note on breakdown detection: Most business processes are initiated by people, and
in the real world there is almost always some feedback to that person. The content of that
feedback, or its absence, will eventually indicate a problem with a process. Mail-order
catalogs rely almost entirely on this form of breakdown detection. Despite the use of fire-
and-forget mail to send the order and deliver the goods, the customer is ultimately
expecting the goods to arrive. In a sense, this is an ultimate "reply" to the original request.
The person who initiated the process is thus in a position to do something about it, such as
calling customer service. But in the competitive environments businesses find themselves in
today, it is generally not a good practice to rely on your customers to tell you that your
business process is broken! You want to build breakdown detection into the portion of the
business process over which you have control in order to manage the customer experience.

Responding to Breakdowns

The discussion up to now has focused on detecting breakdowns; now it is time to consider
what you ought to do when one occurs. There are many possibilities, ranging from
completely ignoring it, recording it, or announcing it, to recovering from it either manually
or automatically. The possibilities are nearly endlessâ!”but whatever you do a cost will be
associated with it, both at design time and runtime. Once again, you must let the
consequences of the breakdown guide you in deciding what to do.

Recording Breakdowns

Since you have gone to the trouble of detecting the breakdown, it is good practice to at
least make a record of it. Of course, this will require some runtime resources, and the use
of those resources will have a performance impact. Thus, you need to understand what that
impact will be and determine whether it is acceptable. To understand the impact, you will
need to know how much information will be recorded and the rate at which breakdowns are
likely to occur. Let's look at a couple of examples that illustrate the possible extremes in
this regard.

Consider the loss of a low-level data packet in a network TCP/IP protocol. While this is not
something you would normally have to worry about at the application design level, it
illustrates the extreme of high-volume breakdowns very nicely. Packet losses can happen at
extremely high rates if there is noise on the network. Typically the network interface card
(NIC), which is the hardware in the computer that handles its interaction with the network,
detects and recovers from this particular type of breakdown automatically. It detects the
loss of a packet and requests that the missing packet be retransmitted.

If the NIC card is automatically recovering from the error, why would you want to make a
record of the breakdown? Because the packet loss may be an indication of network
problems, ones that will require additional action to resolve. So what kind of record should
you keep for these particular breakdowns? In practice, the computer doing the
communications counts them and holds this count in memory. The operating system can be
configured to periodically log the error count.

In this particular instance, the breakdowns (losses of individual packets) can occur at a
relatively high rate, perhaps caused by a modem operating over a noisy phone connection.
If you were to record a lot of information about each breakdown, the potential high rate of
breakdowns could potentially consume system resources at a high rate. But this particular
breakdown is of relatively little consequence unless the error rate gets very high. As a
result, systems typically record only the minimal amount of information regarding each
breakdownâ!”a count. The information of interest here is not about the individual
breakdowns, but the rate at which they are occurring.

Consider now a different extremeâ!”one in which detailed information about each
breakdown must be recorded. In the course of daily business, banks routinely transfer
funds to other banks. A single inter-bank funds transfer can involve billions of dollars. When
a breakdown is detected in this process, you need to know a great deal about the
breakdown, for you will want to recover from this breakdown by completing the disrupted

transaction. To do this, you need to know how much money was being transferred, what
bank it was coming from, and what bank it was going to. You may also need transaction
identifiers, time-stamps, and other pieces of data. The systems will need to record enough
information so that you can recover from the breakdown as if it had never occurred (except
for the time lag in completing the operation).

Once you decide to make a record of the breakdown and determine what information needs
to be recorded, you must then design that portion of the process that does the actual
recording. You must determine which components are involved, what their individual
responsibilities are, and what communications will be required to execute the recording. A
significant factor to consider in the design of breakdown recording is that you expect to be
recording breakdowns in the presence of system failures! In particular, disruptions in
communications are to be expected at least some of the time. Because of this, you do not
want the breakdown recording to be totally dependent upon the proper operation of the
communications infrastructure. You want the component that detects the breakdown to
make a record of the breakdown using as few moving parts as possible. This usually boils
down to having the component itself recording the breakdown, as illustrated in Figure 30-3.
Then, if communications permits, a notification of the breakdown can be sent to interested
parties.

Figure 30-3. Preferred Breakdown Recording Pattern

[View full size image]

Annunciating Breakdowns

Simply recording the fact that a breakdown occurred is often not enough. Many times you
will want to bring the breakdown to someone's attention so that something can be done
about it. Logging a breakdown in a file will not, in and of itself, accomplish this.
Unfortunately, there is a design tendency to log lots of information about breakdowns but
not consider what ought to happen next. The data languishes in log files until someone
suspects the existence of a problem, usually after some larger breakdown occurs that
happens to be observable. At that point, a forensic search of log files begins as you seek an
understanding of the nature and location of the problem.

The problem with simply recording breakdowns is that it may be a long time before
someone becomes aware of the existence of a breakdown. As time frames for the execution
of business processes shrink and service-level agreements are established, delays in
recognizing the occurrence of a problem have an increasing impact on the business process
and the business as a whole. When a customer expects it to take 4 to 6 weeks for an item
to be delivered and calls after 6 weeks because the item has not arrived (because
something went wrong), you can remediate by shipping the item overnight without greatly

disappointing the customer. A one-day delay in a 4- to 6-week process is not particularly
devastating. But when the customer expects next-day delivery and the item does not arrive
the next day, an extra day in delivering the item becomes far more significant. You have
now doubled the expected delivery time.

Because of the potential impact of delays, you must look at the consequences of process
breakdowns and determine whether you need to annunciate the existence of certain
breakdowns. Once you decide that a breakdown requires annunciation, you must further
decide whether to annunciate the existence of each and every breakdown or annunciate the
presence of breakdowns only when certain threshold conditions are met. In the case of
inter-bank funds transfer, you certainly would want to annunciate the existence of each and
every breakdown. The consequences of failure are enormous, and must be immediately and
individually addressed. By contrast, in the case of the TCP/IP packet loss, you don't want to
annunciate the existence of packet losses unless they are happening frequently. Since the
protocol itself recovers lost packets (under most conditions), you don't really need to take
any additional action until the frequency of packet loss begins to impact the overall
efficiency of the communications infrastructure or the packet losses become unrecoverable.
Consequently, while you might be recording the existence of packet losses, you would
probably not annunciate the existence of packet losses unless the rate of packet loss
exceeds some threshold or packets become unrecoverable.

Responding to Breakdown Annunciations

The intent of annunciation, of course, is to make someone aware of the existence of a
problem. This is often mistakenly viewed as purely a technical design problem, but you need
to be aware that it is a business process and an organizational design problem as well.
Someone needs to respond to the annunciation, and you need to look beyond simply
determining who should be notified and how. You need to understand what these people
will be doing once they have been notified. As they investigate and recover from the
problem, they will need interfaces to the system components to examine and modify
information.

Understanding what people are doing in the recovery process will help you to determine
what information they need in order to investigate the problem. This can impact the
information content of the announcement itself. If you are recovering from a failure of an
inter-bank funds transfer, you may need the transaction identifier so that you can locate the
specific transaction record in a system and update the transaction status. This may impact
the design of the breakdown announcement to include sufficient information to determine
(directly or indirectly) the transaction identifier. Interfaces to perform the system status
update and to update the account balances will also be required. Recovery may need to re-
initiate all or part of a larger business process to recover from the breakdown. The funds
transfer, for example, may be part of a stock trade settlement, and the remainder of the
stock settlement must be completed as well.

All of these activities have implications for both the business process design and the system
design. The breakdown recovery is, itself, a business process. This process may consist of
just one activity, Find and Fix the Problem, but it is nonetheless a process that must
be executed. You need to understand the requirements surrounding this business process.
Do you need to track this process and note the ultimate resolution? Are there key
performance indicators and service-level agreements related to the recovery process?

Recall the case study in Chapter 11 in which the telecommunications company was losing
money because its breakdown recovery process was itself breaking down. Recovery
processes themselves may need to be monitored and managed.

From a technical perspective, you need to understand what activities are being (or might
be) performed in the recovery process, particularly when these activities involve people
interacting with systems. You need to understand whether the system interfaces already
exist to support these activities, and whether those interfaces are suitable for the intended
purpose. From a purely technical perspective you may think that a generic SQL user
interface can be used to update the database, but will this unfettered access satisfy the
audit requirements for a banking system? Do you instead need to implement an interface
with controlled access and audit trails to support this recovery? Do the risks warrant the
development of these specialized interfaces? These are all questions you must consider, and
to be cost-effective you need to do so while the design is in its formative stages.

Before going deeper into the recovery process, let us return for a moment to consider the
basic annunciation of the breakdown. In contrast with the basic recording of breakdowns,
which is best done by the component recording the breakdown, it makes a lot of sense to
centralize the annunciation of breakdowns. The alternative requires that people monitor
each system individually for breakdown reports, and this quickly becomes impractical in
large-scale enterprise systems. Typically you will end up with a breakdown-reporting
pattern similar to that shown in Figure 30-4.

Figure 30-4. Breakdown Reporting

[View full size image]

Once you have decided that you need a common breakdown reporting service, you must
consider its design. Which participant will provide this service? What vehicle will be used for
communications? What will the information content of the communication be? What type of
coordination and breakdown detection should be used in the interaction between the
component reporting the breakdown and the breakdown reporting service itself? Sound
familiar? It's the same design approach already being discussed. Annunciation is just
another process with which this process happens to interact. Once again, you need to be
guided by the business impact of breakdowns in deciding what approach is reasonable.

A side note is in order here regarding documenting the handling of breakdowns. If you
update every activity diagram to show the handling of every possible breakdown by every
component participating in the process, the diagrams will quickly become cluttered with the
interactions between the participants and the breakdown reporting service. On the other
hand, the design for reporting breakdowns needs to be absolutely clear and requires this
level of detailâ!”somewhere. The practical compromise is to document, for each type of
participant, how that participant type will interact with the error reporting system. Figure
30-5 presents an example of documenting the breakdown reporting pattern. You need to do
this for each type of participant because the pattern will likely vary depending on the
technology used to implement the participant. Thus for each specific combination of
technologies involved, you will need to document the details of how the general pattern will
be implemented.

Figure 30-5. Record and Annunciate Breakdown Pattern for Participant A

Once the pattern for recording and reporting breakdowns has been documented, you can
simplify the activity diagram that employs the pattern, as shown in Figure 30-6. Now,
instead of showing the entire pattern each time it is used, you simply include an activity
that indicates which pattern is being invoked. You are essentially showing the invocation of
a service.

Figure 30-6. Shorthand Notation for Breakdown Recording and Reporting

[View full size image]

Recovering from Breakdowns

Beyond simply making a record of breakdowns and annunciating their existence, in most
cases the business process will require taking some additional action. But what kind of
action is appropriate? This is an open-ended design question, to be sure. The response to a
business process breakdown can be more complex than the normal execution of the
process! Furthermore, you can easily spend more time considering how to recover from all
of the possible breakdowns than you do designing the core process. You do not want to
make this kind of investment for inconsequential processes. On the other hand, when there
are billions of dollars involved in a transaction, breakdown recovery is a pretty important
consideration in process design. How do you go about deciding what to do?

There are several questions you can ask yourself to help in this decision making:

1. Is the process, as presently designed, already resilient to the breakdown?
At what point will this resiliency itself fail?

2. Is the recovery of work in progress required?

3. Should breakdown recovery be automated or manual?

Resiliency

Many processes are, by design, somewhat resilient to short-term breakdowns. Often this
resiliency takes the form of buffering in the communications infrastructure. One participant
is communicating with another via a Java messaging service (JMS), but the recipient of the
messages goes offline for some reason. The messages destined for that recipient
accumulate in the JMS server until the recipient comes back online. At this point, the
recipient can catch up with the backlog of messages.

Of course, whether or not this buffering offers any benefit depends upon the design of the
overall process. If the backlog of messages represents requests from users who are sitting
at workstations waiting for responses within a few seconds, then this resiliency only offers
benefits for a second or two. At the other extreme, you must consider that any form of
buffer has a finite capacity. If the breakdown persists long enough, you will exceed that
capacity. The resiliency will, itself, break down.

The TCP/IP communications protocol provides an example of another form of resiliencyâ
!”an automatic retry. When a TCP/IP communications packet gets lost, the sender and
intended recipient work together to redeliver the lost packet. However, if the
communications channel is noisy enough or communication is lost altogether, it may not be
possible to redeliver these packets. Again, the resiliency itself will break down.

What both of these examples illustrate is that even resilient designs have limits beyond
which some action must be taken. When buffer limits are about to be reached, when
communications channels become noisy enough, some form of action must be taken to
prevent even greater problems. Thus when there is resiliency in the design, you must
determine the practical limits of this resiliency. You must then determine how to detect the
breakdown of the resiliency (or preferably anticipate the breakdown), who will be notified,
and what actions will be required. For example, it may be better to shut down the upstream
message publisher than to overwhelm the communications intermediary and lose data. It
may be better to tell the bank that you can't perform the requested funds transfer than to
lose a $20 billion transaction in progress!

Recovering Work in Progress

When a breakdown occurs, there is likely to be work in progress. What should be done with
this work in progress? Should an attempt be made to complete it, or should it be written
off? The answer will vary, depending upon the business process. Some process results only
have value if they are delivered in a timely manner. Stock-market ticker information
becomes obsolete the moment the next transaction involving that stock occurs. If this
information is being delivered to a casual investor, is there any value in recovering the
obsolete ticker entries? If there are interactive user queries in progress but the user is no

longer waiting for the reply, is there any value in completing the query?

The reason you want to ask this question is that recovering work in progress after a
breakdown is not free. There is real cost associated with designing, implementing, and
testing the recovery process, and there is a runtime cost associated with the actual
recovery. Furthermore, the recovery process is, itself, subject to breakdown. How much of
this should you consider? The design changes needed to accommodate breakdown recovery
will most likely require the persistence of information that would not otherwise have been
persisted. This will have a performance impact on the business process. Before such costs
are incurred, you want to ensure that the investment is warranted.

Once you have decided that some form of work-in-progress recovery is desirable, you can
then embark upon the design of the recovery process. While the variations are endless,
there are a couple of work-in-progress recovery strategies that are worth mentioning. One
is to log the operations that need to be performed by the offline participant and then
execute those operations once the participant is back on line. When you consider this
approach, you must remember that this logging and replay is itself a process that is subject
to breakdown. This can lead to complex recovery designs that are more trouble than they
are worth.

Another recovery strategy is to use an alternate process that simply bypasses the failed
operation, possibly employing alternate logic. If an order entry process calls for a credit
check and the credit checking service is offline or unreachable, the business may want to
employ alternate business rules rather than wait for the credit-checking service to come
back online. The business might want to employ a business rule saying that for customers
in good standing, the order will be accepted without the credit check, and for the rest a
supervisor will be asked to make a judgment call as to whether the order should be
accepted. Note that this is not a technical decision, but a business decision. You must get
the business people involved in the discussion to determine which business processes
warrant such alternate strategies.

Automated versus Manual Recovery Implementation

By and large, architects are technically oriented and tend to favor automated solutions. But
when it comes to error recovery, automation should be approached cautiously. There are
two reasons for this caution. First, a fully automated recovery from all possible errors is a
notoriously complex design problem and is rarely worth the effort. You can easily spend
much more time designing the automated breakdown recovery than you spend on the
proper operation of the business process. It is unlikely that this will be a good investment.
Second, and perhaps more telling, is that your ability to predict the breakdowns that
actually occur in practice tends to be very poor. The number of relatively independent
components found in distributed systems present so many possible combinations of failures,
including combinations of shutdown and startup sequences, that it is virtually impossible to
identify them all, let alone consider their consequences.

Given this complexity, it is generally not a good idea to automate error recovery based
solely on speculation concerning what might go wrong. Instead, the initial design focus
should be on the detection and appropriate annunciation of the problem and on the
requirements for supporting a manual recovery processes. Even the manual recovery
process itself will impact the design. It may require information that is not normally

presented to users, such as primary keys for database records. It may require user
interfaces to examine and modify information. Even though the manual recovery process
involves some degree of speculation, it tends to be far simpler (and thus less costly) than
automating breakdown recovery. Your initial focus should be on understanding the manual
recovery process and making sure it is practical.

Once you have the tools to support a manual recovery in place, you can then complete and
deploy the system. With the system in operation, you will be in a position to learn the types
of breakdowns that actually occur in practice. Furthermore, you will gain experience in
diagnosing such problems and recovering from them. Over time, as experience builds up
handling real errors, you will learn which errors occur frequently enough to be annoying and
how to diagnose and recover from those errors. In other words, you will learn enough to
automate the recovery from those errors.

Of course, this strategy assumes that the volume of breakdowns can, in fact, be handled by
support personnel, and further assumes that the delays involved in manual recovery are
acceptable. If neither condition is met, then you will have to consider some form of
automated assistance in the recovery process. But you must keep in mind that whatever
you do needs to be practical and cost effective.

Summary

The coordination patterns you select directly impact the ability of participants to detect
breakdowns in the business process. Simply adding one feedback communication can add
the ability to detect breakdowns and thus preserve the integrity of the process. It is good
practice to add sufficient feedback within the enterprise's business processes to detect
breakdowns without relying on input from customers and business partners.

Simply detecting a breakdown does not provide any benefit. The existence of the
breakdown has to be made known to those who must take action. Annunciating the
existence of breakdowns requires design work as well as some understanding of
organizational responsibilities for handling breakdowns.

Breakdown recovery, whether manual or automated, also requires design work and an
understanding of the actions required to execute the recovery. For manual recovery, the
requirements generally focus on the needed user interfaces. For automated recovery, the
logic of diagnosis and the specific recovery action sequence must also be known.
Automated recovery can be expensive, time consuming, and error prone. It is good practice
to begin with manual recovery (where feasible), and then use the knowledge gained
through the repeated diagnosis and recovery from specific breakdowns to automate just
those specific recoveries.

Key Breakdown Detection and Recovery Questions

1. What coordination patterns are being used in the business processes
currently being designed? Do they afford the opportunity to detect
breakdowns in the process? Would the use of different coordination patterns
improve the ability to detect breakdowns?

2. Which participants in the business process are in a position to detect
breakdowns? What actions will they take when a breakdown is detected? Is
the action appropriate given the business consequences of the breakdown?

3. If breakdown recovery is a manual process, is sufficient information being
provided in the breakdown announcement to identify the work in progress
that was impacted? Are the user interfaces sufficient to support diagnosis?
Are they sufficient to support the needed recovery actions?

Chapter 31. Enterprise Architecture: Coordination
While every project and process design needs to consider coordination issues, there are a
number of these issues that are best addressed by the enterprise architecture group rather
than by individual projects.

Preferred Coordination Patterns

When coordination patterns are selected, the choice of pattern will determine the
responsibilities of the individual participants with respect to the detection, recording,
annunciation, and recovery related to breakdowns. Selecting different coordination patterns
results in different responsibility assignments. Selecting different patterns for different
business processes involving the same participants can create somewhat of a problem: The
breakdown-related responsibilities of each participant will differ depending upon the
business process. There will be no consistency in the roles that the participants play with
respect to breakdowns, and you will not be able to broadly state what the breakdown-
related role of a given participant is.

Such variability makes it very difficult to understand the behavior of a distributed system
under adverse conditions. Since this is already a complex problem, you don't want to make
matters worse. Consequently, it is in everyone's best interest to achieve a level of
consistency from one process to another in terms of the specific breakdown-related
responsibilities of each participant.

So how do you achieve consistency? You start by recognizing that, most likely, different
business processes will be addressed in different projects. If you leave the decision making
related to coordination and breakdown detection up to individual project teams, you are
very likely to end up with different coordination patterns, and thus different breakdown-
related responsibility assignments.

The way to go about achieving consistency is to have the enterprise architecture group
participate in the establishment of coordination patterns. This group establishes the
preferred patterns of coordination between the participants in business processes (both
human and system). These patterns actually constitute the definition of an architectural
"style" that indicates how these participants will interact. The style is documented by taking
representative business processes and architecting them in the manner we have been
describing. These style definitions are placed in a central repository.

When a project team needs to implement a new business process, it can determine what
basic communications pattern is required by the business process and then locate the
corresponding coordination pattern in the central repository. This approach assumes that
similar patterns will be found in multiple business processes, but this is indeed the case for
a large percentage of the business processes in a given enterprise.

To make this approach work, the enterprise architecture group must be prepared to quickly
engage any project team that cannot find a suitable coordination pattern in the existing
collection. This engagement may either review a coordination pattern proposed by the

project team or it may actively design the required pattern. The end result will be a
properly engineered and reviewed pattern. If it appears that this pattern will be used again,
it should be appropriately documented and added to the coordination pattern library. In this
way, the library can grow organically rather than having its creation be a project in and of
itself.

In defining these coordination patterns, you need to make practical concessions to reality.
One reality constraint is that there are liable to be a lot of legacy business processes out
there that will not conform to the defined coordination patterns. You cannot afford, in the
literal sense, to immediately modify all of these business processes to conform to the
chosen coordination patterns. Instead, treat the coordination pattern as an ideal end-point
design. If a project happens to be working on a particular business process, it should take
every available opportunity to evolve that process's coordination pattern towards this ideal.

The other concession to reality is that many of the participants in the processes are liable to
be software processes that are commercial off-the-shelf (COTS) products. You have little or
no control over the design of these products. Thus you have little control over the
coordination patterns they are designed to use on their interfaces. The selection of
coordination patterns must take these limitations into account.

Chapter 31. Enterprise Architecture: Coordination
While every project and process design needs to consider coordination issues, there are a
number of these issues that are best addressed by the enterprise architecture group rather
than by individual projects.

Preferred Coordination Patterns

When coordination patterns are selected, the choice of pattern will determine the
responsibilities of the individual participants with respect to the detection, recording,
annunciation, and recovery related to breakdowns. Selecting different coordination patterns
results in different responsibility assignments. Selecting different patterns for different
business processes involving the same participants can create somewhat of a problem: The
breakdown-related responsibilities of each participant will differ depending upon the
business process. There will be no consistency in the roles that the participants play with
respect to breakdowns, and you will not be able to broadly state what the breakdown-
related role of a given participant is.

Such variability makes it very difficult to understand the behavior of a distributed system
under adverse conditions. Since this is already a complex problem, you don't want to make
matters worse. Consequently, it is in everyone's best interest to achieve a level of
consistency from one process to another in terms of the specific breakdown-related
responsibilities of each participant.

So how do you achieve consistency? You start by recognizing that, most likely, different
business processes will be addressed in different projects. If you leave the decision making
related to coordination and breakdown detection up to individual project teams, you are
very likely to end up with different coordination patterns, and thus different breakdown-
related responsibility assignments.

The way to go about achieving consistency is to have the enterprise architecture group
participate in the establishment of coordination patterns. This group establishes the
preferred patterns of coordination between the participants in business processes (both
human and system). These patterns actually constitute the definition of an architectural
"style" that indicates how these participants will interact. The style is documented by taking
representative business processes and architecting them in the manner we have been
describing. These style definitions are placed in a central repository.

When a project team needs to implement a new business process, it can determine what
basic communications pattern is required by the business process and then locate the
corresponding coordination pattern in the central repository. This approach assumes that
similar patterns will be found in multiple business processes, but this is indeed the case for
a large percentage of the business processes in a given enterprise.

To make this approach work, the enterprise architecture group must be prepared to quickly
engage any project team that cannot find a suitable coordination pattern in the existing
collection. This engagement may either review a coordination pattern proposed by the

project team or it may actively design the required pattern. The end result will be a
properly engineered and reviewed pattern. If it appears that this pattern will be used again,
it should be appropriately documented and added to the coordination pattern library. In this
way, the library can grow organically rather than having its creation be a project in and of
itself.

In defining these coordination patterns, you need to make practical concessions to reality.
One reality constraint is that there are liable to be a lot of legacy business processes out
there that will not conform to the defined coordination patterns. You cannot afford, in the
literal sense, to immediately modify all of these business processes to conform to the
chosen coordination patterns. Instead, treat the coordination pattern as an ideal end-point
design. If a project happens to be working on a particular business process, it should take
every available opportunity to evolve that process's coordination pattern towards this ideal.

The other concession to reality is that many of the participants in the processes are liable to
be software processes that are commercial off-the-shelf (COTS) products. You have little or
no control over the design of these products. Thus you have little control over the
coordination patterns they are designed to use on their interfaces. The selection of
coordination patterns must take these limitations into account.

Breakdown Recording

Breakdown recording is one of those things that every participant in every process will most
likely have to do. Rather than have project teams constantly reinvent this wheel, it makes
sense to standardize the mechanisms that will be used for breakdown recording. This
standardization extends to defining the formats that will be used for these records. Once
again, the responsibility for establishing such standards belongs to the enterprise
architecture group.

In standardizing the recording of breakdowns, you need to keep in mind that you want to
do this recording with a minimum number of moving parts. This generally means that the
actual recording of the breakdown needs to be implemented in a technology-specific
manner. For each implementation technology in use, you will need to design and implement
the recording mechanism. The enterprise architecture group should specify this mechanism
and oversee its implementation and testing. A library of technology-specific breakdown
recording implementations should be maintained.

The enterprise architecture group should also provide guidelines indicating when
breakdowns should be recorded and what information should be included. In specifying this
information, some level of standardization in the recording is beneficial, but you want to
preserve the flexibility to record varying amounts of process-specific information as well.
Each process will have its own unique requirements in terms of the data needed to
understand the nature of the breakdown and recover from it.

In recording breakdowns, some concessions to reality are again required when COTS
products are employed. Choices regarding when log entries are made will be limited to
those provided by the product, and the information content and format are similarly limited.
Thus while there may be a desire to establish a globally uniform format for log entries,
pragmatics dictate that you will have to deviate from this ideal when COTS products are
involved.

Breakdown Annunciation

While breakdown detection is generally done by the participant in a technology-specific
manner, you generally want to provide one common mechanism through which multiple
participants can annunciate the existence of breakdowns. As this is a common service that
spans multiple projects and participants, its specification and architecture must be the
responsibility of the enterprise architecture group. This group should also oversee the
implementation, testing, and operation of this breakdown annunciation service.

While the annunciation service itself can be standardized, its invocation must, by definition,
be technology specific. The mechanisms for sending an announcement to this service from a
Java program running on a UNIX server will be different than for sending it from a COBOL
program running on a mainframe. Thus, complementing the annunciation service, you need
a library of technology-specific invocation mechanisms. The specification of these
mechanisms is also the responsibility of the enterprise architecture group, as is the
oversight of their implementation and testing. More often than not, this functionality will be
bundled with the technology-specific breakdown recording library that has been developed
for the technology.

Again, concessions to reality may be required when it comes to using COTS products.
Generally these products will not have the ability to send this type of alert message. In such
cases, you may want to monitor the log created by the product and have this monitor send
the alert. The enterprise architecture group should specify the manner in which this should
be done for each COTS product and provide a reference implementation that projects can
use to guide their own implementation. As part of this, the enterprise architecture group
should specify the specific technologies to be used for monitoring the log and sending the
alerts.

Recovery Processes

While recovery processes are the most variable and open-ended aspect of coordination and
breakdown handling, there is generally a lot of basic commonality in recovery processes.
Who gets notified initially (first-tier support), how problems are tracked, how resolutions
are recorded, and how problems are escalated (second- and third-tier support) are
generally standardized in the enterprise (or at least ought to be). You don't want each
project team to have to go through the learning curve of unraveling these questions and
understanding the answers.

You also have to recognize that the recovery from breakdowns involves more than
systemsâ!”it involves people, and typically people in multiple organizations. The passing of
responsibility from organization to organization and the decisions about how to track and
measure recovery operations are business considerations, not IT decisions. There is process
design work here, and it needs to be treated like any other process design.

While the enterprise architecture group is generally not responsible for all the decision
making that drives the design of these generic recovery processes, it is very much
responsible for the resulting process design and its implementation. As such, it needs to
make sure that the recovery process is well-defined and well-understood. It then needs to
specify the technical underpinnings of the breakdown handling process and oversee its
design, implementation, and operation. This is a business process that needs to be handled
like any other.

Summary

The choice of a coordination pattern determines which participants in the process are in a
position to detect breakdowns. Different choices result in different breakdown detection
responsibilities. When the same participant is involved in multiple business processes, such
differences make it difficult to understand how the architecture, as a whole, responds to
breakdowns. For consistency and clarity, the enterprise architecture group should establish
standard coordination patterns as a means of standardizing breakdown detection
responsibilities.

Breakdowns need to be recorded and annunciated. Generally, at least a portion of these
activities must be performed in the technology used to implement the participant. For
consistency, it makes sense for the enterprise architecture group to specify and oversee the
implementation of a standard set of recording and annunciation mechanisms.

Manual recovery processes involve organizational responsibilities as well as technical design.
It is not efficient for each project to have to determine what these responsibilities are. The
enterprise architecture group should document the manual recovery process and the
corresponding organizational responsibilities. It should also design and oversee the
implementation of the technical interfaces to the annunciation and tracking systems being
employed in this process.

Key Enterprise Coordination Questions

1. Has the enterprise architecture group established standard coordination
patterns with standardized breakdown detection responsibilities? Are
projects being reviewed for compliance?

2. Has the enterprise architecture group established standard breakdown
logging and annunciation practices? Is there a library of technology-specific
logging and annunciation implementations? Are projects being reviewed for
compliance?

3. Have manual recovery procedures been documented? Have the interfaces to
the annunciation and tracking systems associated with these procedures
been defined and implemented? Are projects being reviewed for
compliance?

Part VII: High Availability, Fault Tolerance, and
Load Distribution

Chapter 32. High Availability and Fault Tolerance
Fundamentals
Earlier chapters have broadly considered the subject of detecting and responding to
breakdowns in business processes, and they have touched upon some of the recovery
actions that might be taken when breakdowns occur. This chapter narrows the focus to one
particular type of breakdown and one specific type of recovery action. The breakdown is the
loss of a participant in the business process, and the recovery action is the automatic
replacement of the failed participant with another participant.

There are actually two closely related but subtly different strategies for the automatic
replacement of a failed component. One is termed fault tolerance (FT) and the other high
availability (HA), and there are significant behavioral differences between the two. It is
worth spending a little time exploring these concepts and their differences for several
reasons. One is that an understanding of the behavior is required to understand the
resulting behavior of a business process employing these strategies. The second is that
there is usually a substantial cost differential between high availability (lower cost) and fault
tolerance (higher cost). You need to understand this difference as well as the behavioral
difference in order to make the right choice for your solution. The third reason is that in
much of today's sales and marketing literature, products claim to be fault tolerant when
they really provide high availability. You need to understand how to recognize what the
product truly offers so that you know what you are actually getting and can design
accordingly.

Fault Tolerance Strategies

A fault-tolerant process is a process that continues to function properly without interruption
despite the failure of one of its participants. This obviously requires at least one additional
participant capable of playing the role of the failed participant. There are two general
strategies regarding how the backup participants get involved when the failure occurs:
voting and failover. In the voting strategy, multiple participants continually perform the
same identical service. Each generates tentative results, and these results are then
compared (voted on) by other participants to determine what the ultimate result ought to
be. Although very effective, this strategy is extremely complicated to design and expensive
to implement. As a result, it is generally employed only in applications in which human life
is immediately at risk: aircraft flight controls and industrial safety systems. It is rarely
applicable to the design of enterprise systems except in the design of infrastructure
components such as network components and storage-area networks, and will therefore not
be discussed further.[1]

[1] Nelson, V. P. 1990. "Fault-tolerant Computing: Fundamental Concepts," IEEE Computer, Vol. 23,
Issue 7, pp. 19â!“25.

The failover strategy, like the voting strategy, also requires two or more providers of the
same service. In the failover strategy, these providers are configured in such a way that
when one provider fails, another takes over. This involves detecting that the primary
provider has failed, activating a backup provider, and switching users of the service over to
the new provider. This approach is the one generally used for both fault tolerance and high
availability in commercial business systems. The differences between fault tolerance and
high availability then boil down to the time frame in which the failover occurs and whether
or not work in progress is lost during the transition. For fault tolerance, the failover occurs
within the SLA for delivering the service, and there is no loss of work in progress. For high
availability, the failover takes longer than the normal SLA for providing the service, and
whether or not work in progress is lost becomes a design decision.

Part VII: High Availability, Fault Tolerance, and
Load Distribution

Chapter 32. High Availability and Fault Tolerance
Fundamentals
Earlier chapters have broadly considered the subject of detecting and responding to
breakdowns in business processes, and they have touched upon some of the recovery
actions that might be taken when breakdowns occur. This chapter narrows the focus to one
particular type of breakdown and one specific type of recovery action. The breakdown is the
loss of a participant in the business process, and the recovery action is the automatic
replacement of the failed participant with another participant.

There are actually two closely related but subtly different strategies for the automatic
replacement of a failed component. One is termed fault tolerance (FT) and the other high
availability (HA), and there are significant behavioral differences between the two. It is
worth spending a little time exploring these concepts and their differences for several
reasons. One is that an understanding of the behavior is required to understand the
resulting behavior of a business process employing these strategies. The second is that
there is usually a substantial cost differential between high availability (lower cost) and fault
tolerance (higher cost). You need to understand this difference as well as the behavioral
difference in order to make the right choice for your solution. The third reason is that in
much of today's sales and marketing literature, products claim to be fault tolerant when
they really provide high availability. You need to understand how to recognize what the
product truly offers so that you know what you are actually getting and can design
accordingly.

Fault Tolerance Strategies

A fault-tolerant process is a process that continues to function properly without interruption
despite the failure of one of its participants. This obviously requires at least one additional
participant capable of playing the role of the failed participant. There are two general
strategies regarding how the backup participants get involved when the failure occurs:
voting and failover. In the voting strategy, multiple participants continually perform the
same identical service. Each generates tentative results, and these results are then
compared (voted on) by other participants to determine what the ultimate result ought to
be. Although very effective, this strategy is extremely complicated to design and expensive
to implement. As a result, it is generally employed only in applications in which human life
is immediately at risk: aircraft flight controls and industrial safety systems. It is rarely
applicable to the design of enterprise systems except in the design of infrastructure
components such as network components and storage-area networks, and will therefore not
be discussed further.[1]

[1] Nelson, V. P. 1990. "Fault-tolerant Computing: Fundamental Concepts," IEEE Computer, Vol. 23,
Issue 7, pp. 19â!“25.

The failover strategy, like the voting strategy, also requires two or more providers of the
same service. In the failover strategy, these providers are configured in such a way that
when one provider fails, another takes over. This involves detecting that the primary
provider has failed, activating a backup provider, and switching users of the service over to
the new provider. This approach is the one generally used for both fault tolerance and high
availability in commercial business systems. The differences between fault tolerance and
high availability then boil down to the time frame in which the failover occurs and whether
or not work in progress is lost during the transition. For fault tolerance, the failover occurs
within the SLA for delivering the service, and there is no loss of work in progress. For high
availability, the failover takes longer than the normal SLA for providing the service, and
whether or not work in progress is lost becomes a design decision.

Part VII: High Availability, Fault Tolerance, and
Load Distribution

Chapter 32. High Availability and Fault Tolerance
Fundamentals
Earlier chapters have broadly considered the subject of detecting and responding to
breakdowns in business processes, and they have touched upon some of the recovery
actions that might be taken when breakdowns occur. This chapter narrows the focus to one
particular type of breakdown and one specific type of recovery action. The breakdown is the
loss of a participant in the business process, and the recovery action is the automatic
replacement of the failed participant with another participant.

There are actually two closely related but subtly different strategies for the automatic
replacement of a failed component. One is termed fault tolerance (FT) and the other high
availability (HA), and there are significant behavioral differences between the two. It is
worth spending a little time exploring these concepts and their differences for several
reasons. One is that an understanding of the behavior is required to understand the
resulting behavior of a business process employing these strategies. The second is that
there is usually a substantial cost differential between high availability (lower cost) and fault
tolerance (higher cost). You need to understand this difference as well as the behavioral
difference in order to make the right choice for your solution. The third reason is that in
much of today's sales and marketing literature, products claim to be fault tolerant when
they really provide high availability. You need to understand how to recognize what the
product truly offers so that you know what you are actually getting and can design
accordingly.

Fault Tolerance Strategies

A fault-tolerant process is a process that continues to function properly without interruption
despite the failure of one of its participants. This obviously requires at least one additional
participant capable of playing the role of the failed participant. There are two general
strategies regarding how the backup participants get involved when the failure occurs:
voting and failover. In the voting strategy, multiple participants continually perform the
same identical service. Each generates tentative results, and these results are then
compared (voted on) by other participants to determine what the ultimate result ought to
be. Although very effective, this strategy is extremely complicated to design and expensive
to implement. As a result, it is generally employed only in applications in which human life
is immediately at risk: aircraft flight controls and industrial safety systems. It is rarely
applicable to the design of enterprise systems except in the design of infrastructure
components such as network components and storage-area networks, and will therefore not
be discussed further.[1]

[1] Nelson, V. P. 1990. "Fault-tolerant Computing: Fundamental Concepts," IEEE Computer, Vol. 23,
Issue 7, pp. 19â!“25.

The failover strategy, like the voting strategy, also requires two or more providers of the
same service. In the failover strategy, these providers are configured in such a way that
when one provider fails, another takes over. This involves detecting that the primary
provider has failed, activating a backup provider, and switching users of the service over to
the new provider. This approach is the one generally used for both fault tolerance and high
availability in commercial business systems. The differences between fault tolerance and
high availability then boil down to the time frame in which the failover occurs and whether
or not work in progress is lost during the transition. For fault tolerance, the failover occurs
within the SLA for delivering the service, and there is no loss of work in progress. For high
availability, the failover takes longer than the normal SLA for providing the service, and
whether or not work in progress is lost becomes a design decision.

Failure Detection Strategies

The cornerstone of any failover strategy is failure detectionâ!”determining that a participant
is no longer providing its intended service. In a failover strategy, it is failure detection that
triggers the action of bringing a backup component into service.

Unfortunately, it is rarely possible to unambiguously observe the failure of a participant. The
problem is that the observations themselves are subject to failure. You might observe a
symptom, such as the absence of a response to a request, and infer that a failure has
occurredâ!”but unfortunately a loss of communications could yield the same observation.
The absence of an expected result is an inherently ambiguous situation, and in the case of a
communications failure the conclusion that the participant is no longer operating properly
would be erroneous. When you consider failover, you must take into consideration the
reliability of the failure detection itself.

The following sections explore various ways in which a participant might be monitored. They
address both the symptoms that might result from a participant failure and other sources of
failure that might produce the same symptoms.

Direct Component Monitoring

A simple approach to detecting a component failure is to directly observe it as an operating
system processâ!”assuming that the service is being provided by a single operating system
process. This type of monitoring is essentially checking to see whether the process exists. If
the expected operating system process is absent, the service is obviously not being
provided. Unfortunately, the presence of the operating system process does not necessarily
indicate that the service is being properly provided. It cannot, for example, detect a hung
process. For that you need to monitor some form of action that the component is taking.

Heartbeat Monitoring

Some components are designed to provide a periodic output, often referred to as a
heartbeat, that indicates the component is alive. The intent is to make it possible for some
other component, either the backup component or a separate monitor that will ultimately
activate the backup component, to determine the health of the primary component. The
absence of a heartbeat for some period of time is interpreted as an indication of a problem
with the primary component.

There are a couple of issues related to heartbeat monitoring that impact the reliability of
the conclusions you can draw from monitoring heartbeats. One has to do with the impact of
communications availability on the monitoring and the other with the design of the
component itself.

The Ping-Pong Effect (Split-Brain Syndrome)

Heartbeat monitoring requires operational communications between the monitor and the
primary component. A communications failure will result in a failure to receive the
heartbeatsâ!”the same symptom as a true component failure. This becomes an issue when
the network can become overloaded and the monitor requires network communications to
receive the heartbeats. In this situation, when a network overload occurs, the monitor will
lose the heartbeats and conclude that the primary is no longer operational. As a result, the
backup component will be activated and will begin performing the function of the primary

component even though the primary is still, in fact, operational. This can yield duplicate
results (one from the primary and one from the backup) or out-of-sequence results (the
backup finishes processing the second transaction before the primary finishes the first
transaction). Of course, when the network overload ends, heartbeats will again become
visible, and one of the components will presumably revert to a backup role. Unfortunately,
by then the damage has been done. This activation-deactivation phenomenon is variously
referred to as "split-brain syndrome" and the "ping-pong effect."

Because of this phenomenon, you have to pay special attention to the possibility of network
overload when you choose to use heartbeats as a failure-detection mechanism. This is such
an important issue that most hardware clusters, which routinely employ heartbeats as part
of their health monitoring, use one or more separate and dedicated networks purely for the
exchange of status information. This approach guarantees that there will never be a
network overload.

Brain-Dead Failures

The heartbeat monitoring strategy assumes that a failure of the component will actually
result in the loss of the heartbeat. While a total failure of the component will certainly result
in the loss of heartbeats, in a multi-threaded process the presence of a heartbeat may or
may not be an accurate indicator of the component's health. If the heartbeat is being
generated by one thread, and there are other threads in the component that are blocked or
hung, then the component will still be generating heartbeats even though it is not operating
properly. Despite the presence of the heartbeat, the component is "brain dead." Therefore,
you have to pay close attention to the design of the component itself to ensure that the
presence of a heartbeat accurately reflects the health of the component.

Liveness Checks

Yet another form of monitoring is the liveness check. With this approach, the monitor
periodically invokes a component operation and checks the response. The return of a
correct response is then assumed to be an indicator of proper operation, and an incorrect or
absent response is assumed to be an indicator of failure. This strategy is employed in some
of the more advanced IP-redirectors, devices often used to distribute IP traffic among a
number of web servers for load-balancing purposes. These devices periodically issue HTTP
"get" requests to each of the web servers in the group to determine whether they are still
operational. Servers that test negatively are then removed from the list of machines to
which requests are directed.

Liveness checking requires that the component being monitored provide an atomic request-
reply operation that can be used for the check and assumes that the proper execution of
the test operation is a good indication of the overall health of the service. These
assumptions are often not valid when the service being provided is a long-running process
or involves the collaboration of two or more components.

Failover Management

Failover requires a managerâ!”a component whose responsibility it is to determine whether
failover is required and then initiate the actual failover process. This component may be the
backup component itself, or it may be an independent third party. If the manager is a
"smart" backup component, it decides on its own when to take over the operation of the
service. If it is a third party, it must communicate with one of the backup components and
direct it to take over.

Each of these strategies has its strengths and weaknesses. The smart backup strategy
requires backup components to be actively running. Even though they are not actively
doing the work, they are still monitoring the primary component for failure. Smart backups
get complicated when there is more than one backup component. This situation requires
the backups to monitor each other (most often with heartbeats) and a distributed algorithm
for determining which of the backup components will take over for the failed primary.
Communications problems (i.e., overloaded networks) can create significant confusion in
these situations. When you employ this type of strategy, you need to understand the
decision-making process in sufficient detail to understand what will happen should
communications become disrupted. You then need to make a determination as to whether
that behavior is acceptable in the business process.

The third-party manager strategy has its own set of issues. On the plus side, it does not
require that the backup components be online, although having the backup components
already running can speed up the failover. However, the manager now becomes a single
point of failure, although for the service itself to actually fail, both the service provider and
the manager would have to fail at the same time. To compensate for this, the manager
itself is often deployed as a fault-tolerant or highly available component using the smart
backup strategy to manage the failover of the manager role. Another potential problem with
this approach is that the manager needs to be able to communicate with the backup
component to direct its operation. Communications problems can complicate this.

Redirecting Clients

When a component fails over, you need to consider how the clients using the service will be
able to access the replacement component. Figure 32-1 illustrates the three basic
approaches that are available. One approach is to configure the service client to be able to
directly access both the primary and backup components. When the primary component
becomes inaccessible, then the client accesses the backup service provider. This requires
the service client to have the logic to switch between components and the connection
information for both the primary and backup components. The mechanics of detecting the
primary failure and switching to the backup component are specific to the communications
mechanism used to access the service, as are the configuration details. As the number of
clients and services increases, these factors conspire to complicate the administration of this
type of failover. For this reason, the use of some form of intermediary has become popular.

Figure 32-1. Patterns for Accessing a Failed-Over Service

[View full size image]

One style of intermediary is a redirector: a component that accepts requests from the client
and directs them to the appropriate component. With this approach, the client configuration
does not change when a failover occurs. The nature of the indirection mechanism is
generally specific to the communications protocol being employed. There are a number of
mechanisms, for example, that provide IP redirection. The client uses the same IP address
all the time, and the indirection mechanism directs the traffic to one of the providers.
Alternatively, the primary service provider may be using a virtual IP address, and when the
secondary takes over it uses the same virtual IP address. You can accomplish a similar level
of redirection through the use of Internet domain names. The Internet domain name service
(DNS) associates the domain names with Internet addresses, and can associate one domain
name with more than one IP address. These strategies can be used when the client
accesses the server directly using a domain name or IP address.

Another style of intermediary is a messaging service. The client sends requests to an
abstract message destination, and the primary receives requests from that destination.
When the backup takes over, it simply starts receiving requests from the same abstract
destination. This approach is administratively simple: Neither the client nor the messaging
service needs to know anything about the failover.

You are likely to find indirection mechanisms built into many of the system infrastructure
components as well to support their failover: Storage area networks, network database
access mechanisms, and even telephone switching systems provide their own
implementations of these mechanisms.

When you employ an indirection approach, you need to recognize that the indirection
mechanism itself is a service that is usually provided in some form of fault-tolerant or high-
availability configuration. When it is, you have the same question all over again: How do
users of the service switch over from the primary to the secondary provider? The same
principles apply here as well.

Summary

Fault-tolerant processes continue to provide uninterrupted service despite the failure of one
of the process participants. High-availability processes restore service after a short
interruption in the event of a participant failure and may or may not (depending upon the
process design) lose work in progress.

There are two strategies for implementing fault tolerance, one involving multiple active
components that "vote" on the desired results and the other involving a failover from one
component to the other. The voting approach is rarely used in the design of business
applicationsâ!”failover is the commonly used strategy.

Failover requires the detection of the active component's failure. There are several
strategies that can be applied to failure detection: direct observation of the operating
system process, listening for "I am alive" heartbeats, and executing explicit liveness checks.
Each of these strategies has failure modes of its own that must be understood before a
strategy is selected.

Failover requires a manager that determines when the primary component has ceased to
function and initiates the backup component's activation. The manager may be a "smart"
backup component or it may be a third party.

When components fail over, their clients need to be redirected to the replacement
component. If the client communicates directly with the component, then the client must
have the configuration information necessary to connect directly with the replacement
component as well. Alternatively, the client can communicate with an intermediary such as
an IP redirector or a messaging service. In this case the failover is transparent to the client.
However, the intermediary itself will likely need to be highly available or fault tolerant.

Key High-Availability and Fault Tolerance Questions

1. What is the risk to the enterprise if this process is not available? How long
can the process be unavailable before serious risk occurs?

2. What is the risk to the enterprise if a failure of the process results in a loss
of information?

3. What is the risk to the enterprise if work in progress is lost?

4. Do these risks warrant making the process fault tolerant or highly
available?

5. If the process warrants high availability or fault tolerance, which
components need to be highly available or fault tolerant? Could modifying
the coordination patterns simplify the design and/or lower the cost?

6. For failover, what is the recovery time objective (RTO) required by the
business process?

7. What strategy will be employed for detecting component failure? What
would the impact of a network overload on this strategy be?

8. Which component(s) are responsible for monitoring component failure and
initiating failover? Do these components themselves need to be fault
tolerant or highly available?

9. How will clients reconnect to the component after a failover? If an
intermediary is used, is it also fault tolerant or highly available? What is the
SLA for its failover?

Chapter 33. Stateless and Stateful Failover
Stateless and Stateful Components

Stateless Failover

Saving Work in Progress through Coordination

Stateful Failover

Storage Replication

Summary

Key Failover Questions

Suggested Reading

Stateless and Stateful Components

When you want a business process to be fault-tolerant or highly available, at least some of
the components must be implemented in such a way that should they fail to do their job, a
backup component can take over that responsibility. There are two distinct cases to be
considered:

1. Stateless component: A component that performs stateless atomic operations that
use no reference data (data that is not provided as an input) and save no data. The
operations simply take an input and return an outputâ!”like an addition operation.

2. Stateful component: A component that performs an operation that saves information
and uses that information in subsequent operation invocations. An example is a
service that manages records of inventory levels.

Chapter 33. Stateless and Stateful Failover
Stateless and Stateful Components

Stateless Failover

Saving Work in Progress through Coordination

Stateful Failover

Storage Replication

Summary

Key Failover Questions

Suggested Reading

Stateless and Stateful Components

When you want a business process to be fault-tolerant or highly available, at least some of
the components must be implemented in such a way that should they fail to do their job, a
backup component can take over that responsibility. There are two distinct cases to be
considered:

1. Stateless component: A component that performs stateless atomic operations that
use no reference data (data that is not provided as an input) and save no data. The
operations simply take an input and return an outputâ!”like an addition operation.

2. Stateful component: A component that performs an operation that saves information
and uses that information in subsequent operation invocations. An example is a
service that manages records of inventory levels.

Stateless Failover

Stateless component failovers are relatively simple. A stateless component is one in which
each invocation of each operation is completely independent from any other invocation.
With a stateless component, failover requires only three things:

1. Detecting the component failure

2. Bringing the backup component online

3. Redirecting clients to the backup component

The previous chapter discussed various ways in which the first two tasks can be performed.
What remains is to determine how to accomplish the third.

Saving Work in Progress through Coordination

Although a component may be stateless, there may be work in progress at the time that the
failure occurs. In other words, the component might have received a request and been in
the middle of producing the result when the failure occurred. What happens to this work in
progress? Well, in stateless failover the service provider does not pass any information on
to the backup component when it fails over. Therefore, there is no way that the backup
component can even know that there was work in progress, and therefore the failover, in
and of itself, will not preserve the work in progress. However, this does not necessarily
mean that you have to lose the work in progress.

The fate of the work in progress ultimately depends on the coordination pattern you choose
when invoking the operation. If you use fire-and-forget the work in progress is lost, for
none of the participants is in a position to even detect a breakdown. On the other hand, if
you use request-reply the client knows that the request has failed. The client can then, as
one of its recovery options, resubmit the request, presumably after the failover is complete.
This resubmission preserves the work in progress, although the responsibility for this
preservation belongs to the client and not the failed component.

When the component sends results elsewhere, preserving work in progress gets a little
more complicated. If you use a nested request-reply, then the original requestor is still in a
position to observe the breakdown and take action to preserve the work in progress. If you
use fire-and-forget or delegation, none of the participants will be able to detect the
breakdown and the work in progress will be lost. But there is a variation of fire-and-forget
involving persistent messaging that will preserve work in progress.

If a messaging service with persistence is being used for the communications, a hybrid of
delegation and asynchronous request-reply can be used that will preserve work in progress
(Figure 33-1). Many messaging systems (such as JMS) offer two capabilities that you can
combine to preserve work in progress: message persistence and message acknowledgment.
Using message persistence ensures that the messaging service makes a durable record of
the message that will survive the failure of the messaging service itself (the failover of this
stateful process is discussed in the next section). The use of a deferred message
acknowledgment allows the delegation and asynchronous request-reply patterns to be
combined to ensure that the request will persist until the component has completed its
work.

Figure 33-1. Preserving Work in Progress with Delegation, Persistence, and
Asynchronous Request-Reply

[View full size image]

Because the client is using delegation, it knows whether or not the messaging service
actually got the message and can take appropriate recovery action if the acknowledgment is
not received. Because the component is responding to the receipt of the request in a
request-reply manner, the messaging service knows whether or not the message was
successfully delivered. It can redeliver the message and, in particular, deliver it to the
backup component if needed after that component has taken over from the primary. Work
in progress in the component is preserved, at least as long as the messaging service does
not lose the request.

Note that you can also daisy-chain this pattern to involve more participants in a larger
process. As part of doing its work, the component can use this same pattern to deliver its
results to yet another component, and so on. In fact, this is a common systems integration
pattern.

The combination of delegation, persistence, and asynchronous request-reply may be

common, but it does have some limitations. First of all, from an application-to-application
perspective, it is still fundamentally a fire-and-forget pattern. Neither the service requestor
nor the service provider will ever know if a message gets lost. Secondly, the reliability of
the message delivery is only as good as the reliability of the messaging service itself.
Careful attention needs to be paid to the failover characteristics of the messaging service
and, in particular, the reliability of the underlying persistent storage. Finally, the use of this
pattern can make distributed system troubleshooting very difficult. None of the major
components is aware of the status of any requests. Once a request has been handed off, it
lives in the messaging system until such time as it is delivered. Locating a work in progress
to determine process status (without some kind of a process monitor) thus requires poking
around in the messaging system looking for and interpreting the meaning of specific
messages. Since most messaging systems do not provide an indexed retrieval mechanism,
this kind of troubleshooting can be difficult and time-consuming.

Stateful Failover

Failing over a component with state requires a mechanism for the backup component to
know what the state of the primary was at the moment of failure. There are two basic
techniques that can be used for this. One is to keep the backup component up-to-date by
having it actively monitor the primary component. In this approach the backup is commonly
referred to as a hot standby. The other technique is to save the active component's state in
a reliable manner (generally on disk) and have the backup component ready to retrieve
that state when the primary component fails. In this approach the backup is commonly
referred to as a warm standby. A variation on the warm-standby approach is to not have
the backup already running, in which case it must first be started before it can retrieve the
state and take over operation. The backup in this case is commonly referred to as a cold
standby.

The hot-standby approach tends to be complex due to the active monitoring required. In
the simplest case, when each operation is a single monolithic activity that produces a single
result, all the backup component needs to do is be aware of what operation invocations
have occurred and whether or not each invocation successfully generated its expected
result. But many components are more complex than this. They are actually executing
processes involving more than one interaction, and these processes tend to produce more
than one result, a mix of database updates, files, and messages. In such cases the hot-
standby monitoring not only gets more complex, but the details of the monitoring become
highly dependent upon the process design. The backup component needs to know, in detail,
which intermediate results have been generated, which have not, and exactly where in the
process the primary left off.

Achieving this level of active process monitoring is nontrivial. Reliably monitoring a separate
process (remember, this monitoring has to work right up to the moment of failure even
when things are in the process of going wrong) can require more work than executing the
process. In addition, the backup component needs to be able to resume the process at any
point within that process. These design challenges are so daunting that the monitoring
approach to fault tolerance is rarely implemented in practiceâ!”with one important class of
exceptions: storage components that persist information in a fault-tolerant manner.

The other approach to state sharing is the warm (or cold) standby. With this approach, the
state information that needs to be shared is stored in a fault-tolerant manner by the
primary, most commonly on disk. When the failover occurs, the backup reads this stored
state and then resumes operation. For this to work, sufficient information has to be
persisted to allow the backup to determine the exact state of the primary at the moment of
failure. Note that with the exception of reading the state information, the warm- (or cold-)
standby approach is no different than the stateless failover discussed earlier.

While warm standby makes switching to the backup component easier, it does so by
pushing the difficult part of the problem into the persistent storage. There is no magic for
making persistent storage fault tolerant. It boils down to replicatingâ!”making copies ofâ
!”information and determining when the primary copy is corrupted. When the primary is
corrupted, the information is then recovered from the backup copy. It is not unusual for
high-end storage subsystems and databases to provide this type of facility.

Storage Replication

There are two information replication approaches employed by storage subsystems, one for
handling failures within a component and the other for handling the complete loss of a
component and failing over to another component. The other component may be within the
same data center (generally another fire-isolated location within the data center) or at
another physical site (to guard against a site disaster). Some databases also employ in-
component replication.

Synchronous Replication within a Component

Information replication within a component is generally accomplished through the use of a
Redundant Array of Inexpensive Disks (RAID).[1] In a RAID array, sufficient information is
replicated across the disks in the array to make it possible to recover that information
despite the total loss of a disk.

[1] David A. Patterson, Garth Gibson, and Randy H. Katz. "A Case for Redundant Arrays of Inexpensive
Disks (RAID)," Proceedings of the 1988 ACM SIGMOD International Conference on Management of Data
(ISBN: 0-89791-268-3).

There are a number of ways information can be distributed in a RAID array, but two basic
strategies dominate: RAID 1 and RAID 5. RAID 1 duplicates the information in its entirety on
two different disks (a technique known as mirroring). This obviously doubles the disk space
required to store the information. It is usually used in conjunction with another technique
known as "striping," which spreads the data across multiple disks for performance.
Performance is improved because multiple disks can be accessed simultaneously, thus
increasing the performance of the array over that of a single disk. Striping is often referred
to as RAID 0, and the combination of striping and mirroring is called RAID 0+1. There will
be more discussion of striping when performance is addressed in Chapter 39.

Another common configuration, known as RAID 5, uses error detection and correction
techniques rather than complete duplication. It spreads the information across a number of
disks along with sufficient error correction information to recover from the loss of any one
disk. If the data is spread across n disks without error correction, the equivalent of one
more disk will be needed to contain the required error correction information.[2] Thus while
RAID 0+1 would require 2n disks, RAID 5 only requires n+1 disks. RAID 5 requires fewer
disks than RAID 0+1.

[2] In RAID 5, the error correction information is actually spread across all the disks, but the space
required is the capacity of a single disk.

This space savings of Raid 5 comes at the expense of a potentially significant decrease in
write throughput for small blocks of data. The block size at which write speed begins to
deteriorate is the size of a disk sector (typically 512 bytes) multiplied by the number of
disks the data is spread across. Thus for a 9-disk array (8 data, 1 error correction), this
critical block size would be 4KB. Writing (not reading) blocks smaller than this incurs a
significant performance penalty when compared with RAID 0+1. When the data block size is
the same as the size of a single sector (e.g., 512 bytes), this can reduce the throughput by

50 percent.[3] Note also that this is a theoretical minimum deterioration, and the actual
measured degradation of real RAID arrays when comparing RAID 5 to RAID 0+1
configurations have reported substantially larger relative throughput degradations.

[3] The definition of "small" will vary depending upon the sector size for the disks and the number of
disks in the RAID array, but is typically in the 2KBâ!“10KB range.

The bottom line here is that you need to pay attention to the RAID configuration,
particularly when you find applications using persistence, small data bocks, and high
throughput. This combination is commonly found in messaging services, making them
particularly sensitive to RAID configurations.

The two RAID configurations discussed are the ones most commonly found, but there are
other variations that will be encountered in practice. The burden is on you, as the architect,
to understand the performance characteristics of the proposed storage subsystem and
determine its adequacy with respect to the needs of the business process.

The RAID performance problem (and the problem of disk performance in general) has not
gone unnoticed by the vendors of storage subsystems. Some storage subsystems now
include a redundant battery-backed memory-resident buffer. Write operations simply
update the buffer, not the disk. This reduces the time for a write operation from
milliseconds to microseconds and allows the storage subsystem to optimize the subsequent
disk write operations. Fault tolerance is attained through a combination of redundancy
(replicated data in two buffers) and using batteries to maintain the data in memory in the
event of a power failure. While somewhat expensive, these storage subsystems offer a
viable approach to improving storage performance.

Determining whether the storage subsystem is adequate can be difficult when it is owned
by another organization. The economics of purchasing storage space tend to drive
organizations towards the use of RAID 5 or similar configurations. They may be reluctant,
for cost reasons, to even discuss alternate configurations. Nevertheless, if your application
requires high throughput, is sensitive to the time it takes to write to disk, and involves
small writes you need to investigate the actual configuration of the storage subsystem and
determine the actual performance it will deliver. This is particularly important for messaging
components handling a high volume of small messages. If the performance is not adequate,
you need to negotiate a different storage configuration or your process will not be able to
meet its performance requirements. This is one place where an appeal to executive
sponsors may be required to resolve the situation.

Synchronous Replication between Components

Regardless of the investment in storage within a storage component (or subsystem), no
amount of investment is going to protect against the physical destruction of that
component. Fires, floods, explosions, and earthquakes can destroy the storage component
and result in the loss of the information stored within it. To protect against this type of
disaster, you need to make copies of the data in another component, possibly at another
physical site.

Replicating data across components and keeping the data up-to-date in real time is similar
to using RAID 1, but with the second copy of the data in another component. If you want to
absolutely eliminate the possibility of data loss, both the local and remote writes must occur

synchronously (Figure 33-2). Data at both sites must be saved before the application
relying on the survivability of the data moves on to other activities.

Figure 33-2. Synchronous Write to Local and Remote Storage

[View full size image]

This remote-component update has some drawbacks. The communications to the remote
component will take time, particularly if that component is at a remote site. The application
writing the data must wait for this communication to complete before it can proceed. Thus,
synchronous update has a performance impact on the process requiring the storage.
Minimizing the latency requires high-bandwidth low-latency communications between the
sitesâ!”capabilities that typically carry significant costs. Because of these communications
delays, storage subsystem vendors generally recommend a physical site separation of 50
miles or less. These factors combine to make the synchronous update of information at
remote sites a relatively expensive choice, and one that requires a significant infrastructure
investment.

Two operating characteristics of commercially available synchronous replication must be
considered when you are designing the business processes. One is that the inter-component
replication is rarely a symmetric process. While information from the primary component
may be replicated synchronously to the backup site, after a failover the updates at the
secondary site may not be applied to the primary site. Instead, a list of the needed changes
is accumulated and will be applied to the primary site upon command. From an operational
perspective this makes sense, as the primary site is most likely inoperative at this time.
However, the net result is that you no longer have two sites in synch with each other. If the
secondary site is lost before these changes are applied to the primary site, data will be lost.

The other operating characteristic you need to consider is that when communications is lost
between the primary and secondary storage components, synchronous replication will again
no longer take place. Instead, the primary site will accumulate a list of the changes that
need to be applied to the remote site. Generally, a manual intervention is required to bring
the sites back into synchronization. If the primary site is lost before these changes are
applied, once again, data will be lost.

Obtaining synchronous updates across storage components does not necessarily require a
storage subsystem that can manage the replication of the data. Some databases, for
example, provide an option for the database manager itself to manage the replicated
storage. When the storage involved is simple, the application itself can manage the
replication of the data, explicitly writing data to two files or databases on different storage
components before proceeding on to other activities. Unless the data replication
requirements are simple, the complexity of designing and testing generally renders
application-managed replication an unattractive option. Storage- or database-managed
replication tends to be less error prone and easier to work with. However, when there is
only a small amount of information that actually requires replication, application-managed
replication can be the simplest and least costly solution.

A word of caution is in order when evaluating storage subsystem or database-managed
replication. The manufacturers of these systems are acutely aware of the impact that
latency can have on the performance of their products. Because of this, they will often cite
performance figures and recommend product configurations that do not provide a
synchronous (transactional) update of both sites. Such configurations may yield more
impressive numbers, but they do not pass the "paycheck test." The update of the remote
system is happening asynchronously. Updates that have not been applied at the time of
failure will be lost. If the loss of data must be completely avoided, then synchronous update
is the only option.

Asynchronous Replication and Data Loss

Providing synchronous updates across multiple components, particularly at multiple sites,
can be an expensive option. As a result, you may not want to apply this technique to all
information. When you consider the risk to the enterprise that would result from the loss of
the data, it may be appropriate to select a different alternativeâ!”one that might actually
lose a small amount of data under certain circumstances, but is less costly to implement.

When going down this road, you have to begin by considering just how much data loss is
acceptable. You also need to be very careful how you phrase this question. If you ask the
business community whether data loss is acceptable, you will most likely get a simple "No!"
What you need to do first is make clear that there are never any absolute guarantees
against data loss, ever. No matter how many copies of the data are made, there will always
be some disaster of a large enough scope that will destroy all of the copies. After making
this clear, you can then ask some more pointed questions:

1. What is the business risk that would result from the data loss?

2. Does the risk warrant an investment in data replication within a storage
component (e.g., a RAID array)?

3. Does the risk warrant an investment in data replication across two storage
components within the same data center?

4. Does the risk warrant an investment in data replication across two storage
components at two different data centers?

5. Is some level of data loss acceptable during an inter-site failover? If so,
how much loss (measured in terms of time) is acceptable. The answer to
this question is commonly termed the recovery point objective (a point
referring to a point in time).

These questions will arise in virtually every business process you consider. It is good
practice to develop guidelines for answering these questions so that you get consistent
answers from different projects. And rather than engineer a solution each time, it is good
practice to develop standard solutions for various combinations of answers. The result will
be something like Table 33-1. With such a table and the guidelines for answering the
questions, the task for individual projects simplifies to simply categorizing the information
used in the business process. Don't lose sight of the fact that different pieces of information
within the same business process may end up in different categories.

Table 33-1. Example Enterprise Standard Data Loss Categories

Data
Loss
Category

Local Failover
Recovery Point
Objective

Local Technique
Examples

Remote Failover
Recovery Point
Objective Remote Technique

6 No loss RAID arrays No loss Synchronous
replication

5 No loss RAID arrays Last few seconds
of data

Asynchronous
replication

4 No loss RAID arrays Last few minutes
of data

"Tail" database
transaction logs

3 No loss RAID Arrays Last few hours of
data

Backup tapes,
periodic file copies

2 Last few minutes
of data

"Tail" transaction
logs

Last few minutes
of data

"Tail" transaction
logs

1 Last few hours of
data

Backup tapes
stored off-site

Last few hours of
data

Backup tapes,
periodic file copies

In this example, Category 6 loses no data, but it is also the most expensive option. It
requires up to twice as much storage for the RAID array and requires the same investment
at the remote site along with a high-bandwidth, low-latency communications link between
the sites. It also carries with it an unavoidable application performance penalty as the

application waits for the confirmation of the remote site write.

Category 5 relaxes the constraints for remote site failover just a little bit, allowing the last
few seconds of data to be lost. This allows the use of asynchronous updates in the
interaction with the remote site as shown in Figure 33-3. The difference between this and
the synchronous update is that the storage manager does not wait for the remote
component storage confirmation before returning control to the application. This speeds up
the application's performance and lessens the peak bandwidth demand to the remote
component. The downside is that if the data in transit to the remote storage component
does not make it successfully (perhaps due to communications problems) and the local
storage should also fail, then that update will be lost. While this scenario involves multiple
failures, it is precisely the type of failure that can occur during a site disaster.

Figure 33-3. Asynchronous Write to Local and Remote Storage

[View full size image]

Returning to the data loss categories, Category 4 employs a common technique in which
changes to the database transaction log (the "tail" of the log) are periodically copied to the
remote site. Some storage subsystems have a similar log that can also be used for remote
update. These updates are subsequently applied to the remote storage component (or to
the database on top of it) to bring it up to date. This technique runs the risk of losing the
transactions that have occurred since the last copy took place.

There is a variation of this technique in which the remote site is periodically updated with
local storage snapshots, but incremental updates are also sent asynchronously. In this
variation, the incremental updates are not actually applied unless an actual site disaster
occurs. While the data loss is minimized, it may take a considerable amount of time to
apply the updates and get the remote storage ready for use.

Category 3 uses routine backups to periodically update the remote storage. Any updates to
the data that have occurred since the last copy will be lost in the event of a disaster. This
approach may also have difficulties copying files that are presently opened and locked by
applications. On the other hand, it is relatively inexpensive compared to the earlier
categories.

Categories 6 through 3 all assume that the local site failover requirement is to not lose any
data at all. Categories 2 and 1 reflect a relaxation of these constraints, now applying the
database transaction-log tail approach and the periodic backup approach to local failover.

Persistent-State Component Failover

By now it should be apparent that persisting state in a fault-tolerant manner is a nontrivial
taskâ!”one that requires thorough design and testing in order to be reliable. This is
generally not a task you want to take on each time you want a fault-tolerant or high-
availability component that happens to have persistent state. As a result, most of the time
you want such a service, you will design it so that its state is actually stored externally in a
file or database. By doing this, you can take advantage of existing storage services and the
robust persistent-storage failover mechanisms they provide. This approach leads to the
persistent-state component failover pattern shown in Figure 33-4.

Figure 33-4. Typical Failover Pattern for Persistent-State Component

[View full size image]

A fault-tolerant or highly available component with persistent state requires a storage
replication and a failover mechanism for the storage of its state. Typically the component
will be designed to access its persistent storage through some type of storage manager.
The storage manager plays the role of an indirection mechanism and isolates the service
from the details of the persistent state failover.

The storage manager (which is, itself, a fault-tolerant component) provides access control
to the component's persistent state that is being stored. To maintain integrity, when a
service is writing to the storage subsystem or database, the storage manager places locks
on the files or tables.[4] When the primary component fails, these locks need to be reliably
released before a secondary or backup provider can access the persistent state. The
reliability of this lock release is an issue when NFS is used to provide the storage-
management service. NFS can leave file locks in place when the process holding the lock
terminates abnormally.[5] This is an issue you need to pay attention to or your failover itself
will fail. Whatever means you use for managing access to the storage, you need to ensure
that locks are reliably released so that the secondary service provider can access the
required storage.

[4] Some databases may employ low-level locking, but the issue remains the same.

[5] When NFS Version 4 is used in conjunction with an operating system configured for synchronous disk
writes for file operations, it does not exhibit this problem. However, this is not a commonly found
configuration.

Using a storage manager to save the component's state generally works well only when the
component and the storage manager are both within the same physical site. Because of the
latency and reduced reliability of inter-site communications, it is generally not a good idea
to operate a component at one site with its persistent storage located at another site. This
requires the replication of both the component and the storage manager at the remote site
to maintain a high level of performance and reliability. Note that this requires an inter-site
failover capability for the storage manager itself. Consequently, when an inter-site failover
occurs, it is typical to fail over the component, the storage manager, and the persistent
storage all as one unit. In other words, the entire site fails over.

Summary

When a component needs to be failed over to a backup component, it is important to
understand whether that component is stateful or stateless. A stateless component is one
whose result depends solely upon the inputs provided: It requires no other inputs or
reference data and does not retain any information that will influence the results of other
operation invocations. To fail over a stateless component, it is only necessary to bring the
backup component on line.

When a stateless component fails over, any work in progress in that component is likely to
be lost. However, if the work in the component is being triggered by messages from a
messaging service that persists the messages, the loss of work in progress can be avoided
by delaying the acknowledgment of message receipt until the work has been successfully
completed.

Failing over a component with persistent state requires that the state be restored in the
backup component. While this can be done by having the backup component closely
monitor the primary component and maintain a copy of the current state, this approach is
complicated and rarely used. Instead, the component typically externalizes the state
information in a reliable persistent storage. When a failover occurs, the backup component
reads this persisted state and takes over operations.

For reliability, the persistent storage must, itself, be fault tolerant. This is accomplished
through partial or total replication of enough information to be able to recover from the loss
of a disk. This replication can occur both within and between storage components, and
within or between physical sites.

To ensure that no data will be lost with the loss of one disk, data replication must occur
synchronously. However, synchronous replication, particularly between sites, can be
expensive and can have an adverse impact on performance. Where some data loss is
acceptable, lower cost asynchronous replication techniques can be used.

When a stateful component fails over and its state has been externalized, the mechanism
by which the backup component obtains access to the state needs to be considered. Some
form of storage manager is required. The storage manager and stateful component need to
be at the same physical site for best reliability and performance, which means that both
must fail over together to the remote site when inter-site failover is required.

Key Failover Questions

1. Does the component that needs to be fault tolerant or highly available have
persistent state?

2. If the component is stateless, does work in progress need to be preserved?
If so, how will this be accomplished?

3. If the component is stateful, how will the backup component acquire the
needed state information?

4. Is the choice of storage replication consistent with the business
requirements regarding the loss of data and work in progress? Is the
incremental investment in storage replication warranted by the business
consequences of data loss?

Suggested Reading

Marcus, Evan, and Hal Stern. 2000. Blueprints for High Availability: Designing Resilient
Distributed Systems. New York, NY: John Wiley & Sons.

Patterson, David A., Garth Gibson, and Randy H. Katz. 1988. "A Case for Redundant Arrays
of Inexpensive Disks (RAID)." Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data (ISBN: 0-89791-268-3).

Ramakumar, R. 1993. Engineering Reliability: Fundamentals and Applications. Upper Saddle
River, NJ: Prentice Hall.

Nelson, V. P. 1990. "Fault-tolerant Computing: Fundamental Concepts." IEEE Computer,
Vol. 23, Issue 7, pp. 19â!“25.

Chapter 34. Multiple Component Failover
Intra-Site versus Inter-Site Failover

Clustering: An Intra-Site Failover Technique

Coordinating Peer Application Failover with Asynchronous Replication

Making a Business Process Fault-Tolerant

Summary

Key Multi-Component Failover Questions

Intra-Site versus Inter-Site Failover

Looking beyond the failover of a single component, larger patterns begin to emerge when
you begin to consider the failover of services and their clients as shown in Figure 34-1.
While you might, theoretically, allow clients at one site to access services at the other site,
this requires the service access mechanism to act as a router for service requests. To route
properly, the router would have to know how to access all instances of the service as well
as their current status. The router would also have to be configured with appropriate rules
governing routing within and between sites. Finally, the router itself would require an
instance at each site and its own failover strategy.

Figure 34-1. Typical Intra-Site and Inter-Site Failover Pattern

[View full size image]

Further complicating the consideration of inter-site failover are differences in policies
regarding data loss during inter-site failover. The performance penalty associated with
synchronous updates between sites usually limits the use of synchronous updates for only
selected services and applications. Other services and applications will generally employ
some form of asynchronous update.

Asynchronous updates often require some form of persistent state reconstruction before the
service or application can be started at the remote site. Disks may need to be restored from
backup tapes, or incremental changes may need to be applied to older database snapshots
to bring databases up to date. Unless each service and application has independently
managed persistent storage, this recovery activity will span multiple services and
applications.

Finally, synchronous persistent storage updates typically work only in one direction. Once a
failover has occurred to the backup site, subsequent changes to the backup site are not
being synchronously applied to the primary site. Instead, lists of pending changes to the

primary site are accumulated. These changes must be applied to the primary site before
services and applications can be switched back to the primary site.

The combination of these factors generally means that automated inter-site failover is not
practical on a service-by-service or application-by-application basis. Consequently, you end
up with two different failover strategies, one for intra-site failover and another for inter-site
failover. For intra-site failover, the use of indirection mechanisms for service and storage
access makes it practical to employ service-by-service or machine-by-machine automated
failover strategy. Inter-site failover, however, tends to be a wholesale process that is
manually initiated. Because of the complexity of communications, routing, and storage
update issues cited above, it is generally simpler to fail over entire blocks of services,
storage, applications, and indirection mechanisms together as a unit.

Chapter 34. Multiple Component Failover
Intra-Site versus Inter-Site Failover

Clustering: An Intra-Site Failover Technique

Coordinating Peer Application Failover with Asynchronous Replication

Making a Business Process Fault-Tolerant

Summary

Key Multi-Component Failover Questions

Intra-Site versus Inter-Site Failover

Looking beyond the failover of a single component, larger patterns begin to emerge when
you begin to consider the failover of services and their clients as shown in Figure 34-1.
While you might, theoretically, allow clients at one site to access services at the other site,
this requires the service access mechanism to act as a router for service requests. To route
properly, the router would have to know how to access all instances of the service as well
as their current status. The router would also have to be configured with appropriate rules
governing routing within and between sites. Finally, the router itself would require an
instance at each site and its own failover strategy.

Figure 34-1. Typical Intra-Site and Inter-Site Failover Pattern

[View full size image]

Further complicating the consideration of inter-site failover are differences in policies
regarding data loss during inter-site failover. The performance penalty associated with
synchronous updates between sites usually limits the use of synchronous updates for only
selected services and applications. Other services and applications will generally employ
some form of asynchronous update.

Asynchronous updates often require some form of persistent state reconstruction before the
service or application can be started at the remote site. Disks may need to be restored from
backup tapes, or incremental changes may need to be applied to older database snapshots
to bring databases up to date. Unless each service and application has independently
managed persistent storage, this recovery activity will span multiple services and
applications.

Finally, synchronous persistent storage updates typically work only in one direction. Once a
failover has occurred to the backup site, subsequent changes to the backup site are not
being synchronously applied to the primary site. Instead, lists of pending changes to the

primary site are accumulated. These changes must be applied to the primary site before
services and applications can be switched back to the primary site.

The combination of these factors generally means that automated inter-site failover is not
practical on a service-by-service or application-by-application basis. Consequently, you end
up with two different failover strategies, one for intra-site failover and another for inter-site
failover. For intra-site failover, the use of indirection mechanisms for service and storage
access makes it practical to employ service-by-service or machine-by-machine automated
failover strategy. Inter-site failover, however, tends to be a wholesale process that is
manually initiated. Because of the complexity of communications, routing, and storage
update issues cited above, it is generally simpler to fail over entire blocks of services,
storage, applications, and indirection mechanisms together as a unit.

Clustering: An Intra-Site Failover Technique

One of the complicating factors in making business processes fault-tolerant or highly
available is the variety of ways in which different services fail over and the variety of ways
in which clients switch between service providers when they do fail over. Each technique
has its own special configuration requirements and must be administered accordingly. Any
given component might be both a fault-tolerant or highly available service provider and at
the same time be a client for some other fault-tolerant or highly available services that use
different access techniques. Without some constraints on the usage of these techniques it
can be very difficult to even understand how a distributed system is expected to operate
when failovers occur, let alone verify that the overall business process will continue to
execute after such failovers.

One way to manage this complexity is to provide a high-availability environment for
components to run in. With this approach, rather than fail over individual applications and
services, the entire environment fails over. The environment being discussed here is
essentially an entire computer, including the operating system and all processes running
under the operating system. This machine may be physical, in which case it fails over to
another physical machine. Alternatively, the machine may be virtual, in which case it fails
over to another virtual machine either in the same physical machine or another physical
machine.

Although environment failover can be accomplished manually, it is most often managed by
a cluster manager, with the set of machines being managed referred to as a cluster. When
a failure occurs in a machine, the entire machine is failed over to a backup machine. The
storage subsystem that was mounted on the failed machine is remounted on the backup
machine. A script is then run on the backup machine to initialize all of the components on
the machine.

What makes the cluster approach work is that the backup machine and all of the
components running on it assume the identity of the components on the failed machine.
The identity of the machine itself is transferred by using a virtual host name and one or
more virtual IP addresses. The components themselves start up with the same
configurations and identities as their counterparts on the failed machines. This is
accomplished by keeping all of this identity information in the storage subsystem that is
switched over from the failed machine to the backup machine.

Clustering provides a significant level of uniformity when it comes to indirection
mechanisms. The storage subsystem provides a uniform indirection mechanism for all
persistent storage associated with the components running on the machines. The virtual
host name and virtual IP addresses provide uniform indirection for all direct-socket
connections. Higher-level indirection mechanisms such as messaging services fail over in
their entirety, with their lower-level socket connections being made through the virtual IP
addresses.

All in all, clustering provides a straightforward means of providing high-availability
components with fault-tolerant underlying storage. It can be readily configured and is easy
to test. But this convenience does come at a price. Since an entire machine is failed over, it

will take time to start up all of the components running on the machine. Failover may well
take longer than the simple failover of a single component. You must be sure that this
failover time provides an acceptable level of service for the business processes.

Coordinating Peer Application Failover with Asynchronous
Replication

When there are two related components, each with persistent state, these components may
interact in a synchronous way to ensure that their respective states are mutually consistent.
If these component states are being synchronously replicated, then the replicated states will
also be mutually consistent. However, if the states are being replicated asynchronously, the
replicated states may no longer be mutually consistent.

The potential problem is easily illustrated. Consider an Order Management System and a
Warehouse Management System (Figure 34-2). When the Order Management System
releases an order for shipment, it does so via a synchronous interaction with the
Warehouse Management System. This synchronous interaction ensures that the state of
the order in the two systems is consistent.

Figure 34-2. The Problem with Peer Application Failover after Asynchronous
Updates

[View full size image]

If each of the systems replicates its persistent storage synchronously, then after a failover
the state of both applications will still remain consistent. However, if the storage replication
is happening asynchronously, there is a potential problem. The timing of the replicated
storage updates may not be coordinated. Consider what would happen if the Order
Management System update of the order release is applied to its backup but the
Warehouse Management System update has not been applied when a site failover
occurs. The backup Order Management System thinks the order has been released to the
Warehouse Management System, but the Warehouse Management System has no
record of the order. The business process is now broken.

Unless the asynchronous updates of different applications are coordinated, consistency
between application states can never be guaranteed. The implications are far-reaching. At
the application design level, you have to design the applications to be tolerant of these
inconsistencies. For example, after the failover, an Order Management System query of
the Warehouse Management System to obtain the status of the lost order will result in an

error because the order does not exist in the Warehouse Management System.

Beyond simply designing components to be tolerant of such errors, you have to determine
what level of effort needs to be put into detecting and resolving inconsistencies after a site
failover. This is a fundamentally hard problem, for it essentially requires an audit of all the
systems to determine whether the information they contain is mutually consistent. To
appreciate the complexity, recognize that there are three possible error states that might
arise just from these two pieces of information:

1. The order management system update arrived, but the warehouse management
system update did not.

2. The warehouse management system update arrived, but the order management
system update did not.

3. Neither update arrived.

These are just the combinations for two pieces of information! For n independently
replicated pieces of information, there are n2 possible replicated statesâ!”only one of which
has all n pieces of information in the correct states. The remaining n2â!“1 states all
represent various levels of information loss from the uncoordinated asynchronous
replication.

From a practical perspective, there is little you can do to detect and resolve such situations.
The choice to use asynchronous replication is, to begin with, a choice to accept some level
of data loss. The best you can do is to design the applications to be tolerant of such
inconsistencies and report them. The operations staff must then decide what action, if any,
to take in resolving reported discrepancies.

Making a Business Process Fault-Tolerant

Making a business process fault tolerantâ!”ensuring that it does not lose work in progressâ
!”does not necessarily mean that each of its participants needs to be fault tolerant to avoid
losing state. Clever use of coordination patterns as discussed in Chapter 33 can reduce the
number of components that need to maintain their state. This will reduce the performance
demands on the persistent storage infrastructure, creating a lighter-weight and higher-
performance business process.

When you employ a request-reply coordination pattern, the service provider does not need
to be fault tolerant. Assuming there is an SLA in place for returning the reply, the requestor
can detect a communication breakdown as well as a breakdown in the performer. If the
activity of the performer can be safely repeated, all you need to do is fix the problem and
then have the requestor resend the request. With such a configuration, you don't need a
fault-tolerant implementation for either the communications infrastructure or the service
provider. You do, however, require a fault-tolerant requestor so that it remembers what
work needs to be requested and the status of completing that work.

A variation on this approach that utilizes a fault-tolerant messaging service was presented
back in Figure 33-1. There the requesting component uses the delegation pattern to deliver
the request to the messaging service. The messaging service then delivers the message to
the service provider. Since the messaging service expects an acknowledgment from the
service provider, its delivery of the request is essentially a request-reply exchange with the
service provider. Because the messaging service will retain the message until the
acknowledgment has been received, the request will survive a breakdown in
communications with the service provider or the loss of the service provider itself. Note that
this requires the service provider to delay sending the acknowledgment until the work has
been completed.

While this pattern brings a level of robustness to the performance of the work, it is not
without its limitations. Most message delivery services do not provide the ability to specify
an SLA for message delivery and will simply wait indefinitely for the acknowledgment.
Typically they will not redeliver a message until the socket connection with the recipient (in
this case, the service provider) is broken. Thus in the case of a "hung" service provider, no
action will be taken. Work will simply stall. This serves as a reminder that despite the
persistence, this is still a fire-and-forget exchange between the requestor and service
provider.

As long as the activity in the business process can be safely repeated, you can extend this
principle to encompass larger portions of the business process. As long as the original
requestor can detect a breakdown and re-initiate the request, the downstream participants
do not need to be fault-tolerant. If you are employing a process manager, and all of the
activity initiated by the process manager involves this type of request-reply interaction, you
can make the entire business process fault-tolerant by simply making the process manager
fault tolerant. Designing processes in this manner can significantly reduce the cost of
achieving overall process fault tolerance and high availability.

By now it should be readily apparent that there are many choices available for making

overall business processes fault tolerant or highly available. You can build a process in
which every participant is fault tolerant, but this requires every participant to persist its
state, and the resulting implementation may not perform as well as you would like. At the
other extreme, you can build an end-to-end request-reply business process with a human
being as the requestor. If all of the activity of this process is repeatable, then none of the
participants need to be fault tolerant. If the process fails to return the expected result, the
person simply submits the request again. In between, any number of combinations of fault-
tolerant components will yield the robust business process you seek.

Summary

Failovers within a site and between sites often require different failover strategies. Within a
site, the use of intermediaries to route requests and the availability of reliable high-speed
communications make it straightforward to fail over individual components and services as
needed. Between sites, however, communications latency and reliability make it
unattractive to fail over components to the other site that still need to interact with
components that are still at the original site. For this reason, it is common practice to fail
over collections of related components between sites.

Clustering is a style of failover in which an entire execution environment is failed over, with
the storage that had been attached to the original environment now attached to the
replacement environment. The use of virtual hostnames and IP addresses makes the
replacement environment appear identical to the original. This makes it easy for other
components to resume interacting with the recovered environment and makes the use of
clustering a popular choice for intra-site failover.

The use of asynchronous data replication between sites can cause inconsistencies in the
data between applications at the backup site. Because of this, applications and business
processes must be tolerant of these inconsistencies, and some loss of data can be expected.
Because of the number of possible inconsistencies, it is generally not practical to attempt an
automated reconciliation of states. Manual procedures may be required to reconcile states
as much as possible.

Making an entire business process fault tolerant does not require all of the components to
be fault tolerant. The use of request-reply coordination patterns makes it possible to detect
breakdowns and retry operations that have failed. Only the component performing the
request-reply needs to be fault tolerant. If there is a process manager that interacts with all
the other participants via request-reply, it may be the only component that needs to be
fault tolerant.

Key Multi-Component Failover Questions

1. What storage replication and failover techniques are being used within the
site? What techniques are being used between the sites?

2. Is asynchronous replication being used? If so, are the asynchronous
updates coordinated so that all changes are applied at the remote site in the
exact order in which they were applied at the original site?

3. If asynchronous replication is being used without coordinated updates, are
the components tolerant of the resulting potential state inconsistencies?
What are the business implications of such inconsistencies? Are manual
procedures required for recovery?

4. For each business process that must be fault tolerant, what combination of
fault-tolerant components and coordination patterns is being used to make
the process as a whole fault tolerant? Could the fault-tolerant requirements
for the components be reduced by using different coordination patterns?

Chapter 35. Workload Distribution
It is not unusual for a service demand to exceed the capacity of a single component. In
such cases the work must be distributed across two or more components. The following
sections discuss the architectural issues associated with workload distribution.

Work Assignment Strategies

When work must be distributed among multiple components, you need to select a strategy
for assigning work to individual workers. There are three common strategies:

1. Blind algorithmic assignment

2. Weighted assignment

3. Work pull

Blind algorithmic assignments choose workers based entirely on a formula. Common blind
algorithms include round robin (sequential) and pseudo-random assignments. Blind
algorithmic assignments have a number of weaknesses: They are blind to the current state
of the workers; they assume that the workers all have equal capacity; and they assume
that the amount of work required for each request is the same.

Weighted assignments seek to bias the assignments based on weighting factors. These
factors are commonly related to the capacity of the worker. There are two common
variations, one in which the weights reflect the expected (not measured) capacity of the
workers, and the other in which the weights reflect the current measured capacity of the
workers.

The history of IP redirectors is an interesting study in the limitations of blind algorithmic
and weighted assignments. Early IP redirectors employed a basic round-robin assignment.
In practice, when some workers were no longer functional or were overloaded, they still
received their share of requests. The next generation employed weighted assignments
based on the measured CPU utilization of the workers. The CPU utilization of each worker
was periodically measured, and incoming request assignments were biased towards the
workers with the lowest CPU utilization. Unfortunately a "hung" worker doesn't use any CPU,
but ends up getting a large portion of the requests. Third-generation IP redirectors added
liveness tests (executing an HTTP "get") to determine which workers were still operational.

As the IP redirector example illustrates, liveness testing is an important part of any work
assignment strategy. Continuing to assign requests to workers that are experiencing
problems simply ensures that there will be problems in handling these requests.

One solution to the liveness problem is not to pre-assign work at all, but instead let each
worker come and ask for the next task. This is the work pull strategy, and it has the
advantage that it has a built-in liveness test: A worker with problems will likely never go
back for the next task. This, of course, does not ensure that the tasks that worker is
presently performing will be successfully completed, but it does ensure that no further work
is assigned to that worker.

Chapter 35. Workload Distribution
It is not unusual for a service demand to exceed the capacity of a single component. In
such cases the work must be distributed across two or more components. The following
sections discuss the architectural issues associated with workload distribution.

Work Assignment Strategies

When work must be distributed among multiple components, you need to select a strategy
for assigning work to individual workers. There are three common strategies:

1. Blind algorithmic assignment

2. Weighted assignment

3. Work pull

Blind algorithmic assignments choose workers based entirely on a formula. Common blind
algorithms include round robin (sequential) and pseudo-random assignments. Blind
algorithmic assignments have a number of weaknesses: They are blind to the current state
of the workers; they assume that the workers all have equal capacity; and they assume
that the amount of work required for each request is the same.

Weighted assignments seek to bias the assignments based on weighting factors. These
factors are commonly related to the capacity of the worker. There are two common
variations, one in which the weights reflect the expected (not measured) capacity of the
workers, and the other in which the weights reflect the current measured capacity of the
workers.

The history of IP redirectors is an interesting study in the limitations of blind algorithmic
and weighted assignments. Early IP redirectors employed a basic round-robin assignment.
In practice, when some workers were no longer functional or were overloaded, they still
received their share of requests. The next generation employed weighted assignments
based on the measured CPU utilization of the workers. The CPU utilization of each worker
was periodically measured, and incoming request assignments were biased towards the
workers with the lowest CPU utilization. Unfortunately a "hung" worker doesn't use any CPU,
but ends up getting a large portion of the requests. Third-generation IP redirectors added
liveness tests (executing an HTTP "get") to determine which workers were still operational.

As the IP redirector example illustrates, liveness testing is an important part of any work
assignment strategy. Continuing to assign requests to workers that are experiencing
problems simply ensures that there will be problems in handling these requests.

One solution to the liveness problem is not to pre-assign work at all, but instead let each
worker come and ask for the next task. This is the work pull strategy, and it has the
advantage that it has a built-in liveness test: A worker with problems will likely never go
back for the next task. This, of course, does not ensure that the tasks that worker is
presently performing will be successfully completed, but it does ensure that no further work
is assigned to that worker.

Distribution Management and Work Completion

At the core of load distribution lies one dominant requirement: Each request should be
handled onceâ!”and only once. This is a responsibility that must be managed by a
component. Some distribution mechanisms have an explicit distribution manager such as an
IP-redirector. Others rely on the characteristics of the underlying communications transport,
such as a JMS server. A JMS queue, for example, delivers each message to exactly one
recipient. The queue itself (or more properly, the server upon which it resides) acts as the
distribution manager.

As important as it is to understand the intended message delivery behavior, it is equally
important to understand what happens under failure conditions. If a message has been
delivered and the worker dies, is the message lost? JMS, for example, expects the message
recipient to acknowledge receipt of the message. Once the message has been delivered, the
JMS server will wait indefinitely for the receipt acknowledgment. Most JMS servers,
however, stop waiting if the socket connection to the worker is broken (Figure 35-1). When
the connection is broken, the server marks unacknowledged messages as being once again
eligible for delivery. When another worker requests a message, the previously delivered
message will again be delivered.

Figure 35-1. Typical JMS Failed Message Delivery Scenario

[View full size image]

In addition to understanding message delivery under failure conditions, you also need to
understand the relationship between the message delivery and the actual worker activities.
As Figure 33-1 showed, this relationship can depend as much upon the design of the
process and its implementation in individual components as it does on any features of the
underlying technology. As an architect, your job is to ensure that this behavior is both well
understood and appropriate for the business process at hand.

The Sequencing Problem

When work is distributed among a number of participants, there is no guarantee that the
order in which activities complete will be the same as the order in which they were begun.
If there is a requirement that two messages be handled in a particular order (e.g., the
sequencing of debits and credits in a bank account must be preserved), additional measures
must be taken to preserve the message sequence when workload distribution is employed.
These measures must extend through all participants in the process all the way to the
delivery of the final result at the final destination.

Centralized Sequence Management

There are two strategies that can be applied to sequence preservation: centralized and
distributed. In centralized sequence management, one component plays the role of
sequence manager. Each participant in the process, when it is about to perform some
action, obtains permission to proceed from the sequence manager. The participant may
have to wait until other activities have been completed.

The centralized sequence manager strategy is complex to implement and prone to parallel
processing problems such as deadlock. It requires a centralized understanding of the overall
flow, yet it is neither a process manager nor a process monitor. All participants must be
designed to interact with the centralized manager and must be prepared to hold the work in
a pending state until permission to proceed is received. The centralized manager also
becomes a single point of failure. For all these reasons, the centralized approach is not
commonly used.

Distributed Sequence Management

Alternatively, sequencing can be preserved by having each participant in the process
preserve the required sequencing. For workers, this means that the workers must be single
threaded, that is, will complete the processing of one message before beginning the next.
This presents a dilemma for the distribution management component, as it appears to
require that all work be sent to the same worker!

Fortunately, the real business requirement is rarely that all messages need to be processed
in the order received. More commonly, the requirement is that all messages associated with
a particular entity (e.g., a particular bank account) be handled in sequence. In such cases,
load can be distributed across multiple components as long as (a) all the messages
associated with a particular entity are handled by the same worker, and (b) each worker
handles the requests in the order delivered.

Access to Shared Persistent State

Another challenge in workload distribution arises when the workers require access to a
common set of information. In such cases, scaling the access to that shared information is
often a problem. One approach is to increase the performance of the singular component
providing the information. A faster database or a faster SAN can improve matters, but the
total capacity of any singular component is ultimately limited by the available technology.
These limits may not provide the capacity required to support the demand.

One alternative is to partition the shared information so that different components are
managing different subsets of the information. This partitioning requires, first of all, that the
data be cleanly separable so that any given request only needs the services of one
component. It further requires that the client (the worker, or an intermediary between the
worker and the component managing the data) be able to determine which component
should handle each request. While complex, this is the only practical approach when the
shared information is being updated.

When the shared information is primarily read-only, the replication of the information
becomes a viable alternative. Any of the load distribution mechanisms can then be applied
to direct information requests to one of the replicated copies. Updates, however, become a
problem with the replication approach. Simultaneous updates of all of the copies will require
locking, which will adversely impact the high-volume read activity that is going on.
Simultaneous updates may be totally impractical when the copies are geographically
distributed. Another approach to updates is to apply the updates to one copy and allow the
changes to propagate to other copies. This is what LDAP, the lightweight directory access
protocol, does. Replication, however, introduces transient inconsistencies between the
various copies. You need to determine whether such inconsistencies will present a problem
to the business processes.

Geographic Workload Distribution

In a geographically distributed enterprise, it is not unusual to have workers distributed at
different geographic locations. In such situations, it is often desirable (for performance
reasons) to direct messages to workers in the same geographic region as the client sending
the message. When this is a requirement, one of the challenges you will face is determining
the information that will be used to associate the clients and workers. You need to
determine the nature of this information, its source, and the component(s) that will use this
information to direct the work. Note that this is just another type of request routing. As an
architect, you need to determine whether the proposed routing scheme is practical from
both a technical and administrative perspective, and whether it will perform adequately.

Summary

When the demand for a service exceeds the capacity of a single component to provide the
service, more than one worker component is required and the requests must be distributed
among those workers. A number of strategies can be employed to distribute the requests.
Blind strategies ignore the actual state of the workers and just allocate the work. These
strategies suffer when some (or all) of the workers are not functioning properly. Work
distribution is best when the actual state of the workers is taken into consideration,
including worker liveness tests. Pull strategies inherently incorporate liveness checking, as
the workers themselves initiate the retrieval of the work requests.

The relationships among the delivery of work requests, the acknowledgment of the delivery,
and the performance of the work have a substantial impact on the behavior of the business
process when failures occur. It is important to choose coordination patterns that are
appropriate for the business process.

Load distribution and sequencing are fundamentally incompatible concepts: When messages
are processed in parallel, there is never any assurance that the work will be completed in
the same sequence in which it was begun. In practice, absolute sequencing is rarely
required. Usually sequencing is only required with respect to some entity, such as an
account. Load distribution can still be used as long as all work associated with the
sequence-relevant entity is sent to the same worker.

When load distribution workers require access to common information, the scalability of the
component providing that information needs to be taken into consideration. While that
component can be scaled vertically (increasing its individual capacity), it may become
necessary to either partition or replicate the information among several components and
then apply workload distribution techniques to accessing the information.

When workers and clients are geographically distributed, it may be desirable to route
requests to workers in the same geographic region. This routing requires reference
information, logic to direct the routing, and components responsible for directing the work.

Key Workload Distribution Questions

1. Is workload distribution required for any of the components involved in the
business process? If so, what workload distribution strategy will be
employed?

2. How does the workload distribution behave under failure? Do the selected
coordination patterns preserve work in progress?

3. Are there sequencing requirements for the stream of messages being
distributed? How will that sequencing be preserved when the load is
distributed?

4. Do the workers involved in the load distribution require access to common
information? How will the ability to provide information access be scaled to
support the required number of workers?

5. Are the workers and clients geographically distributed? Is there a need to
affiliate clients with workers within a geographic region? How will that
affiliation be implemented?

Chapter 36. Enterprise Architecture: Fault Tolerance,
High Availability, and Load Distribution
The components of the enterprise's systems do not live in isolation, especially those that
are service providers. They interact with each other in a variety of ways, and these
interactions result in design dependencies. The fault tolerance and high-availability design
choices you make for a service (or for any component, for that matter) determine the
mechanisms by which that service can be accessed. This, in turn, impacts the design of any
component using the service. Every single interaction between components carries with it
this type of design dependency.

On the enterprise level, the enterprise architecture decisions made regarding network,
storage, machine, and messaging infrastructure will (and are intended to) constrain the
options that are available to service developers. However, at the project level, there is still
a lot of choice. The impact of these choices extends far beyond the boundaries of the
present project. The fault tolerance, high availability, and load distribution decisions made
by the project for the services it implements will impact every other project utilizing these
services.

The potential complexity of these interaction design dependencies is not to be
underestimated. Allowing each project to choose its own strategies for fault tolerance, high
availability, and load balancing will likely result in enterprise-scale chaos. Variations in
strategy from project to project and service to service will require the detailed study of
each individual component and service in order to understand how it responds to failure
and how it will be accessed. This not only presents a severe learning challenge to potential
service users, it also makes it nearly impossible to broadly understand the overall behavior
of a collection of components and services.

The implications are severe for business continuity (site disaster recovery) planning. A
rigorous analysis of a data-center failover becomes so complex as to be impractical.
Futhermore, the likelihood of a site-to-site failover actually working as planned is
vanishingly small without repeated (and expensive) testing. Worst of all, any subsequent
changes or additions will require this testing to be repeated.

The solution to this problem lies in establishing an across-the-board simplicity and
uniformity in fault tolerance, high-availability, and load distribution approaches. This does
not mean that every component and service needs to employ exactly the same strategy. It
does mean that the choices need to be narrowed to a few well-chosen and well-engineered
alternatives from which individual projects may choose. Guidelines need to be provided for
the selection and use of these alternatives as well.

The enterprise architecture group should take the lead in establishing consistent and
serviceable approaches to fault tolerance, high availability, and load distribution across the
enterprise. This can be accomplished through establishing policies in a number of areas,
including:

1. The categorization of information with respect to data loss (Table 33-1)

2. The categorization of business processes with respect to required availability and
data loss

3. The establishment of standard information storage patterns

4. The establishment of standard component failover patterns

5. The establishment of standard load distribution patterns

6. The establishment of standard patterns for incorporating fault-tolerant, high-
availability, and load distributed services into a process

7. The establishment of standard high-level design patterns for creating scalable, fault-
tolerant, and highly available business processes

8. The establishment of the infrastructure needed to support these patterns

Business Process Categorization

To determine whether either fault tolerance or high availability is warranted in a business
process, you must first understand the business impact of a business process breakdown.
This understanding will help you decide whether the business process itself must be
provided in a fault-tolerant or highly available fashion and whether work in progress must
be preserved when a breakdown occurs.

This analysis and the interpretation of the results can be somewhat simplified if the
enterprise architecture group establishes a business process classification policy. This policy
defines the criteria for classifying business processes into categories similar to those shown
in Table 36-1. The policy establishes the categories, gives the rationale for determining
which category the business process should be in, and illustrates the rationale by giving
examples of actual enterprise business processes that belong in each category.

Table 36-1. Business Process Categorization

 Intra-Site Failover Inter-Site Failover

Business
Process
Category

Business
Process
Availability

Hours of
Allowed
Downtime/Year
(24x7 usage)

Recovery
Time
Objective
(RTO)

Recovery
Point
Objective
(RPO)

Recovery
Time
Objective
(RTO)

Recovery
Point
Objective
(RPO)

5 FT (100%) 0 0 Moment of
failure

1 hour Moment of
failure

4 99.90% 8.76 5 minutes Moment of
failure

1 hour Moment of
failure

3 99.90% 8.76 5 minutes Moment of
failure

1 hour 30
seconds
prior

2 99% 87.60 1 hour 1 hour 4 hours 1 hour

prior prior

1 99% 87.60 24 hours 24 hours
prior

24 hours 24 hours
prior

Two of the terms in Table 36-1 warrant explanation. The recovery time objective (RTO) is
the target length of time for restoring service. The recovery point objective (RPO) is the
point in time relative to the moment of failure from which data is recovered. The RPO
provides a way to define the amount of data that is allowed to be lost in the event of a
failover.

Chapter 36. Enterprise Architecture: Fault Tolerance,
High Availability, and Load Distribution
The components of the enterprise's systems do not live in isolation, especially those that
are service providers. They interact with each other in a variety of ways, and these
interactions result in design dependencies. The fault tolerance and high-availability design
choices you make for a service (or for any component, for that matter) determine the
mechanisms by which that service can be accessed. This, in turn, impacts the design of any
component using the service. Every single interaction between components carries with it
this type of design dependency.

On the enterprise level, the enterprise architecture decisions made regarding network,
storage, machine, and messaging infrastructure will (and are intended to) constrain the
options that are available to service developers. However, at the project level, there is still
a lot of choice. The impact of these choices extends far beyond the boundaries of the
present project. The fault tolerance, high availability, and load distribution decisions made
by the project for the services it implements will impact every other project utilizing these
services.

The potential complexity of these interaction design dependencies is not to be
underestimated. Allowing each project to choose its own strategies for fault tolerance, high
availability, and load balancing will likely result in enterprise-scale chaos. Variations in
strategy from project to project and service to service will require the detailed study of
each individual component and service in order to understand how it responds to failure
and how it will be accessed. This not only presents a severe learning challenge to potential
service users, it also makes it nearly impossible to broadly understand the overall behavior
of a collection of components and services.

The implications are severe for business continuity (site disaster recovery) planning. A
rigorous analysis of a data-center failover becomes so complex as to be impractical.
Futhermore, the likelihood of a site-to-site failover actually working as planned is
vanishingly small without repeated (and expensive) testing. Worst of all, any subsequent
changes or additions will require this testing to be repeated.

The solution to this problem lies in establishing an across-the-board simplicity and
uniformity in fault tolerance, high-availability, and load distribution approaches. This does
not mean that every component and service needs to employ exactly the same strategy. It
does mean that the choices need to be narrowed to a few well-chosen and well-engineered
alternatives from which individual projects may choose. Guidelines need to be provided for
the selection and use of these alternatives as well.

The enterprise architecture group should take the lead in establishing consistent and
serviceable approaches to fault tolerance, high availability, and load distribution across the
enterprise. This can be accomplished through establishing policies in a number of areas,
including:

1. The categorization of information with respect to data loss (Table 33-1)

2. The categorization of business processes with respect to required availability and
data loss

3. The establishment of standard information storage patterns

4. The establishment of standard component failover patterns

5. The establishment of standard load distribution patterns

6. The establishment of standard patterns for incorporating fault-tolerant, high-
availability, and load distributed services into a process

7. The establishment of standard high-level design patterns for creating scalable, fault-
tolerant, and highly available business processes

8. The establishment of the infrastructure needed to support these patterns

Business Process Categorization

To determine whether either fault tolerance or high availability is warranted in a business
process, you must first understand the business impact of a business process breakdown.
This understanding will help you decide whether the business process itself must be
provided in a fault-tolerant or highly available fashion and whether work in progress must
be preserved when a breakdown occurs.

This analysis and the interpretation of the results can be somewhat simplified if the
enterprise architecture group establishes a business process classification policy. This policy
defines the criteria for classifying business processes into categories similar to those shown
in Table 36-1. The policy establishes the categories, gives the rationale for determining
which category the business process should be in, and illustrates the rationale by giving
examples of actual enterprise business processes that belong in each category.

Table 36-1. Business Process Categorization

 Intra-Site Failover Inter-Site Failover

Business
Process
Category

Business
Process
Availability

Hours of
Allowed
Downtime/Year
(24x7 usage)

Recovery
Time
Objective
(RTO)

Recovery
Point
Objective
(RPO)

Recovery
Time
Objective
(RTO)

Recovery
Point
Objective
(RPO)

5 FT (100%) 0 0 Moment of
failure

1 hour Moment of
failure

4 99.90% 8.76 5 minutes Moment of
failure

1 hour Moment of
failure

3 99.90% 8.76 5 minutes Moment of
failure

1 hour 30
seconds
prior

2 99% 87.60 1 hour 1 hour 4 hours 1 hour

prior prior

1 99% 87.60 24 hours 24 hours
prior

24 hours 24 hours
prior

Two of the terms in Table 36-1 warrant explanation. The recovery time objective (RTO) is
the target length of time for restoring service. The recovery point objective (RPO) is the
point in time relative to the moment of failure from which data is recovered. The RPO
provides a way to define the amount of data that is allowed to be lost in the event of a
failover.

Information Storage

Standardization of the enterprise's approach to fault tolerance and high availability has to
begin with the storage of information. The enterprise architecture group should establish
data loss categories similar to those in Table 33-1 along with the business rules for placing
information in each category. Since higher categories mean higher costs, these
categorization rules should, by default, assume information is in the lowest category and
establish the criteria that would justify moving the information into a higher category.

Once these categories have been established, the enterprise architecture group should then
define the acceptable design patterns for storing and replicating information in each
category. These patterns show how the enterprise's storage infrastructure should be
employed.

Individual Component and Service Failover Patterns

The enterprise architecture group should establish standard design patterns for intra-site
and inter-site failover. These patterns should cover the failover of both fault-tolerant and
high availability components, and should be specific to the technology used to implement
the component. These patterns employ the information storage design patterns discussed
earlier. Using these patterns ensures a consistent failover approach from component to
component.

Most of the components that you will be concerned with provide some form of service.
Because of this, the enterprise architecture group must also provide failover patterns for the
clients accessing service. If the client directly accesses the service, the pattern must
indicate what the service client needs to do in the event of a service failover. If the
infrastructure is handling the failover, the pattern must indicate what the infrastructure is
doing to make this possible. If an indirection mechanism (e.g., a messaging service) is used
to access the service, the pattern must indicate the nature of the indirection mechanism
and the requirements for its configuration. Patterns for both intra-site and inter-site failover
must be provided.

While this approach will establish the design patterns for the most commonly used
technologies, you must recognize that technology evolution makes it practically impossible
to provide a predefined pattern for every possible combination of technology and fault
tolerance, high-availability, and load distribution requirements. Consequently, the enterprise
architecture group must be prepared to support project teams facing situations in which the
required design patterns do not currently exist. Regardless of whether the project team or
the enterprise architecture group actually proposes the solution, the enterprise architecture
group must approve the proposed pattern and add it to the inventory of available patterns.

Composite Patterns for FT and HA Services

Making a service highly available or fault tolerant requires the application of at least four
design patterns: an intra-site fail-over pattern, and an inter-site fail-over pattern for both
the service and its clients. These four patterns must be combined to create a composite
fault tolerance or high-availability pattern for each service.

There are often a number of ways in which these patterns can be combined. In such cases,
it is advantageous for the enterprise architecture group to standardize the combination and
minimize the variations. This standardization greatly simplifies the project work, and further
simplifies the operational monitoring and first-tier support for services. This standardization
obviates the need to study each individual service in order to understand how it is supposed
to fail over and how to monitor its status.

To maintain consistency, the enterprise architecture group must establish preferred
composite patterns and associated architectural implementations for various combinations
of technologies used for service client implementations, service access, and service provider
implementations. These should be summarized in a table similar to Table 36-2 and widely
disseminated to project teams. Realistically, however, you are likely to have quite a
variation of technologies in your enterprise, accompanied by varying inter-site fail-over
requirements. Trying to populate this table for all possible combinations will consume
resources defining some solutions that are unlikely to be used in practice. Your initial efforts
should focus on defining the patterns that you know will be used. Beyond that, the
enterprise architecture group should stand ready to engage and define additional patterns
as the need arises.

Table 36-2. Example Composite Service Failover Pattern Reference Table

Service Client
Technology

Service Access
Technology

Service
Implementation
Technology

Inter-Site
Failover
Strategy

Failover
Pattern

J2EE Application
Server

JMS Mainframe Synchronous
update

Pattern X

Unknown
(External user)

HTTP Application server Asynchronous
update

Pattern Y

Workflow Engine JMS COTS customer
relationship
management
system

Overnight
backups

Pattern Z

The conclusions about inter-site failover strategies for applications and components should
be summarized in a readily available reference table similar to the one shown in Table 36-3.
The table itself is the simple part. Your challenge lies in determining the appropriate entries
for this table. This can be accomplished by examining business processes that involve two

or more of these components. For each business process, you need to examine the
coordination between the storage updates in the various components involved in the
business process.

Table 36-3. Example Application/Component Inter-Site Failover Strategy
Reference Table

Application/Component Storage Inter-Site Failover Strategy

Mainframe order management
system

Database Nightly database synchronization
accompanied by copying
transaction log entries as
transactions are executed

COTS customer relationship
management system

Database Nightly synchronization

Web site application servers
supporting customer order entry

Files (pages) Nightly file synchronization

Warehouse inventory management
system

Database Synchronous updates (managed by
storage subsystem)

Composite Patterns for FT and HA Business Processes

Defining standard failover patterns for individual service clients, services, and their
underlying storage is not enough to ensure a consistent multiple-application failover
between sites. As Chapter 34 explored, when one application expects another to be in a
particular state, the failover strategies for both must be coordinated so that after a site
failover the state of each is consistent with the other's expectations.

The enterprise architecture group must evaluate the major stateful components of the
enterprise and the manner in which each fails over its persistent state to the backup site.
Particular attention needs to be paid to the coordination (or lack thereof) of the replication
for the individual applications. The potential for inconsistencies between these states after
failover must then be evaluated. This evaluation must determine whether the
inconsistencies comply with the business's guidelines regarding data loss. It must also
examine the potential for system errors in the ensuing dialog between the systems and
determine whether this potential warrants modifying the interfaces to render them more
tolerant of errors.

Summary

Most of the decisions surrounding fault tolerance, high availability, and load distribution
have an impact that extends beyond any single project, component, or service. Consistency
in these decisions is essential to ensure that the enterprise business processes behave in a
predictable manner after failover, particularly inter-site failover. Ensuring this consistency is
the responsibility of the enterprise architecture group.

Ensuring consistency begins with categorizing information in terms of the allowed data loss
and failover times. Based on this categorization, patterns for failing over individual services
can be defined based on the categories of information they manage and the technologies
they are based upon. Failover patterns for clients using these services and the access
mechanisms they use for interacting with the services can also be defined.

Finally, business processes as a whole can be categorized, again based on the allowed data
loss (now loss of work in progress) and failover times. Standard patterns can then be
defined. These patterns can then be used as guidelines by individual projects.

Key Enterprise Fault Tolerance, High-Availability, and
Load Distribution Questions

1. Have standardized categories of information been established in terms of
acceptable data loss and recovery time during failover?

2. Have standardized categories of business processes been established in
terms of acceptable loss of work in progress and recovery time during
failover?

3. Have standard patterns for implementing service fault tolerance, high
availability, and load distribution been established based on the categories
of information they manage?

4. Have standard patterns for implementing service client failover been
established for each service implementation pattern?

5. Have composite patterns been established showing how combinations of
services and service clients fail over both within and between data centers?

6. Have standard fault tolerance and high-availability patterns been
established for high-level business processes based on their categorization?

Suggested Reading

ISO Public Available Specification ISO/PAS 22399:2007. "Societal securityâ!”Guideline for
incident preparedness and operational continuity management." International Standards
Organization (www.iso.org) (2007).

Part VIII: Completing the Architecture

Chapter 37. Process Security
Business processes often encounter a number of issues related to trustâ!”or the lack
thereof. Comprising the subject of security, these issues include authenticating the
credentials of a participant, checking that the participant is authorized to access a particular
piece of information or a service, and encrypting information where required so that it
cannot be observed by unauthorized participants. Security is an issue when either the
participants must be sure who they are dealing with or there is activity that must be kept
secret from unauthorized parties.

The enterprise's security policies specify the manner in which security is addressed with
respect to a given security topic. These policies set forth rules and conditions for
interactions between participants with respect to the relevant topic. As an architect, your
responsibility is to understand these policies and ensure that the business process
implementation is in compliance.

For clarity, the discussion of security in this chapter utilizes the notion of a trust zone. A
trust zone defines a security boundary. All parties and all interactions within a trust zone
are considered to be trusted and do not require any special security precautions. External
interactions with the trust zone may require the enforcement of specific security policies
depending on the type of information being exchanged and the nature of the other parties in
the interactions.

Security Information Classification

The basis for all decisions regarding security is a set of enterprise security guidelines. These
guidelines classify the information in the enterprise from a security perspective and specify
the security policies that must be followed when dealing with information in each
classification. An example summary of these guidelines is presented in Table 37-1. As an
architect, you need to be familiar with these classifications and the corresponding security
policies, because you are responsible for ensuring the systems you build are in compliance
with these policies. Enterprise architects are responsible for establishing standards for the
system implementation of each type of policy. Project architects are responsible for
ensuring that the business process information has been classified by the appropriate
parties and that the implementation complies with the appropriate enterprise architecture
standards.

Table 37-1. Example Security Classification Scheme

Classification
Level Examples Applicable Security Policies

4â!”Extremely
sensitive

Employment information,
financial and health
information; corporate merger
and acquisition information

All parties must be authenticated and
authorized; information in transit and in
storage must be encrypted; an audit trail
must be kept for all access (read and
modification); all records must be digitally
signed

3â!”Secret Aggregate sales information
sufficient to reveal enterprise
financial performance

All parties must be authenticated and
authorized; information in transit must be
encrypted and may not be stored except
in systems with the appropriate security
provisions

2â
!”Confidential

Individual retail sales
transactions, inventory levels

Information within enterprise facilities
may be stored in the clear, and its access
from within the enterprise does not
require authentication and authorization;
information in transit outside the
enterprise must be encrypted, and its
usage outside the enterprise requires
authentication and authorization

1â!”Public Product catalog information;
general information about the
enterprise

No security restrictions

Part VIII: Completing the Architecture

Chapter 37. Process Security
Business processes often encounter a number of issues related to trustâ!”or the lack
thereof. Comprising the subject of security, these issues include authenticating the
credentials of a participant, checking that the participant is authorized to access a particular
piece of information or a service, and encrypting information where required so that it
cannot be observed by unauthorized participants. Security is an issue when either the
participants must be sure who they are dealing with or there is activity that must be kept
secret from unauthorized parties.

The enterprise's security policies specify the manner in which security is addressed with
respect to a given security topic. These policies set forth rules and conditions for
interactions between participants with respect to the relevant topic. As an architect, your
responsibility is to understand these policies and ensure that the business process
implementation is in compliance.

For clarity, the discussion of security in this chapter utilizes the notion of a trust zone. A
trust zone defines a security boundary. All parties and all interactions within a trust zone
are considered to be trusted and do not require any special security precautions. External
interactions with the trust zone may require the enforcement of specific security policies
depending on the type of information being exchanged and the nature of the other parties in
the interactions.

Security Information Classification

The basis for all decisions regarding security is a set of enterprise security guidelines. These
guidelines classify the information in the enterprise from a security perspective and specify
the security policies that must be followed when dealing with information in each
classification. An example summary of these guidelines is presented in Table 37-1. As an
architect, you need to be familiar with these classifications and the corresponding security
policies, because you are responsible for ensuring the systems you build are in compliance
with these policies. Enterprise architects are responsible for establishing standards for the
system implementation of each type of policy. Project architects are responsible for
ensuring that the business process information has been classified by the appropriate
parties and that the implementation complies with the appropriate enterprise architecture
standards.

Table 37-1. Example Security Classification Scheme

Classification
Level Examples Applicable Security Policies

4â!”Extremely
sensitive

Employment information,
financial and health
information; corporate merger
and acquisition information

All parties must be authenticated and
authorized; information in transit and in
storage must be encrypted; an audit trail
must be kept for all access (read and
modification); all records must be digitally
signed

3â!”Secret Aggregate sales information
sufficient to reveal enterprise
financial performance

All parties must be authenticated and
authorized; information in transit must be
encrypted and may not be stored except
in systems with the appropriate security
provisions

2â
!”Confidential

Individual retail sales
transactions, inventory levels

Information within enterprise facilities
may be stored in the clear, and its access
from within the enterprise does not
require authentication and authorization;
information in transit outside the
enterprise must be encrypted, and its
usage outside the enterprise requires
authentication and authorization

1â!”Public Product catalog information;
general information about the
enterprise

No security restrictions

Part VIII: Completing the Architecture

Chapter 37. Process Security
Business processes often encounter a number of issues related to trustâ!”or the lack
thereof. Comprising the subject of security, these issues include authenticating the
credentials of a participant, checking that the participant is authorized to access a particular
piece of information or a service, and encrypting information where required so that it
cannot be observed by unauthorized participants. Security is an issue when either the
participants must be sure who they are dealing with or there is activity that must be kept
secret from unauthorized parties.

The enterprise's security policies specify the manner in which security is addressed with
respect to a given security topic. These policies set forth rules and conditions for
interactions between participants with respect to the relevant topic. As an architect, your
responsibility is to understand these policies and ensure that the business process
implementation is in compliance.

For clarity, the discussion of security in this chapter utilizes the notion of a trust zone. A
trust zone defines a security boundary. All parties and all interactions within a trust zone
are considered to be trusted and do not require any special security precautions. External
interactions with the trust zone may require the enforcement of specific security policies
depending on the type of information being exchanged and the nature of the other parties in
the interactions.

Security Information Classification

The basis for all decisions regarding security is a set of enterprise security guidelines. These
guidelines classify the information in the enterprise from a security perspective and specify
the security policies that must be followed when dealing with information in each
classification. An example summary of these guidelines is presented in Table 37-1. As an
architect, you need to be familiar with these classifications and the corresponding security
policies, because you are responsible for ensuring the systems you build are in compliance
with these policies. Enterprise architects are responsible for establishing standards for the
system implementation of each type of policy. Project architects are responsible for
ensuring that the business process information has been classified by the appropriate
parties and that the implementation complies with the appropriate enterprise architecture
standards.

Table 37-1. Example Security Classification Scheme

Classification
Level Examples Applicable Security Policies

4â!”Extremely
sensitive

Employment information,
financial and health
information; corporate merger
and acquisition information

All parties must be authenticated and
authorized; information in transit and in
storage must be encrypted; an audit trail
must be kept for all access (read and
modification); all records must be digitally
signed

3â!”Secret Aggregate sales information
sufficient to reveal enterprise
financial performance

All parties must be authenticated and
authorized; information in transit must be
encrypted and may not be stored except
in systems with the appropriate security
provisions

2â
!”Confidential

Individual retail sales
transactions, inventory levels

Information within enterprise facilities
may be stored in the clear, and its access
from within the enterprise does not
require authentication and authorization;
information in transit outside the
enterprise must be encrypted, and its
usage outside the enterprise requires
authentication and authorization

1â!”Public Product catalog information;
general information about the
enterprise

No security restrictions

Identity and Authentication

When there is a potential lack of trust between participants in a business process, the
identity of interacting parties needs to be understood. In some cases only one of the parties
in an interaction needs to know the identity of the other. In other cases, both parties need
to know the identity of the other party.

Unfortunately, it is nearly impossible to establish the absolute identity of any party. Instead,
each party presents a claimed identity (e.g., a username) and some evidence that they are,
indeed, the party that is supposed to be associated with the identity (e.g., a password). The
process of verifying that the evidence matches the claimed identity is known as
authentication.

The Authentication Process

The authentication process involves three elements: the claimed identity, the evidence
provided by the party claiming to have that identity, and some reference information that is
used to validate the evidence. In the case of a username/password authentication, the
username is the claimed identity, the password is the evidence, and the local record of the
password associated with the username is the reference information used to authenticate
the user. Note, however, that there is no guarantee that the party being authenticated is
the intended party: A stolen username and password will allow anyone to claim that
identity.

There is also an element of trust involved in establishing the reference data. The party
issuing the identifier and associating the password (or other reference data) with the
identifier is being trusted to establish, by some unspecified means, who that party really is.
They are also being trusted to ensure that the reference data is appropriately protected. A
violation of this trust compromises the integrity of the authentication process.

Reference Data for Authentication

Reference data for authentication generally falls into one of two categories: secrets and
direct evidence. A secret is a piece of information that is supposed to be known only to the
party claiming the identity. Passwords and certificates are examples of secrets. The
reference data for secrets is a record of the secret associated with a particular identity.
Authentication consists of determining whether the correct secret was provided. To maintain
security, this reference information must be appropriately protected against unauthorized
access.

Direct evidence is derived from some physical characteristic of the party that is presumed to
be unique to the party and difficult to imitate. Photographic images, fingerprints, and retinal
scans are examples of direct evidence. The reference data for direct evidence is a copy of
the expected evidence, and authentication consists of determining whether the actual
evidence presented at the time of authentication matches the reference data. The use of the
direct evidence approach is pretty much restricted to the identification of people and other
living organisms whose physical characteristics vary sufficiently from individual to individual
to uniquely identify the individual. Systems generally rely on the secrets approach.

Authorization

Once the identity of a participant has been authenticated, the next question is usually
whether that participant has permission to access the information or operation. The act of
determining whether they have this permission is referred to as authorization.

The Granularity Problem

One of the challenges in authorization lies in categorizing the things that require permission.
Many systems require usernames and passwords for system access. Here the granularity of
the permission is the system itself, granting the user the right to access the entire system
and its contents. However, many systems use the user identity to further restrict access,
limiting it to specific operations that the system provides. The granularity here is the
operation.

The problem you face is a practical one. In the enterprise there can be thousands of
systems, millions of operations, and trillions of data elements. Authorization policies seek to
restrict access to these things, and, furthermore, these restrictions may depend not only
upon the identity of the individual seeking access but also on the access channel being
used. The sheer number of systems, operations, data elements, users, and access channels
makes the administrative task of specifying who is authorized to access what, and under
what circumstances, very complex.

Groups and Roles

Two concepts have emerged to help simplify the task of specifying who is allowed to access
what: roles and groups. A role specifies a part that a participant might play in a business
process. To play that role, the participant requires access to certain systems, operations,
and data elements. The use of roles splits the administrative tasks in specifying
authorization, allowing access rights to specific systems, operations, and data to be
associated with specific roles, and then separately specifying which participants are allowed
to play those roles.

While roles provide one level of simplification, defining who is allowed to play which role can
still be complex when there are many individuals and each individual is allowed to play a
number of roles. In such cases, it is often convenient to define groups of participants and
then associate groups with roles. This is particularly useful when roles are specific to a
particular system and a participant needs to interact with multiple systems. Consider a call
center with thousands of individuals, each requiring access to multiple systems to support
customers. Placing the call center workers in a common group and associating that group
with the multiple system roles simplifies the administration.

Group and Role Limitations

While groups and roles simplify the administration of access rights, their use is not well
suited to some situations. As commonly implemented, the association of participants with
groups and groups with roles is usually assumed to be relatively static information that is

accessed far more often than it is changed. A reference data manager such as LDAP is used
to store these associations, which are then referenced each time a participant attempts
access to a restricted resource.

Now consider the following situation. Employees in a large company carry company credit
cards as part of the company's expense management system. The business rules for
administering these credit card accounts stipulate that the employee and anybody in the
organizational hierarchy above the employee (up to and including the CEO of the company)
are authorized to administer the account. They also stipulate that anybody in the bank who
is currently assigned to support any organizational unit containing the employee is
authorized to administer the account as well. In this case, every account defines a unique
role, and every organizational unit above the employee defines a unique group. There are
additional groups in the bank assigned to support each organizational unit, and these
assignments, themselves, change from time to time. This structure is so complex, and the
organizational assignments in both the company and the bank so fluid, that pre-computing
roles and groups does not provide an effective solution to the authorization problem.

Another complex example is also to be found in banks. Many banks have varied lines of
businesses, including retail banking (checking and savings accounts), mortgage, insurance,
and investment banking. These banks often want to assemble a consolidated customer view
across these multiple lines of business. However, each of the bank's lines of business is
generally a distinct legal entity. There are complex national and state regulations governing
the sharing of information between legal entities. Access rights may vary depending upon
the specific type of data, the type of account, the jurisdiction governing the account, the
jurisdiction in which the customer resides, the jurisdiction of the party attempting to view
the information, and the purpose for which the information is being used. Once again, a
simple group-and-role model is not adequate to describe these rules.

The bottom line here is that in these days of increasingly tighter regulations regarding
information access, the traditional group and role models often turn out to be inadequate
for the task. The onus is on you, the architect, to understand the authorization
requirements and determine just how these requirements are to be met. The result can be
a significant design challenge in and of itself.

Encryption

Encryption protects information from being observed by unauthorized parties. Encryption is
commonly applied to data in transit from one participant to another, but may also be
applied to data being stored. When data is in transit, one participant (or a designated
agent) encrypts the data prior to its transmission, and another participant (or designated
agent) decrypts the data upon receipt. In the case of stored data, it is generally the same
participant (or agent) that encrypts and decrypts the data.

Encryption and decryption use keys to encode and decode the information. When the same
key is used for both encryption and decryption, the encryption is said to be symmetric.
Symmetric encryption is usually efficient, but a compromise of the key renders the data
vulnerable. Since the key must be exchanged between the parties, the movement of the
key itself may create opportunities for its compromise.

Asymmetric encryption uses pairs of keys, generally referred to as a private key and a
public key. The private key is held only by one party, and thus constitutes a relatively well-
kept secret. The public key is generally available to all parties. When some party (other
than the private key holder) wishes to send encrypted data, it encrypts the data using the
public key. At this point, only the holder of the private key can decrypt the data. If the
private key is used to encrypt the data, then anybody holding the public key can decrypt
the data. One nice property here is that since only the holder of the private key could have
encrypted this data, the successful decryption with the public key certifies the private key
holder as the originator of the data.

While powerful, asymmetric encryption is computationally expensive and its use has a
significantly greater performance impact than symmetric encryption. On the other hand,
asymmetric encryption is widely considered to be the more secure approach. These two
techniques can be effectively combined to yield a secure and effective encryption
mechanism. The SSL (secure socket link) protocol is perhaps the best known example. It
uses asymmetric encryption for an initial handshake, at which point one of the parties
creates a symmetric key, encrypts it with the other party's public key, and passes it to the
other party. The other party uses its private key to decrypt and recover the symmetric key,
and now the two parties use this symmetric key to exchange data for some period of time.
When that time expires, the parties revert to the asymmetric keys, generate and exchange
a new symmetric key, and then use this new key for some period of time.

From an architectural perspective, you need to understand the performance impact of the
encryption. You also need to understand the manner in which keys are generated,
transmitted, and stored both from a process perspective and from a security perspective.
Any compromise in this process or in any environment containing either a symmetric key or
a private key is a potential source of a security breech.

Digital Signatures

Besides supporting asymmetric encryption, public and private keys can also be used to
digitally sign data. A publicly known algorithm is used to derive a value from the source
data that uniquely depends upon the data. Checksums and hash keys are simple examples
of this kind of information. This generated information is then encrypted with the private
key, and the resulting encrypted value constitutes the digital signature. The original data
and the digital signature are sent as a unit.

On the receiving end, the recipient can use the public key to retrieve the generated value
and then use the well-known algorithm to re-generate this value from the received data. If
the two values match, then the recipient concludes that the data, as received, is the same
as the data that was used to generate the signature.

Other Security-Related Requirements

Security is a somewhat open-ended topic, and many other requirements may be considered
to fall under its umbrella. Among these are non-repudiation (the ability to record a
message in such a way that the sender cannot deny its origin or timing) and assertions
(signed statements that specific conditions have been met). Audit trails (records of who did
what and when) are often considered part of security, particularly when they pertain to the
modification of reference information used for authentication and authorization.

One topic that is very different in kind is often placed under the heading of security: denial-
of-service attacks. A denial-of-service attack occurs when unauthorized parties attempt to
access an interface at such a high rate that, even though the access is unsuccessful, valid
access by authorized parties is adversely impacted. Avoiding adverse impacts from a denial-
of-service attack is as much a performance issue as it is a security issue.

Reference Data Servers and Performance

Authentication and authorization both require access to reference data. The components
that maintain this information and the communications with them are always potential
performance bottlenecks. Consequently, the frequency and manner in which this reference
information is accessed is a significant architectural issue.

One way to lessen this impact is to have the components using the reference data cache it
for future reference. This, of course, only provides benefit if there is a statistically
significant chance that future authentications and authorizations will require the same
reference information. The likelihood of this occurring must be one of the factors influencing
the architectural decision to employ such caching. The ability of the caches to update
quickly in the event of access being revoked should also be a consideration. A disgruntled
ex-employee can do a lot of damage in a short time if the revocation is delayed.

Another approach is to employ tokens. A token is a digitally signed list of authorizations and
other security assertions. When tokens are employed, the first exchange with the
authorization server returns a token containing the authorizations for the party being
authorized. The token is then passed on in interactions with other participants. These
participants can use the authorizations in the token instead of conducting their own
interactions with authentication and authorization servers. The use of tokens thus reduces
the frequency of interactions with authentication and authorization servers. However, in
order to take advantage of this approach, the token must be carried forward in interactions,
and the participants receiving the tokens must be capable of utilizing the information they
contain.

Trust Zones

At its core, security is about who is to be trustedâ!”and who is not. In any environment,
there are always boundaries within which the parties and their interactions are trusted.
Those regions are here termed trust zones (Figure 37-1). If everything within a process lies
within one trust zone, then there is nothing to discuss in terms of security.

Figure 37-1. Trust Zone

The security discussion gets more interesting when communications are required between
trust zones, as shown in Figure 37-2. From a security perspective, the world outside the
trust zone is not to be trusted. It then becomes necessary to determine, from a business
perspective, what this lack of trust requires of the interaction. The security classification of
information plays a key role here. Based on that classification, does the interaction require
that the identities of the participants be authenticated? Does it require authorization
checks? Does it require the encryption of communications between the participants? What
other security requirements are there?

Figure 37-2. Two Interacting Trust Zones

The answers to these questions will determine the security policies that need to be applied.
As an architect, your task is to determine how these policies will be implemented, how they
will be enforced, and at what point they will be enforced.

If a policy is to be enforced, you need to define the location of the policy enforcement point.
Will the policies be enforced by the participants at their interfaces, or will the policies be
enforced by the communications channel itself? At first glance, it would appear that the
participants provide the better home for this functionality. Since they are already trusted
participants within their own trust zones, it would make sense that they would control the
access to the trust zone.

Unfortunately, while it makes logical sense for the participants to be the enforcing parties,
the practical reality is that enterprise environments are populated with many systems that
have only limited security policy enforcement capabilities, particularly with respect to
encryption. At the same time, some common communications transport mechanisms are
available with at least some capability for authentication, authorization, and encryption,
primarily through the use of secure socket links (SSL). The implementation of security is
often a compromise between what the policy requires and what is feasible with the
available technology.

Channel Enforcement

Some commonly used communications transports provide limited security policy
enforcement capabilities, including HTTPS (secure hypertext transport protocol) and JMS
(Java message service) accessed with SSL.

HTTPS provides the infrastructure for authentication and encryption in the form of a code
library embedded in the participant. It provides the facilities for one or both of the parties
to authenticate the other party. It also provides mechanisms for encrypting the ensuing
communications. Authorization, on the other hand, must be dealt with outside the code
library by the participants themselves. Each must decide, using its own logic, whether or
not to accept a connection from the other party. Once the socket connection is established,
further authorizations associated with individual interactions over the socket are also up to
the participants.

JMS servers accessed via SSL can provide authentication, authorization, and encryption
services depending upon the JMS vendor. The JMS server can authenticate JMS clients and
offer the client the ability to authenticate the JMS server instance. The JMS server can
control which parties are authorized to connect to the server and may provide authorization
checks down to the level of which participants are allowed to publish or subscribe to specific
JMS destinations. SSL also provides the ability to encrypt communications between the JMS
server and its clients.

The administration of security with HTTPS is done on a participant-by-participant basis.
Since the HTTPS code library executes as part of the participant code, its configuration is
logically part of the participant configuration. Each participant is thus configured
independently.

JMS security administration, on the other hand, impacts the configuration of the JMS server,
although the client may be configured to authenticate the credentials of the JMS server to
which it connects. The authentication and encryption are again provided by the underlying
SSL library, but the authorization is managed entirely by the JMS server. Typically, the
association of destinations with roles is maintained within the JMS server. The association of
JMS client credentials with those roles, however, may typically be maintained either within
the JMS server itself or in an external authorization server such as LDAP. When an external
authorization server is used, there are typically a number of options available for either
dynamically querying the server or replicating its authorization information within the JMS
server.

JMS channel enforcement has its limitations. The authorization checks do not directly check
the authorization of one participant to interact with another. Instead, they control access to
destinations. Since most JMS servers allow destinations to be routed to other destinations,
an understanding of the JMS configuration is required, in addition to the authorization
information, to understand exactly who can talk with whom. Furthermore, even these
authorization checks are relatively coarse grained. Destinations usually equate to operations
or groups of operations, and it is at this level that they provide access control. Encryption is
also a coarse-grained, all-or-nothing proposition.

While the use of a single JMS server provides a useful central point for security
administration, geographically distributed enterprises typically employ routed networks of
JMS servers. When this happens, the administrative simplicity vanishes, as each JMS server
must be configured with respect to the participants who will connect to it. The JMS servers
also need to be authorized with respect to one another, and again the routing of messages
between servers must be understood as well as the participant authorizations with respect
to each server.

Zone Enforcement and Policy Agents

The alternative to channel enforcement is to have policies enforced within the trusted zone.
If the participant is connecting directly to the communications channel, this means that the
participant itself becomes the policy enforcement point. Unfortunately, the majority of
participants found in the enterprise today have limited capabilities in this regard.

An increasingly popular alternative is to employ a policy agent as an intermediary between
the participant and the external communications channel (Figure 37-3). A policy agent is a
specialized component designed to play this intermediary role specifically to enforce security
policies (and other forms of policies as well). The agent acts on behalf of the participant,
enforcing security policies as necessary. Of course, the communications between the agent
and the participant are now unregulated, and therefore must occur within a trusted zone. In
this regard, some agents actually operate within the same operating system process space
as the participant, reducing the scope of the trust zone to the operating system process.

Figure 37-3. Policy Agents

There are a number of advantages to the policy agent approach. These agents are designed
specifically to enforce policies and thus tend to offer a much broader range of capabilities
than typically found in participants. They are generally capable of caching reference
information, and thus provide performance efficiencies, and many are capable of using
tokens as well. Agents tend to be designed to work with a centralized policy administrator
so that they are relatively easy to administer. Finally, and perhaps most significantly, their
use completely separates the lifecycle of policy development from the lifecycle of the
participant development. This significantly reduces the cost and time required to implement
or change security policies.

Multi-Zone Security

The number of participants in enterprise business processes frequently present even more
complex security problems. For example, consider the three-party interactions illustrated in
Figure 37-4. Participant A, who may be a user, submits request X to Participant
B, which may be an application server. Participant B, in turn, submits request Y to
Participant C on behalf of Participant A. The challenging question then becomes
what credentials should accompany request Yâ!”the credentials of Participant B or
those of Participant A?

Figure 37-4. The Three-Zone Security Problem

[View full size image]

Historically, this problem has been dealt with largely by merging Trust Zone B and Trust
Zone C (Figure 37-5). Participant B becomes a "trusted system," and Participant C
simply accepts Participant B's credentials and performs the work. There is no deeper
security, and if any information about Participant A is carried along, it comes in the
form of data that is carried in request Y.

Figure 37-5. Weakened Multi-Party Security

[View full size image]

Concerns about internal security within the enterprise are increasingly making the expanded
trust zone approach unacceptable at the business level. Ideally, Participant C would like
to have the credentials of Participant A, since the transaction is really being performed
on behalf of this participant. It may also want the credentials of Participant B to simply
verify that the request is originating from a trusted location.

Working with these complex relationships requires more complex rules and a regularized
scheme for expressing and enforcing these rules. The SOAP-related WS-Security and WS-
Security Policy standards represent a significant and well-engineered step in this direction.
You should become familiar with these standards and their application, as they not only
provide well-structured solutions to this kind of security challenge, but they also form the
emerging basis for policy agents as a class of component.

Summary

Security begins with the understanding that access to certain classes of information and
functionality needs to be managed. The starting point for the enterprise is a classification
scheme that defines the different classifications of information and specifies the business
rules for the access and handling of this information.

Controlling access to information requires that the identity of parties be authenticated, and
that their authorization to access or use the information be verified. Reference data and the
logic for performing the authentication and authorization checks are required in both cases.
The concepts of roles and groups can greatly simplify the administration of authorization,
but they are not always adequate to the task.

Encryption prevents the unauthorized access of information. Symmetric and asymmetric
encryption each provide different degrees of security and efficiency. Selecting one or the
other, or using them both together, is an exercise in trading off performance against
security. Digital signatures provide a mechanism for authenticating the origin of information.

Accessing the reference information required for authentication and authorization can create
performance problems. The caching of this information or the use of tokens can significantly
lessen the performance impact.

Security comes into play when participants in different trust zones need to interact.
Enterprise rules, based on the classification of the information being exchanged, define the
security policies that must be enforced. The actual enforcement point for these rules can be
in the trust zone itself or in the communications channel connecting them. Both the
communications components and existing participant systems tend to have limited
capabilities with respect to implementing security policies. Policy agents, acting as
intermediaries, provide an effective mechanism for policy enforcement as well as a means
for separating the policy lifecycle from that of the participants in the process.

The presence of multiple participants in a business process presents even more complex
challenges. The challenge lies in deciding what credentials to use in back-office systems
when intermediaries take action in these back-office systems on behalf of front-office users.
Carrying the user's credentials through to the back-office system is both administratively
complex and technically challenging. SOAP, in conjunction with WS-Security and WS-
Security Policy standards, provides the building blocks to make this problem manageable.

Key Security Questions

1. Is there an established security classification scheme for enterprise
information? Does it specify the business rules for handling information in
the different classifications?

2. Have preferred mechanisms for authentication and authorization been
established in the enterprise? Have approved design patterns been
established for systems and technologies that cannot utilize these preferred
mechanisms?

3. Is the group-and-role paradigm sufficient to handle the authorization
requirements of the business process? If not, what approach will be used?

4. Where are authentication, authorization, and encryption required in the
business process? Have the activity diagrams describing the implementation
been updated to reflect these activities and their responsibility
assignments?

5. What credentials are being used to access back-office systems when front-
office requests are being handled by intermediary components? Does this
approach comply with enterprise security policies?

Suggested Reading

Cabrera, Luis Felipe, and Chris Kurt. 2005. Web Services Architecture and its Specifications:
Essentials for Understanding WS-*. Redmond, WA: Microsoft Press.

Weerawarana, Sanjiva, Francisco Curbera, Frank Leymann, Tony Storey, and Donald F.
Ferguson. 2005. Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-
Addressing, WS-BPEL, WS-Reliable Messaging, and More. Upper Saddle River, NJ: Prentice
Hall.

Chapter 38. Process Monitoring
Traditionally, monitoring has focused on determining the status of individual components
such as databases and application servers. While that type of monitoring continues to be
important, it needs to be augmented with the monitoring of the business processes that are
executing across the enterprise environment. This monitoring is important for a number of
reasons:

1. Detecting breakdowns (outright failures) in business processes. This enables the
enterprise to determine the health and availability of the processes. Viewed after the
fact, this information enables the enterprise to determine whether the processes are
actually providing the levels of service that the enterprise requires. Monitored in real
time, this information can be used to dynamically detect breakdowns and initiate
their correction. Done properly, this can not only improve process availability, but
also can be used to dynamically get an errant process back on track so that it
satisfies its KPIs and SLAs in spite of breakdowns.

2. Measuring key performance indicators (KPIs) and their compliance with SLAs. These
measurements will enable an enterprise to determine whether it is meeting its own
performance objectives and satisfying its contractual service-level agreements.

3. Measuring the achievement of process improvement goals. This is the critical
information needed to determine whether projects are actually successful in providing
the business value that motivated them in the first place.

4. Comparing actual usage rates and data volumes for comparison against critical
architectural assumptions and deployed component capacities. The purpose of this
monitoring is to identify trends in the process and anticipate the need for future
action, such as increasing capacity.

As enterprises grow, their business processes grow as well, involving increasing numbers of
system components and increasing execution complexity. The complexity of monitoring
these processes increases as well, which makes process monitoring an attractive target for
automation. However, before doing any design work associated with this automation, the
reasons for doing the monitoring must be clear so that the design work can be efficiently
focused. The monitoring goals will dictate what needs to be monitored and what needs to
be done with the monitoring results.

Performance Monitoring

Many needed process measurements are related to performance. During testing, you want
to ensure that the business process and its supporting components are capable of providing
the required level of service. Performance requirements without corresponding actual
measurements are simply wishful thinking. Performance requirements demand performance
monitoring.

You also need to make performance measurements during operation. These measurements

will establish whether the business process is continuing to perform as designed. They will
also determine whether the business process demand remains within the limits of the
design and currently deployed capacity.

Monitoring at One Point

The simplest form of performance monitoring is to gather data at a single point. By
monitoring communications at a single point, you can gather data about the rate at which
interactions are occurring, the volume of data moved in each interaction, and the time
distribution of these rates and sizes. These measurements clearly reflect the profile of
demands that are being placed on components.

The problem with monitoring at one point is that you can't draw many conclusions about
whether business processes are executing properly. You may be able to identify an
overloaded machine or component, but you can't draw any conclusions about lower levels of
activity. This is because you don't know whether the activity level is low because something
upstream in the business process is broken or whether there is simply low demand at the
moment.

Uncorrelated Monitoring at Two Points

Nearly as simple as monitoring at one point is the collection of data at two or more points.
Unfortunately, while these measurements tell you a lot about the demand profile at these
different points, they again tell you very little about whether things are operating properly.
The lack of correlation between the data samples at one point and the data samples at
another do not allow you to draw conclusions about the portion of the process in between.
While you might expect to see a rise in the upstream rate followed by a rise in the
downstream rate, variations in the amount of work required to handle each communication
and processing delays in intermediate components make it difficult to draw any definitive
conclusions from these measurements.

Correlated Monitoring at Two Points

The best possible monitoring is to correlate the activity observed at one point with the
activity observed at another. Interactions observed at one point are correlated with those
observed at another so you know that this particular downstream interaction was the direct
consequence of some particular upstream interaction.

If you can make this type of correlation, you can now measure response times. In addition,
if you have an SLA for the intervening portion of the process, you can also detect process
breakdowns. The absence of a downstream interaction within the SLA-allotted time of the
upstream interaction indicates a breakdown in the process.

While powerful, these measurements require design work. The individual interactions must
be observed and the observations brought together at a common correlation point.
Furthermore, the observations must capture enough data to be able to correlate the
observations. Fortunately, many message-based communications components make it
relatively simple to capture all or part of a message, which simplifies this form of
measurement.

As complex as correlated measurements are, they are the only nonintrusive way to
measure response times. For this reason, it is good practice to identify the need for such
measurements early in the design cycle, as the capture of this data can often be built into
the system components at little additional cost.

Chapter 38. Process Monitoring
Traditionally, monitoring has focused on determining the status of individual components
such as databases and application servers. While that type of monitoring continues to be
important, it needs to be augmented with the monitoring of the business processes that are
executing across the enterprise environment. This monitoring is important for a number of
reasons:

1. Detecting breakdowns (outright failures) in business processes. This enables the
enterprise to determine the health and availability of the processes. Viewed after the
fact, this information enables the enterprise to determine whether the processes are
actually providing the levels of service that the enterprise requires. Monitored in real
time, this information can be used to dynamically detect breakdowns and initiate
their correction. Done properly, this can not only improve process availability, but
also can be used to dynamically get an errant process back on track so that it
satisfies its KPIs and SLAs in spite of breakdowns.

2. Measuring key performance indicators (KPIs) and their compliance with SLAs. These
measurements will enable an enterprise to determine whether it is meeting its own
performance objectives and satisfying its contractual service-level agreements.

3. Measuring the achievement of process improvement goals. This is the critical
information needed to determine whether projects are actually successful in providing
the business value that motivated them in the first place.

4. Comparing actual usage rates and data volumes for comparison against critical
architectural assumptions and deployed component capacities. The purpose of this
monitoring is to identify trends in the process and anticipate the need for future
action, such as increasing capacity.

As enterprises grow, their business processes grow as well, involving increasing numbers of
system components and increasing execution complexity. The complexity of monitoring
these processes increases as well, which makes process monitoring an attractive target for
automation. However, before doing any design work associated with this automation, the
reasons for doing the monitoring must be clear so that the design work can be efficiently
focused. The monitoring goals will dictate what needs to be monitored and what needs to
be done with the monitoring results.

Performance Monitoring

Many needed process measurements are related to performance. During testing, you want
to ensure that the business process and its supporting components are capable of providing
the required level of service. Performance requirements without corresponding actual
measurements are simply wishful thinking. Performance requirements demand performance
monitoring.

You also need to make performance measurements during operation. These measurements

will establish whether the business process is continuing to perform as designed. They will
also determine whether the business process demand remains within the limits of the
design and currently deployed capacity.

Monitoring at One Point

The simplest form of performance monitoring is to gather data at a single point. By
monitoring communications at a single point, you can gather data about the rate at which
interactions are occurring, the volume of data moved in each interaction, and the time
distribution of these rates and sizes. These measurements clearly reflect the profile of
demands that are being placed on components.

The problem with monitoring at one point is that you can't draw many conclusions about
whether business processes are executing properly. You may be able to identify an
overloaded machine or component, but you can't draw any conclusions about lower levels of
activity. This is because you don't know whether the activity level is low because something
upstream in the business process is broken or whether there is simply low demand at the
moment.

Uncorrelated Monitoring at Two Points

Nearly as simple as monitoring at one point is the collection of data at two or more points.
Unfortunately, while these measurements tell you a lot about the demand profile at these
different points, they again tell you very little about whether things are operating properly.
The lack of correlation between the data samples at one point and the data samples at
another do not allow you to draw conclusions about the portion of the process in between.
While you might expect to see a rise in the upstream rate followed by a rise in the
downstream rate, variations in the amount of work required to handle each communication
and processing delays in intermediate components make it difficult to draw any definitive
conclusions from these measurements.

Correlated Monitoring at Two Points

The best possible monitoring is to correlate the activity observed at one point with the
activity observed at another. Interactions observed at one point are correlated with those
observed at another so you know that this particular downstream interaction was the direct
consequence of some particular upstream interaction.

If you can make this type of correlation, you can now measure response times. In addition,
if you have an SLA for the intervening portion of the process, you can also detect process
breakdowns. The absence of a downstream interaction within the SLA-allotted time of the
upstream interaction indicates a breakdown in the process.

While powerful, these measurements require design work. The individual interactions must
be observed and the observations brought together at a common correlation point.
Furthermore, the observations must capture enough data to be able to correlate the
observations. Fortunately, many message-based communications components make it
relatively simple to capture all or part of a message, which simplifies this form of
measurement.

As complex as correlated measurements are, they are the only nonintrusive way to
measure response times. For this reason, it is good practice to identify the need for such
measurements early in the design cycle, as the capture of this data can often be built into
the system components at little additional cost.

Monitoring Process Status

When it comes to monitoring the overall status of a business process, you have a choice to
make: Should you be monitoring the detailed status of the business process, or should you
monitor the achievement of the process milestones that were discussed back in Chapter 10?
The answer depends upon the monitoring goals, and the choice has substantial implications
for the flexibility of the resulting monitoring.

Recall that the milestones reflect the state of a business process independently of the actual
process details. Monitoring milestones generally provides all of the information that a
nonparticipant in the actual process would want to know. At this level of abstraction you can
establish how often a process is executing and how long it takes the process to reach a
particular milestone.

While milestone monitoring provides less information about the process than might be
gathered by direct monitoring, it has a distinct advantage: The measurements and their
interpretation tend to be relatively stable over time. While business processes are
continually being improved, the process milestones tend to remain stable. The milestones
also tend to be the same across different business processes attempting to achieve the
same goal. The milestones in ordering and shipping a product (order placement, credit
approval, obtaining payment, and product delivery) do not change when the order is placed
online versus over the phone. Thus monitoring that is focused on milestones will not require
updating when the process itself changes, nor will the consumers of the monitoring
information. This reduces the cost of making business process changes, and thus facilitates
the evolution of business processes, making the overall enterprise more flexible.

Milestone monitoring, on the other hand, may not provide sufficient detail to fine-tune the
individual steps of a business process. When there is more than one activity required to
progress from one milestone to the next, milestone monitoring will not capture how long it
took to perform each of these activities. Neither will it capture information about the
resources expended at each step in the process: who did what work and how much effort
was required. Gathering this type of information requires direct monitoring of the business
process itself.

The design of direct process monitoring, however, is highly dependent upon the actual
process design and must be updated each time the process is changed. But even though
process-level data must be collected to meet some monitoring goals, other monitoring goals
can still be met through milestone monitoring.

To keep milestone-level data analysis and progress evaluation independent of the process
design, it is good design practice to abstract milestone-level status from the detailed
process design and then use milestone monitoring wherever possible. Thus, a process
change will only require the regeneration of the milestone status and will not impact the
consumers of the milestone information.

Supervisory Processes

Simply identifying that the progress of a business process is unsatisfactory accomplishes
nothing: It is the actions triggered by the monitoring that provide value to the enterprise.
These actions comprise the supervisory processesâ!”the processes that monitor and
manage other processes.

Unfortunately, supervisory processes are all too often overlooked in the design of business
processes and systems. An understanding of these supervisory processes is just as much a
part of monitoring design as the capture of the data. A failure to consider how the
monitoring results are to be used in these supervisory processes, even if those processes
will not be implemented until a later phase of the project, can lead to the generation of
monitoring results that simply cannot support the supervisory processes.

Monitoring results can either be delivered to supervisory processes as they occur or
accumulated and delivered in batches. The style in which these results are delivered affects
the choice of delivery mechanism, the design of the supervisory process, and the timeliness
with which the supervisory process can respond to monitoring results. If the monitoring
results are to be used for an after-the-fact analysis, then the batch delivery of the results in
a file or in the form of a report may be appropriate. Here the supervisory process (whether
manual or automated) runs periodically, picks up the results, and decides what action to
take.

If the monitoring results are to be acted upon in near-real-time, then there is little choice
other than to deliver them as they are produced. This always requires some form of
automation. If the supervisory process is a manual one, requiring human action, then the
automation consists of alerting someone of the need for action. If the supervisory process is
automated, then the result must trigger supervisory activity when it is produced. In either
case, the design of the interaction between monitoring activities and the supervisory
process is a key element of the monitoring design.

Finally, you should note that process monitoring is often undertaken as the first step
towards the eventual management of that process using a workflow engine. The intent is to
ultimately combine process monitoring with active process management. In such cases, the
full set of design issues discussed in Chapter 42 should be considered as part of the initial
process monitoring effort in order to make this evolution as smooth as possible.

The Impact of Monitoring on Performance

Monitoring, as with any form of activity, requires resources. Data needs to be captured and
analyzed, and resources are required for both. This resource utilization needs to be carefully
considered in the design of monitoring. As much as possible, you want to design the
monitoring so that it has little if any impact on the performance of the business process. It
is a best practice to use components and machines for monitoring that are not actively
involved in the business processes to minimize this impact. The impact on storage and
network bandwidth needs to be taken into account as well.

Summary

Business processes need to be monitored for a variety of reasons, ranging from detecting
process breakdowns to measuring their performance and achievement of business goals.
Monitoring requires resources and must be carefully designed so that the performance of
the monitored process is not adversely impacted.

Performance monitoring requires measurements. Throughput and data rate measurements
can be made by monitoring interactions at one point, but the measurement of response
times and the detection of breakdowns requires the correlation of measurements made at
two or more points.

Process status can be monitored at either the milestone level or the detailed process activity
level. Milestone monitoring is suitable for most business purposes, and this level of
monitoring is not impacted by the evolution of the business process. Milestone monitoring,
on the other hand, may not provide sufficient information to fine-tune the business process.

Monitoring results are the inputs to supervisory processes. The needs and design of those
supervisory processes need to be taken into account when designing monitoring to ensure
that the needs of these supervisory processes will be met.

Key Process Monitoring Questions

1. What are the monitoring objectives for the business process? What
measurements are required to support those objectives?

2. What performance measurements are required? How will the data be
captured? How will it be correlated? What component will analyze the data
and generate monitoring results?

3. Which monitoring objectives can be achieved through milestone monitoring?
Which require direct process activity monitoring?

4. Which supervisory processes will consume the monitoring results? How will
the results be delivered? Is the delivery done in real time?

5. Is the use of process monitoring the first step towards process
management? If so, have all process management design issues been
considered?

Chapter 39. Architecture Evaluation
"Are you a good witch or a bad witch?"

â!”Glinda to Dorothy after Dorothy's house landed on and killed the Wicked
Witch of the East in The Wizard of Oz

Just as Glinda in the Wizard of Oz could not determine whether Dorothy was a good witch
or a bad witch (or a witch at all!) simply by taking a look at her, just looking at a system
architecture does not provide sufficient information for determining whether the architecture
is good or bad. You need to examine the architecture in the context of its intended usage to
draw such conclusions.

The purpose of architecture evaluation is to determine the suitability of an architecture
before a commitment is made to the design. Partial evaluations, performed frequently
during the architecture development process, serve to ensure that the evolving architecture
is and remains satisfactory. For distributed information systems in general and service-
oriented architectures in particular these evaluations are typically performed in at least
seven categories:

1. Usability

2. Performance

3. Cost and schedule feasibility

4. Observability

5. Ability to evolve

6. Ability to handle stress

7. Compliance with standards

This list represents a somewhat minimalistic evaluation, and should not be considered by
any means to be either closed or complete. Use it as a starting point for your evaluations,
and add to it any additional evaluation criteria that are relevant to your solutions.

Usability

Usability is the ease with which the architecture can support its intended purpose. It is,
fundamentally, the most important requirement for any architecture. Fortunately, if you
have been following the methodology outlined in this book, you have already addressed
usability. You have defined the usage of the architecture in terms of the business processes
it is intended to support. The variety of behavior required for the business processes has
been expressed through a variety of scenarios. These scenarios have been the basis for
developing the architecture. You have considered the functional support, communications,

data, coordination, availability, fault tolerance, workload distribution, security, and
monitoringâ!”all with respect to the specific business process scenarios. A more thorough
exploration of the architecture's usability would be hard to find.

Chapter 39. Architecture Evaluation
"Are you a good witch or a bad witch?"

â!”Glinda to Dorothy after Dorothy's house landed on and killed the Wicked
Witch of the East in The Wizard of Oz

Just as Glinda in the Wizard of Oz could not determine whether Dorothy was a good witch
or a bad witch (or a witch at all!) simply by taking a look at her, just looking at a system
architecture does not provide sufficient information for determining whether the architecture
is good or bad. You need to examine the architecture in the context of its intended usage to
draw such conclusions.

The purpose of architecture evaluation is to determine the suitability of an architecture
before a commitment is made to the design. Partial evaluations, performed frequently
during the architecture development process, serve to ensure that the evolving architecture
is and remains satisfactory. For distributed information systems in general and service-
oriented architectures in particular these evaluations are typically performed in at least
seven categories:

1. Usability

2. Performance

3. Cost and schedule feasibility

4. Observability

5. Ability to evolve

6. Ability to handle stress

7. Compliance with standards

This list represents a somewhat minimalistic evaluation, and should not be considered by
any means to be either closed or complete. Use it as a starting point for your evaluations,
and add to it any additional evaluation criteria that are relevant to your solutions.

Usability

Usability is the ease with which the architecture can support its intended purpose. It is,
fundamentally, the most important requirement for any architecture. Fortunately, if you
have been following the methodology outlined in this book, you have already addressed
usability. You have defined the usage of the architecture in terms of the business processes
it is intended to support. The variety of behavior required for the business processes has
been expressed through a variety of scenarios. These scenarios have been the basis for
developing the architecture. You have considered the functional support, communications,

data, coordination, availability, fault tolerance, workload distribution, security, and
monitoringâ!”all with respect to the specific business process scenarios. A more thorough
exploration of the architecture's usability would be hard to find.

Performance

To be successful, the architecture needs to support the volume of expected business process activity while also
meeting business process expectations in terms of response times. Determining whether this is possible
requires determining the rates at which individual components are required to respond to inputs, determining
the required response times, determining the level of system resources required to support this activity, and
making a judgment call as to whether those resource requirements are reasonable.

Much of the groundwork has already been laid for this evaluation. The rate metrics gathered for each scenario
together with the activity diagrams and deployment diagrams provide sufficient information to determine the
rate at which individual components need to perform their work and the load that will be placed on the network
segments. These same activity diagrams provide the information required to take business process response
time requirements and derive response time budget assignments for the individual participants in the process.
This information can then be used to determine the computing and network resources required to support the
business processes and determine whether these resource demands are reasonable.

This analysis process can (and should) be used throughout the lifecycle of the project. It should be applied to
the very first business process analyzed as a means of determining whether it is even feasible to support these
processes. As the architecture development continues, it should be applied to the small number (in most
systems) of scenarios that account for the bulk of the system activity. This analysis will provide a rough
estimate of the overall machine and network resources that will be required to support the architecture. These
results can then be used to evaluate the reasonableness of the resource demands given the project cost
constraints and can be used to compare the relative costs of two architectures. Finally, as the architecture
nears completion, the analysis should be extended to encompass all scenarios that occur frequently enough to
present significant system demands. This analysis can then be used to support the final hardware and network
sizing for capacity-planning purposes.

Component Resource Demand Analysis

Each business process scenario depicts what happens for a single execution of the scenario. Figure 39-1, for
example, shows the successful execution scenario for withdrawing cash from an ATM machine.

Figure 39-1. Successful Withdraw Cash Scenario

[View full size image]

At the very beginning of the project, when you did the business process inventory, you determined the peak
rate at which the scenario is expected to execute. By adding a little bit more information, you can directly
obtain the rates at which different participants need to respond to interactions and perform their activities. The
required information is the number of times each interaction occurs for each execution of the scenario. Most
interactions occur once for each scenario execution. Each of the messages in this scenario, for example, occurs
exactly once per scenario execution. However, in other scenarios, some of the interactions may be conditional
or may occur a number of times. Repeated interactions can occur, for example, when a participant is iterating
through a set of orders and interacting with another participant once for each order. When you combine this
occurrence information with the scenario's peak rate, you can calculate the peak rate at which each participant
needs to respond to each interaction.

The results of this analysis should be placed in a spreadsheet (Table 39-1). This table gives the details for each
of the scenarios and totals the rates for each component at the top. In this example, the scenario executes at
a rate of 29 executions/second (from Table 7-2). Each of the messages appears exactly once per execution.
The Bank server and ATM each need to handle two incoming messages per execution, yielding a total rate of
58 messages/second for each. The ATM server handles four incoming messages a second, yielding a rate of
116 messages/second.

Table 39-1. Component Load Analysis Results

Number of Messages
Processed by Component
per Second

Business
Process/Scenario

Scenario
Peak Rate
(per Second) Message

Component
Sending
Message

per Second

ATM
ATM
Server

Bank
Server

Totals for All
Scenarios and
Messages

 58 116 58

Withdraw Cash via
ATM/Successful
Withdrawal

29 ATM request ATM 29

 ATM server
request

ATM Server 29

 bank server
reply

Bank Server 29

 ATM server
reply

ATM Server 29

 ATM report ATM 29

 ATM server
report

ATM Server 29

 bank server
report ack

Bank Server 29

 ATM server
report ack

ATM Server 29

Once the peak rates for the individual participants have been determined, you can take a look at the work
being done by the participant in response to the interaction. By roughly estimating the required computational
complexity and disk utilization of the work done in response to each message, you can make a rough estimate
of the number of CPUs and disk spindles it will take to support this role in this scenario.

Estimating CPU Requirements

Table 39-2 provides some guidance for determining the number of CPUs that will be required to support the
level of activity. Be careful how you use this table, however. It only gives order-of-magnitude estimates, and
an order-of-magnitude range can have significant cost implications for your project. Use Table 39-2 to guide
you as to whether or not you need to investigate the CPU requirements more deeply. If your message rates
are substantially below the numbers in the table, it is safe to assume that one CPU or less will be able to
handle the load. If your numbers are within or near the order-of-magnitude range in the table, you probably
should be doing some resource utilization experiments on the class of hardware you intend to use in order to
determine more accurately how many CPUs it will take to support the business process. These experiments
need to mimic the resource utilization, not the functionality, of your business process. If your numbers are at
the high end of the range or above, you have a serious load distribution challenge. If you have not already
incorporated load distribution into your design, it is time to go back and do so.

Table 39-2. Single CPU Capacity Guidelines

Computational Complexity Disk Utilization

Rough Order-of-Magnitude
Single-CPU Capacity
(messages/second)

Low None 103â!“104

Moderate None 102â!“103

High None 100â!“102

Lowâ!“Moderate Low 101â!“102

High Low 100â!“101

Any Moderateâ!“High 10-1â!“100

Note that, at this point, you have not made any decisions as to how these CPUs will be providedâ
!”concentrated in larger machines or distributed across smaller machines. You are simply trying to determine
whether the machine requirements are reasonable.

This component resource demand summarization process is straightforward if all the peak loads occur at the
same time, but this is often not the case. Different business processes tend to peak at different times of the
day, week, month, or year. When the peaks for different scenarios occur at different times, the analysis
becomes more complex. You must identify the different time periods in which significantly different patterns of
activity occur and perform an analysis for each of these time periods. This will yield an understanding of the
peak resource demand for each component during each time period. This information from the various time
periods can then be summarized for each component by finding the maximum demand for that component
across all the time periods. This will provide an overall understanding of the peak computational resources
required to support the application.

Messaging and Disk Performance

Some messaging services, such as JMS, are capable of persisting messages on disk. This feature is provided as
a means of ensuring that messages in transit will survive the crash of a machine or the communications server
running on it. This feature can be very useful, but you need to recognize that its use has performance
implications. Without persistence, the messaging server performance is generally limited by CPU performance
or available network bandwidth. With persistence, the performance of the disk becomes the critical factor and
can easily reduce the throughput of the server by several orders of magnitude.

Estimating Disk Performance

To understand this, let's take a look at the factors that determine the performance of a disk. A disk is a
physical device with platter-shaped surfaces upon which the data is written (Figure 39-2). The surface is
divided into a number of tracks (rings), and each track is divided into a number of sectors. Each sector
contains a block of data (typically around 512 bytes). A movable head reads and writes data to the disk. The
head is mounted on an arm, which pivots to move the head across the disk. To access data in a given sector,
three things need to happen: the disk needs to rotate so that the sector is under the head, the arm needs to
move the head to the correct track, and finally the data itself needs to be transferred. Let's examine each of
these activities in terms of its impact on performance.

Figure 39-2. Disk Geometry

First, consider the disk rotation. The disk is rotating at a constant speed. When data needs to be accessed, the
disk drive must wait until the rotation of the disk brings the sector containing the data under the head. This
time is referred to as the rotational latency. On average, you can expect that this will take a half a disk
revolution. Thus the average rotational latency in seconds will be:

For a disk rotating at 10,000 RPM, the average rotational latency is 3 milliseconds.

The second factor you need to consider is that the disk arm must move the head over the proper track. The
time it takes to do this is called the seek time. The seek time for the disk is normally specified by the
manufacturer who provides either an average value or maximum and minimum values. For the estimation
here, the average seek time is the desired value. A typical seek time would be around 4.7 milliseconds.

The third factor you need to consider is the time it actually takes to transfer the data to the disk. The
specification that will enable you to compute this time is the transfer rate. You have to be careful in reading
this specification, as the rate at which the external interface to the disk drive can transfer the data (typically
called the external transfer rate) may be significantly higher than the rate at which the data can be physically
written to disk (called the internal transfer rate). Also, the internal transfer rate may be specified for both
unformatted and formatted disks. For the analysis here, you want to consider the use of formatted disks. To be
conservative, you should use the lowest transfer rate specified.

To compute the time that it would take to transfer the data, you need to know both the data transfer rate and
the size of the message. Given this, you can compute the time required for the transfer as follows:

A typical transfer rate is around 50MB (megabytes) per second. If the typical message size is 1KB, then the
time it would take to transfer this data would be about 20 microseconds. Note that for small messages, this
time is so small with respect to the rotational latency and seek time that it can usually be ignored. Only when
message sizes begin to approach a megabyte will the transfer time become significant.

These values can now be put together to approximate the rate at which a disk should be capable of accessing
data. If you assume that the head will move while the disk is rotating to the correct position and then the data
will be transferred, you can approximate the average access rate as:

For the disk being used as an example, a 1KB message size yields an average access rate of 212 accesses/sec.
This is a somewhat pessimistic estimate, as it assumes one access must complete before the next begins.

There are a number of factors that typically will speed actual disk performance. High-end disk controllers can
schedule multiple accesses during a disk rotation, and messaging servers may batch updates to the disk. On
the other hand, a message that is persisted on disk must subsequently be removed from the disk, which
requires another disk access.

Considering all of these factors, the best practice is to look at this access rate as a conservative estimate of the
rate at which the disk will support messages. If the peak message rate you are contemplating is less than this
number (and there is not a lot of other disk activity going on), you can safely assume that the disk can support
the message rate. If, however, the projected message rate is near or above the average access rate for the
disk, you have more work to do. Your throughput exceeds the performance expectations for a single disk.

Achieving Throughputs in Excess of Estimated Single-Disk Capacity

At this point it is prudent for you to perform an experiment to measure the actual message throughput using
the actual message server, machine, operating system, and disk configuration you are considering. When
performing this experiment you need to pay careful attention to the interactions between the messaging server
and the disk. Unless message loss in the business process is acceptable, disk writes should always be
synchronous. What this means is that the messaging server will wait for confirmation of a successful disk write
before acknowledging receipt of the message. While this reduces throughput, it is the only way to ensure that
messages cannot be lost regardless of the failure scenario.[1]

[1] The techniques for making persistent storage fault tolerant were discussed in Chapter 33.

If the measured message rate is still less than what you need, you have several options. One option is to split
the traffic between different messaging servers, each using a different disk to persist its messages. Another
option is to use a RAID array of disks (multiple physical disks working together to provide what appears to be a
single disk) in a striped configuration. This spreads the data being stored across a number of disks. The net
effect is that the throughput goes up by a factor approximately equal to the number of disks. Thus if the data
is striped across 4 disks, the throughput would go up by approximately 4x.

Some high-end storage subsystems offer another alternativeâ!”a battery-backed and redundant buffer for the
data. In these systems, the data is not physically written to disk before the storage subsystem acknowledges
the "writing" of the data. Instead, the data is simply placed in memory, an operation that is several orders of
magnitude faster than physically writing to disk. The storage subsystem will later write this data to disk, but
will optimize the writing so that, overall, it is much faster than random disk writes. This approach is "safe"
from a data loss perspective because the memory is battery-backed (i.e., the data will survive a restart of the

machine) and redundant (the loss of one buffer will not cause data loss). The use of this type of buffering can
yield message throughputs that begin to approach the throughput the messaging server could achieve if
messages were not persisted at all.

In summary, when you propose a messaging mechanism, you need to determine whether its performance will
support the intended utilization. To do this, you will need an understanding of the message rate needed to
support the business processes (and a rough understanding of the message sizes as well) and whether or not
those messages need to be persisted. Armed with this understanding, you can then evaluate the ability of a
particular combination of communications server, machine, operating system, and disk subsystem to support
the business process needs. If the analysis indicates that the message rate can be supported, you can continue
with the architecture development. If not, it's back to the drawing board.

Deployment Load Analysis

Once you are comfortable that the aggregate resource demands for the system seem reasonable, the next step
is to analyze the proposed architecture deployment discussed in Chapter 16. Given this deployment model, you
can add some additional information to the scenarios and obtain a further understanding of the design's impact
on the network and communications components. The intent here is to ensure that the architecture's demands
on the network are reasonable, particularly when there are WAN segments involved.

To determine the actual network load, you need to first determine the size of the data sets being moved in
each interaction. This can be accomplished by either modeling the information in the data (yielding a precise
size) set or simply approximating the expected size based on a rough count of the number of fields. Eventually
you will need to do this for all scenarios, but to start with, you begin with only the scenarios you are currently
considering. Remember that in the business process ranking scheme, you placed the most demanding business
processes high up in the rankings, so the scenarios you consider first will likely be the ones that account for
the largest portion of the network load.

Since the deployment model already specifies where each of the component instances resides on the network,
you can use this information to determine which network segments need to be traversed by each data set. If
there is more than one instance of a component type, you must make some assumptions about how the load
is distributed across the instances, with an even distribution being the most common scheme. You then
multiply the rate information from the component load analysis by the data set size information to obtain the
network load presented by the interaction. Once you have determined the load presented by each individual
interaction, you sum up these loads to determine the total network load. Table 39-3 is an example based on
the Withdraw Cash via ATM example.

Table 39-3. Network Load Estimates for the Withdraw Cash via ATM Example

Business
Process/Scenario

Scenario
Peak
Rate
(per
Second) Message

Message
Network
Size
(bytes)

Component
Sending
Message

Bandwidth Requirement
(Bytes/Second)

ATM
LAN

ATM-
ATM
Server
WAN

ATM
Server
LAN

ATM
Server-
Bank
WAN

Bank
Server
LAN

Totals for All
Scenarios and
Messages

 33,640 33,640 67,280 33,640 33,640

Withdraw Cash via
ATM/ Successful
Withdrawal

29 ATM
request

290 ATM 8410 8410 8410

 ATM
server
request

290 ATM Server 8410 8410 8410

 bank
server
reply

290 Bank Server 8410 8410 8410

 ATM
server
reply

290 ATM Server 8410 8410 8410

 ATM
report

290 ATM 8410 8410 8410

 ATM
server
report

290 ATM Server 8410 8410 8410

 bank
server
report
ack

290 Bank Server 8410 8410 8410

 ATM
server
report
ack

290 ATM Server 8410 8410 8410

Once again, if the peak occurrences for the different interactions occur at different times, then you must
perform a separate analysis for each time period. This will give you the network load demand for each network
segment in each time period. You then determine the peak capacity required for each segment across all the
time periods. This is the required network capacity for that segment.

You must be aware that the modeling you have done does not account for all of the network traffic that will
actually occur, nor does the modeling take into consideration the fact that it is difficult to actually utilize the
full available bandwidth of the network. Experience has shown that a conservative design rule-of-thumb is to
plan for the computed bandwidth demand to be no more than 20 percent of the nominal network bandwidth
available, and in no case should exceed 30 percent. Should circumstances indicate that a higher bandwidth
utilization ought to be possible, a prototype should be undertaken to validate that this utilization can actually
be achieved. To produce meaningful results, the prototype must include all traffic on the network segments,
not just the one interaction that accounts for the high volume.

Evolving the Load Model

In the later stages of the architecture development, the deployment model will become more sophisticated and
so will its analysis. The model will have the individual component instances located on the appropriate
machines, and these machines will be located on the appropriate network segments. At this point you will be
able to determine the aggregate CPU loads for each of the individual machines and the loading on their
network interfaces.

The use of an analysis tool is very helpful when performing load analysis. While in the early stages of the
design the numbers of scenarios and communications are small and the analysis can be done by hand (using a
spreadsheet), it becomes increasingly complex as the numbers of components grows and the patterns of
activity differ from time period to time period.

Cost and Schedule Feasibility

One of the challenges of architecture development is that you not only need to solve the
problem, but do so at a cost that is consistent with the project expectations. Fortunately,
the architecture model that you have been assembling provides enough information to
produce a detailed and accurate cost estimate for the project. It enumerates all the required
components, interfaces, and data structures, so you know exactly what needs to be built
(for those things that don't already exist). It provides a description of what each component
must do after each interface is invoked, so you know how complex the design task is for
each interface. From this information you can readily estimate the development effort.

The performance analysis in the previous section provides you with an estimate of the
machine and network resources required to support the system, so the required capital
investments can be estimated as well as the operational costs of leasing equipment, space,
and network bandwidth. This same analysis also indicates how often people must interact
with the system, thus providing the basis for determining the staffing level required to
execute the business processes and keep the system operating.

Putting this all together, you can now assess the capital investment, the development cost
(which is often capitalized as well), and the operational expenses required to bring the
business processes to life with this particular architecture. These estimates can now be
compared to the budgetary estimates that the project started with to determine whether or
not the current architecture is consistent with those expectations. If it is, you can proceed
with the design. If not, it is back to the drawing board to find a more cost-effective
solution.

Observability

At various points in this book there have been discussions about breakdowns and
breakdown detection. These discussions focused on choices being made at various levels of
abstraction, ranging from the design of business processes and systems architecture to the
selection of coordination patterns. At other points there have been discussions about
monitoring business processes and the benefits of abstracting process milestones from the
details of the process design.

Each of these discussions has addressed some aspect of a broader concern: observability.
When work is distributed among many participants (whether human or machine), it
becomes increasingly difficult to determine exactly what is going on. Thus, it is prudent to
evaluate a proposed architecture in terms of the ability to determine just what is going on.
Is there sufficient monitoring in place to determine whether all components are up and
running, and all business processes are executing properly?

These questions are best asked and answered early in the architecture process. Very often
simple alterations in business process design and the choice of coordination patterns will
greatly enhance the ability of business process participants to observe the execution of the
process, and thus be able to report proper operation and the presence of breakdowns.
Monitoring strategies are most easily integrated in the early stages as well. The further you
get into the architecture, the more changes you will have to make to improve observability.

Ability to Evolve

Change is constant in business. Whether it is the organic growth of the business, the
addition of new products, or the replacement of old technologies and systems, every
enterprise faces changing needs that require corresponding changes to its systems. One of
the things you need to evaluate about the architecture is its ability to accommodate
change. You accomplish this by hypothesizing a number of changes that the architecture
might have to undergo. These are termed change scenarios. For completeness, the full
range of stakeholders must be involved in the exercise of developing this list of change
scenarios, as each will represent a different source of possible changes to the architecture.
The scenario definition must include not only the description of the change but also an
assessment of the likelihood that the change will be required. It must also include an
assessment of the benefit to the business arising from successfully accommodating the
change and the risk to the business arising from not being able to accommodate the
change.

What you need to understand for each of these change scenarios is the extent to which the
architecture would need to be modified to accommodate the change. Ideally, you would like
to know how much it would cost (capital investment, development cost, and operational
expense) to modify the architecture, but it is generally impractical to develop that level of
detail. In lieu of that, you sketch out the changes to the architecture that would be required
and simply inventory the number of components and interfaces that must be alteredâ
!”assuming, of course, that you have found a way to accomplish the needed change.

To draw conclusions from this analysis, the ability of the architecture to accommodate the
change must be weighed against the probability of the change being required and the
benefit/risk consequences associated with the change. For those scenarios in which the
degree of change required seems reasonable given the benefit/risk associated with the
scenario, you can conclude that the architecture can gracefully accommodate the change.
Those scenarios in which the degree of change is excessive indicate potential problem
areasâ!”risks to the enterprise. For these scenarios, the likelihood of their occurrence must
be weighed against the risks and a judgment made as to whether the risk is acceptable. It
must be emphasized here that this is a business decision, not a technical decision! If the
risk is not deemed acceptable, then the architecture must be modified to make it easier to
accommodate these changes.

Ability to Handle Stress Situations

Beyond the evolutionary changes discussed in the previous section, enterprises are from
time to time subjected to more sudden and radical forces for change. Mergers and
acquisitions, the addition of entirely new lines of business, dramatic changes in business
conditions, major changes in regulatory requirements, site closures, and physical disasters
can all stress the architecture way beyond its original design parameters. You evaluate the
architecture's ability to accommodate these stresses in a manner similar to that for the
evolutionary scenarios, proposing the stress that might occur, the likelihood of it occurring,
and the benefits and risks associated with being able to accommodate the stress.

To develop a realistic list of stress scenarios, it is again important to have all stakeholders
involved, and it is absolutely essential that the business side of the house participate. Many
of the potential stress scenarios are a direct consequence of strategic business decisions or
concerns that the IT community may not be aware of. At the same time, it must be
appreciated that some of these scenarios potentially represent very sensitive information,
and the manner in which the scenario is expressed must reflect the business sensitivity. It
may be inappropriate (illegal, for that matter) to tell the IT organization that the enterprise
is in the process of acquiring another company, but it may be entirely appropriate to tell the
IT organization that a 75 percent increase in business volume is something that the
architecture must be able to handle. Each scenario is characterized in terms of the type of
stress, the likelihood of its occurrence, and the benefits and risks associated with
accommodating or not accommodating the stress.

As with the evolutionary scenarios, the changes required to the architecture are assessed.
In contrast with the evolutionary scenarios, some of the stress scenarios may result in
conclusions that the architecture simply cannot survive the stress. For example, a single
computing center cannot continue to support the business after a site disaster.

Once the scenario-by-scenario assessments have been performed, the results must be
evaluated to determine whether the present architecture is acceptable or requires some
alteration to be better able to accommodate the stress scenarios. This evaluation is
primarily a business evaluation of the risks inherent in the current architecture proposal. As
such, it is essential that the business side of the house make the ultimate decisions as to
whether the risks are acceptable. Where this risk is deemed unacceptable, the architecture
must be modified to lower the risk.

Summary

Before proceeding with the implementation of an architecture, its suitability for its intended
purpose needs to be evaluated. It must be able to provide the required functionality and
perform adequately. It must be implementable within the given cost and schedule
guidelines. It must be able to evolve gracefully to support the enterprise's changing needs
and may be required to accommodate significant changes, such as merger and acquisition
activities.

One of the key determinations is whether the architecture will be able to perform
adequately. The business process scenarios characterize the collaboration between the
components needed to bring the business process to life. Coupled with the peak rates at
which these scenarios execute, there is enough information to determine the loads on the
individual participants in the process. From these loads you can then determine the level of
resource required to support that load and make a determination as to whether those
resource demands are reasonable given the project's cost and schedule guidelines.

To be practical, it must also be possible to implement the architecture within the cost and
schedule guidelines. The architecture has identified all components, interfaces, and data
structures required to implement the business processes. This is sufficient information to
derive a fairly accurate cost estimate and make a determination as to whether the current
architectural approach can, indeed, be implemented within the cost and schedule guidelines.

The architecture may also be called upon to accommodate evolutionary changes and
extreme stress situations. To perform these evaluations, you have to seek input from
stakeholders concerning potential change scenarios, their likelihood of occurrence, and the
business impact of being unable to accommodate the scenarios. This information is then
used to evaluate the ability of the architecture to handle the scenarios. Whether or not the
inability to handle a scenario justifies changes to the present architecture is ultimately a
business decision.

Key Architecture Evaluation Questions

1. What is the peak load that will be placed on each component and each
network segment? What level of resource will it take to handle this load?
Are these resources available within the project's cost and schedule
guidelines?

2. Can the proposed architecture be implemented within the project's cost and
schedule guidelines?

3. How can the proper operation of the business processes and systems be
observed? Is appropriate monitoring in place to determine whether systems
and business processes are operating normally? Are appropriate processes
in place to detect and handle breakdowns?

4. What evolutionary changes must the architecture be able to accommodate?
Has the ability to accommodate these changes been established?

5. What revolutionary changes must the architecture be able to
accommodate? Has the ability to accommodate these changes been
established?

Suggested Reading

Clements, Paul, Rick Kazman, and Mark Klein. 2002. Evaluating Software Architectures:
Methods and Case Studies. Boston, MA: Addison-Wesley.

Chapter 40. Testing
While testing occurs long after the architecture and design, testing itself requires design,
and its requirements may influence the design of the components and services themselves.
Individual components must be unit tested, and special test harnesses will be required for
each component. Components must be assembled together and tested to determine
whether they are interacting properly, and this integration order-of-assembly and the test
harnesses that will be required must be designed. Many designs interact with existing end-
point systems, and test versions of those systems may be limited in availabilityâ!”or not
available at all. In such cases "dummy" versions of these end-point systems will be required
to support testing.

Full functional and system tests require the presence of all components, including end-point
systems. These test environments also require realistic data and the ability to restore the
entire system, including end-point systems, to a known initial state. This initial state must
include the original initial data so that fixes to identified problems can be properly verified
with the same data. Performance and failure mode testing require test environments that
permit the full and exclusive utilization of machine and network resources and the
intentional disruption of these resources. All of this requires design.

Unit Testing, Test Harnesses, and Regression Testing

To test a component, it is necessary to both exercise its functionality and evaluate the
results. If component functionality is being exercised from a built-in user interface and all of
its results are available through this interface, then no design work is required. However, if
the inputs are provided through a system interface or the results cannot be observed from
an existing user interface, then mechanisms must be established for providing the inputs
and observing the results.

When the functionality of a component is invoked through a system interface and/or its
results are only accessible through a system interface, then some other component must be
employed to invoke the functionality and/or retrieve the results. This component is referred
to as a test harness. Test harnesses can run the gamut from standard tooling (e.g.,
commercially available test tools) to fully custom components that, themselves, must be
designed. The requirements for the test harness include the definitions of inputs to be
exercised, the results to be retrieved, the manner in which the test will be conducted, and
the manner in which results will be evaluated.

Sometimes the information needed to verify the proper operation of a component is not
accessible through its existing interfaces. In such cases, additional interfaces may have to
be added to the component or data added to existing interfaces to make this information
accessible. In any case, the manner in which the component's functionality will be exercised
and its state examined during unit testing must be considered before the component is
implemented, as these considerations may well affect its design.

While the initial testing of a component is often conducted manually, it is often desirable to
be able to automatically repeat the same tests after changes have been made to verify that

behavior that was not supposed to change, indeed has not changed. This places significant
additional demands on the test harness and upon the test environment itself. The test
harness must be extended to automatically apply the test cases to the component, retrieve
the results, evaluate the results, and report the evaluation conclusions. This obviously
requires a significant level of design in and of itself. Regression testing also requires a
degree of automation in the test environment. To execute each series of tests, the
appropriate component and its associated test harness must be deployed in the test
environment, the test sequence initiated, and the overall test results captured.

As should be obvious, regression testing requires a significant investment, and not just in
the purchase of a testing tool. An investment in time is required to configure that tool to
execute and repeat the tests. Not every component (or every element of functionality on a
component) warrants this additional investment. The risks associated with the failure of the
component (or the particular function on the component) must be weighed against the
investment required for regression testing to determine what warrants regression testing.
Generally speaking, it is shared services and mission-critical functionality that warrant this
type of investment.

Depending upon the nature of the interfaces to the component and the degree of test
automation required, test harnesses can vary from the simple to the complex. Components
that will be manually tested and that utilize standardized communications interfaces can
often be driven by off-the-shelf tools that are readily configured to simulate the inputs and
retrieve the outputs. At the other end of the spectrum, fully automated testing requires a
complex and sophisticated set of tools. It is generally not cost-effective to build a custom
regression testing environment for each component. The use of standardized frameworks
for this type of testing is generally necessary to bring the costs in line with the benefits.
When considering frameworks, the diversity of interfaces that will be encountered must be
taken into consideration. Testing modern distributed systems typically involves the use of a
wide range of interface technologies, including user interfaces on thin and fat clients as well
as system interfaces involving databases, files, socket connections, and various types of
messaging.

Chapter 40. Testing
While testing occurs long after the architecture and design, testing itself requires design,
and its requirements may influence the design of the components and services themselves.
Individual components must be unit tested, and special test harnesses will be required for
each component. Components must be assembled together and tested to determine
whether they are interacting properly, and this integration order-of-assembly and the test
harnesses that will be required must be designed. Many designs interact with existing end-
point systems, and test versions of those systems may be limited in availabilityâ!”or not
available at all. In such cases "dummy" versions of these end-point systems will be required
to support testing.

Full functional and system tests require the presence of all components, including end-point
systems. These test environments also require realistic data and the ability to restore the
entire system, including end-point systems, to a known initial state. This initial state must
include the original initial data so that fixes to identified problems can be properly verified
with the same data. Performance and failure mode testing require test environments that
permit the full and exclusive utilization of machine and network resources and the
intentional disruption of these resources. All of this requires design.

Unit Testing, Test Harnesses, and Regression Testing

To test a component, it is necessary to both exercise its functionality and evaluate the
results. If component functionality is being exercised from a built-in user interface and all of
its results are available through this interface, then no design work is required. However, if
the inputs are provided through a system interface or the results cannot be observed from
an existing user interface, then mechanisms must be established for providing the inputs
and observing the results.

When the functionality of a component is invoked through a system interface and/or its
results are only accessible through a system interface, then some other component must be
employed to invoke the functionality and/or retrieve the results. This component is referred
to as a test harness. Test harnesses can run the gamut from standard tooling (e.g.,
commercially available test tools) to fully custom components that, themselves, must be
designed. The requirements for the test harness include the definitions of inputs to be
exercised, the results to be retrieved, the manner in which the test will be conducted, and
the manner in which results will be evaluated.

Sometimes the information needed to verify the proper operation of a component is not
accessible through its existing interfaces. In such cases, additional interfaces may have to
be added to the component or data added to existing interfaces to make this information
accessible. In any case, the manner in which the component's functionality will be exercised
and its state examined during unit testing must be considered before the component is
implemented, as these considerations may well affect its design.

While the initial testing of a component is often conducted manually, it is often desirable to
be able to automatically repeat the same tests after changes have been made to verify that

behavior that was not supposed to change, indeed has not changed. This places significant
additional demands on the test harness and upon the test environment itself. The test
harness must be extended to automatically apply the test cases to the component, retrieve
the results, evaluate the results, and report the evaluation conclusions. This obviously
requires a significant level of design in and of itself. Regression testing also requires a
degree of automation in the test environment. To execute each series of tests, the
appropriate component and its associated test harness must be deployed in the test
environment, the test sequence initiated, and the overall test results captured.

As should be obvious, regression testing requires a significant investment, and not just in
the purchase of a testing tool. An investment in time is required to configure that tool to
execute and repeat the tests. Not every component (or every element of functionality on a
component) warrants this additional investment. The risks associated with the failure of the
component (or the particular function on the component) must be weighed against the
investment required for regression testing to determine what warrants regression testing.
Generally speaking, it is shared services and mission-critical functionality that warrant this
type of investment.

Depending upon the nature of the interfaces to the component and the degree of test
automation required, test harnesses can vary from the simple to the complex. Components
that will be manually tested and that utilize standardized communications interfaces can
often be driven by off-the-shelf tools that are readily configured to simulate the inputs and
retrieve the outputs. At the other end of the spectrum, fully automated testing requires a
complex and sophisticated set of tools. It is generally not cost-effective to build a custom
regression testing environment for each component. The use of standardized frameworks
for this type of testing is generally necessary to bring the costs in line with the benefits.
When considering frameworks, the diversity of interfaces that will be encountered must be
taken into consideration. Testing modern distributed systems typically involves the use of a
wide range of interface technologies, including user interfaces on thin and fat clients as well
as system interfaces involving databases, files, socket connections, and various types of
messaging.

Integration Testing and Order of Assembly

Once the proper functioning of individual components has been established, those
components need to be assembled into a working system. In a large-scale distributed
system, simply deploying all the components and turning them on in a "big bang"
integration generally leads to a lengthy and unwieldy debugging process. What makes
debugging difficult is that while it may be obvious that something is wrong, it is often very
difficult to pinpoint the cause. The symptom may appear in one component, while the root
cause is in another componentâ!”possibly several interactions away from the one exhibiting
the symptoms.

To avoid initial integration problems, the integration should be performed in planned stages,
with small groups of components being added and tested in each stage. Test harnesses are
again employed to simulate the portions of the system that have not yet been integrated. It
is your responsibility, as the architect, to define an order of assembly that makes testing
reasonable and minimizes the requirements for the test harnesses. In many cases and with
proper planning, the same test harnesses that were used for unit testing can be reused in
integration testing.

One of the biggest challenges in integration testing lies in interacting with the existing end-
point systems. Many of these are complex systems in their own right. They run in
environments that are expensive to duplicate, and their proper operation often relies on
further interactions with other systems and people. Because of these complexities, it may
be impractical to do initial integration testing with the actual end-point system. Test
harnesses simulating these end points may be the only recourse during integration testing.

Environments for Functional and System Testing

Functional testing looks for discrepancies between the system's functional specifications and
actual behavior. System testing seeks to determine whether the system, as a whole,
satisfies its original objectives. While the intents of functional and system testing are
somewhat different, both require an environment that contains all of the actual system
components. This presents a challenge when existing end-point systems are a part of the
design being tested. Ideally, both the functional and system testing environments will
contain test versions of the real systems with sufficient data in them to support the full
range of testing. It also requires these systems and their data to be readily returned to their
initial state so that tests can be identically repeated. Deviations from this ideal represent
risk to the project and the enterprise.

Using a test harness to represent the actual end-point system during functional and system
testing carries with it two risks. The first risk is that the initial deployment of the system
may fail due to unknown differences between the test harness and the actual end-point
system. The second risk is that problems that arise in production (due to differences
between the test harness and the actual end-point system) will have to be diagnosed in the
production environment and (by definition) the fixes can only be tested in the production
environment. Not having a broad range of test data in the test environment carries with it
exactly the same risks.

The inability to return the system and data to a known state makes it impossible to exactly
repeat any given test. This may make it difficult to accurately diagnose a problem
(particularly an intermittent problem) that occurs in testing, and makes it impossible to
verify after the fix that the actual conditions that caused the initial failure will no longer
result in a failure.

The inability to provide versions of the actual systems with realistic data and to reset these
systems and data to a known state is a risk both to the project and the overall enterprise.
The risk to the project is that the project itself will fail to achieve its cost and schedule
objectives. The risk for the enterprise is that the deployment of a system that has not been
fully tested may have an adverse impact on existing systems and thus disrupt the operation
of the enterprise! These risks must be weighed against the cost of providing a full and
complete testing environment for the overall system.

Performance Testing

Expecting a system to meet a performance requirement without testing to verify that the
requirement has been met is wishful thinking. Whether the requirement involves response
time, latency, or volume, the ability of the system to meet the requirement must be
established through testing. Furthermore, it is prudent to test the actual operational
capacity limitations of the system. This will enable the enterprise to monitor actual usage in
production, anticipate reaching these imitations, and plan accordingly.

Performance testing requires two things: (1) an environment in which the required system
resources (machine, disk, and network) can be 100 percent dedicated to the test, and (2)
the capture of the measurement data required to determine the actual performance. Both of
these require some design work.

To be able to interpret performance measurements properly, the resources required to
perform the work must actually be available. To ensure this, ideally, there should be no
other activity on the machines, disks, and networks being used for the testâ!”otherwise the
performance measurements may be adversely impacted by some other activity's use of the
resources. Conversely, the performance of other applications and their users may be
adversely impacted by the performance test. For these reasons, it is a good idea to do
performance testing in an isolated environment.

The availability of equipment for running performance tests may also be an issue, especially
if the production machine is costly. In these cases, performance tests can often be run on
smaller-scale versions of the same type of hardware as long as the performance results can
be reasonably extrapolated to predict the performance of the larger machine. Note that if
any type of load distribution is being employed, it is not sufficient just to measure the
capacity of one of the components, as the load distribution mechanism itself will impact the
performance to some extent, and this impact must be measured.

As was discussed in Chapter 38, the measurement of any form of time interval requires
design work. In general, it is easier for a component itself to measure a time interval
between its input and its output than it is to perform this measurement externally. If these
measurement needs can be identified before the component is actually designed and
implemented, the lowest cost option for making these measurements is usually to design
the measurement capability right into the component along with the ability to turn the
measurement on and off as required.

Making Capacity Measurements

Making performance measurements and establishing the operating capacity of a component
must be approached with some care, as the relationship between the input rate and output
rate for most components and systems varies non-linearly with increasing input rates.
Figure 40-1 shows a typical input-output relationship for a component (or an entire system,
for that matter). Note that as the input rate increases from zero, the output rate exactly
tracks the input rate over some range of input values. At some point, however, the output
rate begins to fall behind the input rate. This point is the operating capacity of the
component. Beyond this point, unprocessed inputs are accumulating. Further increases in

input rate result in smaller and smaller increases in output rate, until a point is reached at
which an increase in the input rate results in no increase in the output rate. Beyond this
point, further increases in input rate actually result in a decrease in the output rate. The
component (or system) is overloaded.

Figure 40-1. Component Performance Profile

[View full size image]

It is important to realize that as soon as the output rate begins to lag behind the input rate,
the work in progress piles up in the component, and will continue to pile up until the input
rate drops below the operating capacity and the accumulated work in progress has been
completed. Continuous operation beyond the operating capacity will place increasing
demands upon system resources as the work piles up. Unless checked in some manner,
such operation will always lead to the eventual catastrophic failure of the component.
Mechanisms available to avoid such catastrophic failures include refusing to accept
additional inputs and the discarding of some work in progress.

Most components can tolerate operation in the saturation and even overload regions for a
short period of time. If the input rate has not exceeded the saturation point and the input
rate stays below the operating capacity long enough, then the component will be able to
clear out the backlog of work in progress and be able to resume normal operation. If the
input rate has gone beyond the saturation point into the overload region, the operation of
the component becomes far less predictable. Generally, once a component has reached
overload, the output rate is no longer just a function of the input rate, but is impacted by
the size of the backlog as well. Thus, even if the input rate drops to zero, it may be some
time before the output rate begins to actually improve. In general, operation in the overload
region is unpredictable. Where possible, the system should be designed to ensure that no
component ever operates in this region.

This profile of component behavior has a significant impact on how you go about
experimentally determining the component capacity. Presenting the component with an
extremely high volume of input is simply going to push the component into the overload

region. Since the output rate in this region may be significantly less (often orders of
magnitude less) than the design or operating capacity, such an experiment is not going to
provide you with the information you need.

The proper way to conduct a capacity measurement experiment is to present the
component with a controlled steady-state input rate and measure the corresponding
steady-state output rate. Establishing the performance profile consists of conducting a
series of experiments at different input rates until sufficient data has been collected to
identify the operational capacity and saturation points. This experimental series generally
begins with an input rate well below the expected design capacity. Each subsequent
experiment increases the input rate and establishes another data point on the performance
profile. Then a final experiment is conducted at a very high rate for the express purpose of
determining whether the component exhibits catastrophic behavior in the overload region.

It is a best practice to establish the operating capacity for each component for at least a
representative example of its major operations. This operating capacity can then be
compared to the design capacity required to support the current system. Of course, you
should expect that the measured operating capacity will be above the design capacity
(otherwise the component will not support the load!). The difference between the two
represents the room for growth in the system. It is often convenient to design these
experiments (and the components themselves) in such a way that response time
measurements can be made at the same time, since the capacity experiments generally
create the very load conditions required for the response time measurements.

System Capacity Testing

Simply establishing the capacity of individual components is often not sufficient to establish
the actual capacity of the overall system. One reason for this is simply the delays inherent
in inter-component communication and context switching. Another is competition for shared
resources, such as network bandwidth and shared storage subsystems. A third is the
phenomenon of emergent behavior: dynamics in interactions that cannot be predicted by
simply examining the characteristics of the individual components. The cyclical speed-up
and slow-down behavior of automobiles on a congested highway is an example of emergent
behavior.

For these reasons, the actual operating capacity of the system as a whole should be
measured in the same manner that you established the operating capacity of individual
components. The testing should also include transient overloads. This will serve to
determine the types of overloads from which the system is capable of recovering and those
that push the overall system so far into the overload range as to render the system
unrecoverable. The "fix" for this type of behavior is usually some form of throttling.
Highway entrance gating using stoplights is an example of such throttling.

In summary, when you are testing distributed systems, you need to be on the lookout for
emergent behavior, and go out of your way to create conditions that might trigger such
behavior. This means that you need to (a) test systems at normal peak volumes, (b) test
systems at excessive volumes, and (c) test the system's response to the failure and
recovery of components.

Failure Mode Testing

An often neglected aspect of testing is failure mode testing. In this type of testing, failures
of individual components, machines, and networks are simulated. This testing verifies that
the symptoms exhibited are the symptoms that were anticipated in the design and that the
recovery procedures work as intended. Failure mode testing is mandatory for any process
that has high-availability or fault tolerance requirements.

Failure mode testing requires an isolated test environment that can tolerate the killing of
applications, machines, and networks. This environment may well be required for an
extended period of time as this type of testing is likely to uncover situations that require
some redesign and retesting. While an ideal environment for failure mode testing would
resemble the actual production environment as closely as possible, it is often not practical
to assemble such an environment and dedicate it to this type of testing. Since performance
is not normally an issue in this type of testing (except perhaps in measuring recovery
times), an acceptable alternative in many cases is to assemble an environment of older
equipment with similar hardware architecture running the same operating system(s).

Summary

There are a number of aspects of testing that require the attention of the architect. Unit
and integration testing often require test harnesses, and these need to be specified and
designed along with the system components. It is the architect's responsibility to establish a
reasonable order of assembly for integration testing that minimizes the need for additional
test harnesses.

The environments for functional and system testing are also a concern. End-point systems
may not be available in some or all of these environments, in which case simulators will be
required for these systems. These simulators will also have to be specified and designed.

Performance and failure mode testing also have special requirements. Performance test
environments must provide unloaded machines and networks to produce unambiguous test
results. Failure mode test environments must be tolerant of machine and network
disruptions.

Performance testing requires carefully controlled experiments that characterize the
components under both normal and overload conditions. In addition to testing individual
components, the system as a whole must be tested as well. Emergent behavior may lead to
overall system behavior that cannot be predicted from the behavior of the individual
components, particularly under overload conditions.

Key Testing Questions

1. How will each component be unit tested? Does the component require
additional interfaces to support testing? Is a test harness required?

2. Is automated regression testing required for this component? Are the
component interfaces compatible with the regression testing framework?
How will the results be evaluated?

3. What is the planned order of assembly for integrating the components?

4. What test harnesses will be required for integration testing?

5. Are end-point systems available in the test environments? Does the test
version of the system contain a sufficiently rich data set to support a full
test? Can the system be readily reset to a known state? If the answer to
any of these questions is no, are the resulting risks acceptable both to the
project and to the business?

6. What risks would the project or the business face if performance testing did
not occur and a performance-related failure (which might well be a
catastrophic failure of the system) occur in production?

7. What environment will be used for performance testing?

8. What set of experiments is required to determine the capacity of each
component? Have any required design modifications been made to the
component and the test harness to support this type of testing?

9. For components that have response time requirements, have the
experiments been designed that will establish the actual response time?
Have the required design modifications been made to the component itself
and the test harness to support this testing?

10. For each business process that will place a significant load on the system,
has the experiment been designed that will measure the capacity of the
system while executing this process? Have the required design
modifications been made?

11. For each process that has a challenging response time requirement, has an
experiment been designed that will establish the actual response time under
the required load conditions? Have the required design modifications been
made?

12. What risks would the project and the enterprise face if failure mode testing
was skipped and a component failure and subsequent recovery took

substantially longer than anticipated (hours or days)?

13. Does an environment for failure mode testing already exist? If not, is its
creation part of the project plan?

14. Has a failure testing plan been established? Does the plan include at least
one failure of each component, machine, and network segment?

15. Is site disaster recovery a requirement? If so, how will it be tested?

Part IX: Advanced Topics

Chapter 41. Representing a Complex Process
Before you can manage a process, you first need to define it and obtain consensus among
the stakeholders that this definition is correct. This requires a representation of the process
that all can share and agree upon. But many processes, particularly at the enterprise level,
are complex, with many participants and many activities. An activity diagram representing
the entire process in all its detail would become a large wall chart. Although such a diagram
might be correct, most of its detail is of little interest to most of the stakeholders. How then
do you acquaint the stakeholders with the process and get buy-in on its important aspects
without burying them in detail? The answer is elision.

When presenting a complex process, you often omit some of the detail, a practice known as
elision. When you elide detail, you are then left with a simplified representation of the
process. This simplified representation is then augmented with separate representations,
each showing some of the elided details. Taken together, the simplified representation and
the supporting detailed representations contain all the information that would have been on
the wall chart, but now organized for better comprehension.

Understanding the overall process begins with an understanding of the simplified
representation. Once this simplified representation is understood, it then serves a context
for understanding the process details in the supporting representations. The challenge in
this game, of course, is to ensure that the simplified representation does not omit or
obscure the most important aspects of the process.

So how can you elide detail in a process without creating a misleading representation of the
process? While there is no one-size-fits-all answer, there are a number of techniques that
you can use selectively in specific situations. Each of these techniques abstracts some
portion of the process without hiding critical aspects essential to its understanding. In the
end, the high-level understanding you want to preserve is the basic process flow, the
breakdowns that can occur in the process, and how these breakdowns can be detected.

Eliding Communications Detail

Generally, the first thing you abstract away from a complex process representation is the
detail of the communications between participants. A full UML activity diagram depiction of
an interaction shows the artifact being exchanged between the participants. At an abstract
level, you still want to show that there is an interaction between the participants, but you do
not necessarily want to show the artifact itself. Chapter 9 showed how to do this by
replacing the object flows in the diagram with control flows. Strictly speaking, this is not a
"correct" utilization of the UML notation, as there is, indeed, an object flow occurring.
However, by adopting the convention that a control flow that crosses a swimlane boundary
is an abstracted representation of an object flow, there is no ambiguity. These control flows
can be refined into object flows by adding the details of the object flow.

Part IX: Advanced Topics

Chapter 41. Representing a Complex Process
Before you can manage a process, you first need to define it and obtain consensus among
the stakeholders that this definition is correct. This requires a representation of the process
that all can share and agree upon. But many processes, particularly at the enterprise level,
are complex, with many participants and many activities. An activity diagram representing
the entire process in all its detail would become a large wall chart. Although such a diagram
might be correct, most of its detail is of little interest to most of the stakeholders. How then
do you acquaint the stakeholders with the process and get buy-in on its important aspects
without burying them in detail? The answer is elision.

When presenting a complex process, you often omit some of the detail, a practice known as
elision. When you elide detail, you are then left with a simplified representation of the
process. This simplified representation is then augmented with separate representations,
each showing some of the elided details. Taken together, the simplified representation and
the supporting detailed representations contain all the information that would have been on
the wall chart, but now organized for better comprehension.

Understanding the overall process begins with an understanding of the simplified
representation. Once this simplified representation is understood, it then serves a context
for understanding the process details in the supporting representations. The challenge in
this game, of course, is to ensure that the simplified representation does not omit or
obscure the most important aspects of the process.

So how can you elide detail in a process without creating a misleading representation of the
process? While there is no one-size-fits-all answer, there are a number of techniques that
you can use selectively in specific situations. Each of these techniques abstracts some
portion of the process without hiding critical aspects essential to its understanding. In the
end, the high-level understanding you want to preserve is the basic process flow, the
breakdowns that can occur in the process, and how these breakdowns can be detected.

Eliding Communications Detail

Generally, the first thing you abstract away from a complex process representation is the
detail of the communications between participants. A full UML activity diagram depiction of
an interaction shows the artifact being exchanged between the participants. At an abstract
level, you still want to show that there is an interaction between the participants, but you do
not necessarily want to show the artifact itself. Chapter 9 showed how to do this by
replacing the object flows in the diagram with control flows. Strictly speaking, this is not a
"correct" utilization of the UML notation, as there is, indeed, an object flow occurring.
However, by adopting the convention that a control flow that crosses a swimlane boundary
is an abstracted representation of an object flow, there is no ambiguity. These control flows
can be refined into object flows by adding the details of the object flow.

Part IX: Advanced Topics

Chapter 41. Representing a Complex Process
Before you can manage a process, you first need to define it and obtain consensus among
the stakeholders that this definition is correct. This requires a representation of the process
that all can share and agree upon. But many processes, particularly at the enterprise level,
are complex, with many participants and many activities. An activity diagram representing
the entire process in all its detail would become a large wall chart. Although such a diagram
might be correct, most of its detail is of little interest to most of the stakeholders. How then
do you acquaint the stakeholders with the process and get buy-in on its important aspects
without burying them in detail? The answer is elision.

When presenting a complex process, you often omit some of the detail, a practice known as
elision. When you elide detail, you are then left with a simplified representation of the
process. This simplified representation is then augmented with separate representations,
each showing some of the elided details. Taken together, the simplified representation and
the supporting detailed representations contain all the information that would have been on
the wall chart, but now organized for better comprehension.

Understanding the overall process begins with an understanding of the simplified
representation. Once this simplified representation is understood, it then serves a context
for understanding the process details in the supporting representations. The challenge in
this game, of course, is to ensure that the simplified representation does not omit or
obscure the most important aspects of the process.

So how can you elide detail in a process without creating a misleading representation of the
process? While there is no one-size-fits-all answer, there are a number of techniques that
you can use selectively in specific situations. Each of these techniques abstracts some
portion of the process without hiding critical aspects essential to its understanding. In the
end, the high-level understanding you want to preserve is the basic process flow, the
breakdowns that can occur in the process, and how these breakdowns can be detected.

Eliding Communications Detail

Generally, the first thing you abstract away from a complex process representation is the
detail of the communications between participants. A full UML activity diagram depiction of
an interaction shows the artifact being exchanged between the participants. At an abstract
level, you still want to show that there is an interaction between the participants, but you do
not necessarily want to show the artifact itself. Chapter 9 showed how to do this by
replacing the object flows in the diagram with control flows. Strictly speaking, this is not a
"correct" utilization of the UML notation, as there is, indeed, an object flow occurring.
However, by adopting the convention that a control flow that crosses a swimlane boundary
is an abstracted representation of an object flow, there is no ambiguity. These control flows
can be refined into object flows by adding the details of the object flow.

Eliding Participant Activity Details

The high-level representation of a process does not need to depict the detailed steps of the
work being performed by each participant. What is important at the high level is the
understanding that the participant performed some work as a consequence of an input and
delivered some results. When a participant performs a collection of activities all belonging
to the same process, you can replace this detail with a single abstracted activity in the top-
level process (Figure 41-1). The details of this abstracted subprocess still need to be
documented, but this can be done in a more detailed supporting diagram that covers just
the subprocess.

Figure 41-1. Eliding Participant Activity Details

[View full size image]

There are, however, some important restrictions on this elision. This abstracted activity may
produce more than one result, but it should not receive any additional triggering events.
Each triggering event must be shown in the top-level diagram, as the loss of each is a
potential cause of process breakdown.

Eliding Supporting Participants

Another form of simplification is participant elision: You selectively omit some of the
participants in a process. This is a simplification that should be approached with a great
deal of caution. One of the reasons that you are modeling the process is so that you can
understand what can go wrong. You want the abstracted process definition to preserve
these sources of breakdown so that you can understand which participants are in a position
to detect breakdowns.

One common type of breakdown in a process is that one of the participants in the process
"drops the ball." In other words, a participant that has responsibility for a task fails to
execute that task. If you elide that participant from the process, you lose the understanding
that this participant could ever have "the ball" to begin with. The overall process could fail
as a consequence of that participant's failure to execute its responsibility, yet you would not
gain that understanding from looking at the abstracted process definition. Since you want to
be able to "follow the ball" of responsibility through the abstracted process representation,
you cannot arbitrarily remove participants from the process.

Despite this, there are some participants that can be safely elided from the overall process.
These are participants whose work is both routine and actively managed by another
participant. Determining which participants fall into this category requires an understanding
of both the nature of the work and the manner in which the participant's work is being
managed. There are three conditions that need to be met:

1. The participant must be a performer in an interaction in which the actual work result
is returned to the requestor (e.g., the invocation of the work is a request-reply
interaction).

2. The task being performed must be routine (i.e., a common service) and not a task
that is specific to the process.

3. The requestor managing the work must remain in the diagram and be responsible for
taking action if the performer fails to return the expected result.

If these three conditions are met, the elision of the performer is generally acceptable. Since
the remaining requestor is responsible for determining that the elided performer has
dropped the ball, you haven't lost any understanding of how breakdowns in the process can
be detected. In a sense, the omitted performer never has responsibility anyway: The real
responsibility lies with the requestor, who is still represented in the model.

Note that these three conditions are not met if the work coordination involves fire-and-
forget or delegation. With these coordination patterns, responsibility is truly passed from
one participant to another. No other participant is in a position to detect either participant's
breakdown. Therefore, eliding either participant produces an abstraction that masks
breakdowns that cannot be detected by the remaining participants. Such abstractions are
misleading and are to be avoided. All participants in fire-and-forget and delegation
interactions should be retained in the abstracted process representation, with one
exception.

This exception relates to participants who play the role of communication intermediaries.
Interactions between major participants are often carried out via communications
intermediaries. In fire-and-forget interactions, for example, there may be one fire-and-
forget exchange between the requestor and the intermediary, and then another between
the intermediary and the performer. In such cases, you can elide the swimlane representing
the intermediary and replace it with an interaction arrow directly between the requestor and
provider as described in Chapter 17. To indicate that elision has occurred, you label that
arrow with the name of the communications service to indicate that some intermediary
provided the mechanism for the interaction. Since the basic breakdown analysis asks "what
happens if this participant becomes nonfunctional" for each swimlane and "what happens if
this communication fails" for each communication, the breakdowns in the intermediary are
still adequately represented.

This simplification can be used any time there are communications intermediaries and can
be extended to cover chains of intermediary participants as was described in Chapter 18. In
such cases, you create a separate activity diagram to detail the pattern of interaction
between the intermediaries and give a name to this pattern. You then use that pattern
name as the label on the communication arrow on the abstracted process representation.

Participant elision should be used judiciously. The abstracted representation must still
convey a clear understanding of the overall process, including an understanding of
breakdowns and their detection. In particular, you don't want to elide components that
make decisions or perform functions that are specific to the process. Elision should be
restricted to components that provide standardized supporting services.

Abstracting Subprocesses

You may find embedded within a large process a group of participants who are actually
executing a subprocess. In such cases, it may be appropriate to collapse the entire
subprocess (the participants and all of their activities) into a single swimlane. For such a
consolidation to be appropriate, the subprocess being abstracted must adhere to the
definition of process: a sequence of activities that is triggered by an event and produces
countable results. The triggering event must be an interaction with a participant in the
larger process, and the results must be delivered back to participants in the larger process.
If these conditions are met, and the participants in the subprocess have no other
interactions with the other participants that are not shown in the top-level process, then it
is appropriate to abstract the subprocess into a single swimlane.

When you deal with very large scale processes (enterprise-wide processes, for example),
subprocess abstraction is the primary tool you have for making the overall process not only
comprehensible but manageable. But not every process can be abstracted in this manner.
The requirement for subprocess abstraction is that both the activities and their performers
be separable from the rest of the process. If the same participants are also involved in
other activities in the larger process, then abstracting the subprocess obscures your
understanding of what would happen should that participant become unavailable. There is a
process management implication as well: If the participant is involved in both the
subprocess and other parts of the larger process, the subprocess cannot be managed
independently of the larger process. This is no longer just a technical issue of process
representationâ!”it is a process design and management issue.

Summary

Showing all the details of a complex process in a single diagram can result in an overly
complicated representation that makes it difficult to understand the overall process flow and
the possibilities for breakdown and breakdown detection. Simplifying the representation is
important, but must be undertaken with care so as not to distort the understanding of the
process.

The desired form of simplification is elision: removing selected details while preserving the
structure. The details of how a communication happens can be elided as long as the fact
that the interaction occurs is still represented in the remaining diagram. The details of the
activities performed by a participant may be elided as long as all that participant's
interactions remain in the top-level diagram. Even some participants may be elided as long
as they perform routine services and the performance of those services is being managed
by the remaining participants. When a collection of participants executes a subprocess, the
collection can be reduced to a single swimlane in the top-level diagram and the subprocess
documented separately.

Key Complex Process Representation Questions

1. If communications details have been elided from the top-level process
diagram, has the diagram been annotated to indicate how the
communications occurs? Have supporting diagrams been created to
document the communications details?

2. Have the activity details of a participant been elided? Has that elision
obscured any interactions with other participants?

3. Have supporting participants who provide routine services been elided? Do
the remaining participants actively manage the work of those elided
participants?

4. Have any subprocesses and their related participants been collapsed into a
single swimlane? Are there any participants in common between the larger
process and the elided subprocess?

Chapter 42. Process Management and Workflow
As business processes grow increasingly complex, managing them increases in complexity
as well. This makes the management of the process an important target for automation.
Chapter 29 introduced the basic notion of a process manager, a component whose role it is
to manage the execution of a process. The requirement for this type of component arises
frequently enough that a class of commercial components has arisen to address this need.
These components are generally referred to as workflow engines. Workflow engines are
process management frameworks that are configured to play the management role with
respect to one or more business processes. These products have an explicit representation
of the process and, in varying degrees, track or control the progress of the process.

Whether you use a commercial engine or design your own process manager, you will
encounter a number of design issues in managing a process. The following sections present
an overview of these issues with an eye towards understanding the interdependencies
between the design of the business process and the design of the systems that support it,
particularly the process manager. These interdependencies are so deep that it is virtually
impossible to design the process without altering the systems. Virtually every business
process design decision has system design implications, and virtually every workflow design
decision has business process design implications as well.

This discussion focuses on the technical aspects of business process and system design. It
makes no attempt to address the organizational and business issues that drive business
process design. Such a discussion warrants a full book-length treatment of its own, such as
Sharp and McDermott's Workflow Modeling.[1]

[1] Sharp, Alec, and Patrick McDermott. 2001. Workflow Modeling: Tools for Process Improvement and
Application Development. Norwood, MA: Artech House.

Process Management

So what exactly is process management? Part VI discussed how interactions between
participants influence the execution of a process and, specifically, how the arrival of inputs
can trigger a participant's execution of an activity. Process management is nothing more
than the use of this type of interaction to explicitly manage all of the activity within a
business process.

Process management is, itself, a processâ!”a process that manages the actual work
process! It determines what needs to be done, initiates the work, confirms timely
completion, and determines what needs to be done next. While this sounds straightforward,
there are many issues that can make process management complex.

Process Management Goals

There are many different reasons for wanting to manage a process. A few examples are:

Ensuring that work is appropriately prioritized and scheduled to meet KPI and SLA

objectives

Ensuring that work is assigned to appropriately skilled individuals

Ensuring appropriate responses to process breakdowns

Ensuring that issues are appropriately escalated

Dynamically reassigning resources to process bottlenecks

All of these, and many more, are achievable through process management. But achieving
particular objectives requires design that is specific to those objectives, both at the process
level and the systems level. The mere employment of a workflow engine will not magically
achieve these objectives. Beyond the design investment, achieving some objectives may
require additional information and additional processes to maintain that information. For
these reasons, it is prudent to determine the process management goals before embarking
on the design of the business process and its supporting systems.

The possible goals for process management are pretty open-ended, limited only by the
creativity and imagination of those seeking to improve the process. What you must
recognize, however, is that achieving any goal is an unlikely outcome unless:

1. The goal is clearly stated in a quantifiable manner

2. The actions required to achieve the goal are clearly defined

3. Measurements are put in place to measure progress towards the goal

Clearly stating the goals is the first step in managing any process. To aid in this definition,
here are a number of common process management goals for your consideration.

Fully automate the process: Have the systems fully automate the process so that no
human involvement is required in its normal execution.

Facilitate the evolution of the process: Make it easy to alter the activity sequence or
the conditions governing when activities are performed.

Improve on-time work completion: Organize and manage the work to maximize on-
time performance.

Assign work to participants based on participant qualifications

Manage escalation: Implement a predefined escalation chain, typically for either
approvals or exception handling.

Coordinate the execution of multiple processes: Coordinate the work of otherwise
independent processes to achieve specific business goals. Batching purchase requests
for common materials and consolidating the shipment of multiple orders are typical
cost reduction examples.

Dynamically define the business process results: Add a design activity in the process

that defines what the process will ultimately deliver.

Dynamically define portions of the business process: After a design activity, add an
activity that defines the remainder of the process for delivering what has just been
designed.

Enable in-flight process changes: Be able to alter the definition of a process that is
already executing to reflect a changing situation.

Many of these goals have design issues associated with them that will be discussed later in
this chapter, but first you need to explore relationship between the work itself and the
process of managing the work.

The Management Process Is Not the Work Process!

It is tempting to consider the workflow to be the actual work process, but there are some
important and real distinctions between the two. To begin with, the workflow process never
covers the complete business process. At a minimum, the workflow process does not cover
the activities leading up to the start of the workflow: Activities that recognize the event and
iniate the workflow are required. Secondly, most workflow engines do not actually do workâ
!”they manage work being done by other participants. Furthermore, there are usually
interactions between participants that are not directly under the control of the workflow.
The managed participants often interact with other participants whose activities are not
being managed.

The bottom line is that the process being executed by the workflow engine is a
management process that oversees a subset of the complete work process. That complete
business process includes all participants and all interactions that are required to get the
work done. The workflow process, on the other hand, only describes the activities of the
workflow engine itself and its interactions with the participants that it directly manages.
They are two distinct, though closely related, processes.

The workflow process represents the work of the workflow engine itself. This includes any
activities being performed by the workflow engine itself and the direct interactions between
the workflow engine and the other participants. This process is the workflow engine's view
of the overall business process. It is an interesting twist of nomenclature that even though
the purpose of a workflow engine is to control the flow of work (as its name implies), the
engine itself is often not directly involved in either the actual performance of the work or
movement of the work results. It only provides the control over these activities.

So now you have not one but two processes: the workflow engine's control process and the
overall business process. How do you represent these two processes and the relationship
between them? At the top level, the answer is that you represent the workflow process as a
swimlane in the activity diagrams that represents the overall work process. When you
represent the workflow engine's participation in this manner, you show the activities of the
workflow engine within its swimlane as well as its interactions with the other participants. If
you then extract just this swimlane and its direct interactions with other participants, what
you are left with is a representation of the workflow engine's process.

Maintaining Separation between Processes and Work

When it comes to getting work done, enterprises are constantly innovating. You want to
make sure that the way you are going about implementing and managing business
processes facilitates rather than hinders this evolution. One key to doing this is maintaining
a separation between the work and the process by which that work is accomplished.

You have already seen a couple of examples of this distinction, though you may not have
recognized them as such at the time. The first example was the discussion of different
processes for withdrawing cash from a bank, one involving ATMs and the other a human
teller. Here there were two different processes for performing the same work. Another
example was in the abstraction of milestone status from the work process. The use of
milestones to communicate status (discussed in Chapters 10 and 38) serves to isolate
components that require process status from changes in the underlying business process.

When you are considering the explicit management of a business process, this separation
between the work and the process becomes even more important. Very often the process
being managed is one of the core enterprise business processes. These are the processes
that distinguish the enterprise from its competitors, and enterprises need to continually
evolve these processes to remain competitive. You want to minimize the dependency of the
system designs on the business process designs so that these dependencies do not impede
process evolution. In fact, one of the goals of the workflow effort may be to make it easier
to evolve the process. Other process management goals may require the dynamic definition
or modification of business processes. These considerations lead to the following two
workflow design best practices.

Explicitly Represent Milestone Status

The first design best practice is to explicitly represent the milestone status of the process.
Explicitly representing the milestone status makes it easy to track the changes and capture
the data required for KPI and SLA monitoring. Furthermore, the explicit status
representation provides a mechanism for decoupling consumers of milestone status from
the process representation and its interpretation. Even though it may be possible to derive
milestone status from the process status, doing so creates a dependency on the process
design that makes it more difficult to evolve the process.

Store Work-Related Data outside the Workflow Engine

The second best practice is to store all work-related information, including its milestone
status, independently of the workflow engine's data representations. This work-related
information is typically maintained in a database that plays the role of an operational data
store (ODS) for work-related information. In keeping with the previous best practice, the
current milestone status should be explicitly represented in the ODS, even if that status can
be inferred from other data in the ODS. This allows the milestone status to be directly
obtained without requiring any understanding of the workflow engine, its data
representations, or other work-related data. In this paradigm, when the management
process reaches a unit-of-work milestone, it explicitly updates the unit-of-work status in
the ODS.

These best practices should be considered design guidelines, and not hard and fast rules.
The guidelines are intended to minimize the design dependencies between components, and
thus facilitate the evolution of the overall systems, the business processes, and the work

itself. These design guidelines do, however, carry with them a performance impact. The
separation of the work-related ODS from the workflow engine now requires interactions
between the two whenever ODS information is needed or modified by the workflow engine.
Counterbalancing this is the need for other participants (user interface components in
particular) to access this same information. Maintaining the ODS separation simplifies the
interactions with these other components. It is generally recommended that these best
practices be followed unless a performance analysis specifically indicates that the resulting
design is infeasible. In most cases, the resulting simplicity of the individual component
designs and the evolutionary flexibility obtained by following these best practices will more
than justify any incremental cost in machine hardware or network bandwidth.

Chapter 42. Process Management and Workflow
As business processes grow increasingly complex, managing them increases in complexity
as well. This makes the management of the process an important target for automation.
Chapter 29 introduced the basic notion of a process manager, a component whose role it is
to manage the execution of a process. The requirement for this type of component arises
frequently enough that a class of commercial components has arisen to address this need.
These components are generally referred to as workflow engines. Workflow engines are
process management frameworks that are configured to play the management role with
respect to one or more business processes. These products have an explicit representation
of the process and, in varying degrees, track or control the progress of the process.

Whether you use a commercial engine or design your own process manager, you will
encounter a number of design issues in managing a process. The following sections present
an overview of these issues with an eye towards understanding the interdependencies
between the design of the business process and the design of the systems that support it,
particularly the process manager. These interdependencies are so deep that it is virtually
impossible to design the process without altering the systems. Virtually every business
process design decision has system design implications, and virtually every workflow design
decision has business process design implications as well.

This discussion focuses on the technical aspects of business process and system design. It
makes no attempt to address the organizational and business issues that drive business
process design. Such a discussion warrants a full book-length treatment of its own, such as
Sharp and McDermott's Workflow Modeling.[1]

[1] Sharp, Alec, and Patrick McDermott. 2001. Workflow Modeling: Tools for Process Improvement and
Application Development. Norwood, MA: Artech House.

Process Management

So what exactly is process management? Part VI discussed how interactions between
participants influence the execution of a process and, specifically, how the arrival of inputs
can trigger a participant's execution of an activity. Process management is nothing more
than the use of this type of interaction to explicitly manage all of the activity within a
business process.

Process management is, itself, a processâ!”a process that manages the actual work
process! It determines what needs to be done, initiates the work, confirms timely
completion, and determines what needs to be done next. While this sounds straightforward,
there are many issues that can make process management complex.

Process Management Goals

There are many different reasons for wanting to manage a process. A few examples are:

Ensuring that work is appropriately prioritized and scheduled to meet KPI and SLA

objectives

Ensuring that work is assigned to appropriately skilled individuals

Ensuring appropriate responses to process breakdowns

Ensuring that issues are appropriately escalated

Dynamically reassigning resources to process bottlenecks

All of these, and many more, are achievable through process management. But achieving
particular objectives requires design that is specific to those objectives, both at the process
level and the systems level. The mere employment of a workflow engine will not magically
achieve these objectives. Beyond the design investment, achieving some objectives may
require additional information and additional processes to maintain that information. For
these reasons, it is prudent to determine the process management goals before embarking
on the design of the business process and its supporting systems.

The possible goals for process management are pretty open-ended, limited only by the
creativity and imagination of those seeking to improve the process. What you must
recognize, however, is that achieving any goal is an unlikely outcome unless:

1. The goal is clearly stated in a quantifiable manner

2. The actions required to achieve the goal are clearly defined

3. Measurements are put in place to measure progress towards the goal

Clearly stating the goals is the first step in managing any process. To aid in this definition,
here are a number of common process management goals for your consideration.

Fully automate the process: Have the systems fully automate the process so that no
human involvement is required in its normal execution.

Facilitate the evolution of the process: Make it easy to alter the activity sequence or
the conditions governing when activities are performed.

Improve on-time work completion: Organize and manage the work to maximize on-
time performance.

Assign work to participants based on participant qualifications

Manage escalation: Implement a predefined escalation chain, typically for either
approvals or exception handling.

Coordinate the execution of multiple processes: Coordinate the work of otherwise
independent processes to achieve specific business goals. Batching purchase requests
for common materials and consolidating the shipment of multiple orders are typical
cost reduction examples.

Dynamically define the business process results: Add a design activity in the process

that defines what the process will ultimately deliver.

Dynamically define portions of the business process: After a design activity, add an
activity that defines the remainder of the process for delivering what has just been
designed.

Enable in-flight process changes: Be able to alter the definition of a process that is
already executing to reflect a changing situation.

Many of these goals have design issues associated with them that will be discussed later in
this chapter, but first you need to explore relationship between the work itself and the
process of managing the work.

The Management Process Is Not the Work Process!

It is tempting to consider the workflow to be the actual work process, but there are some
important and real distinctions between the two. To begin with, the workflow process never
covers the complete business process. At a minimum, the workflow process does not cover
the activities leading up to the start of the workflow: Activities that recognize the event and
iniate the workflow are required. Secondly, most workflow engines do not actually do workâ
!”they manage work being done by other participants. Furthermore, there are usually
interactions between participants that are not directly under the control of the workflow.
The managed participants often interact with other participants whose activities are not
being managed.

The bottom line is that the process being executed by the workflow engine is a
management process that oversees a subset of the complete work process. That complete
business process includes all participants and all interactions that are required to get the
work done. The workflow process, on the other hand, only describes the activities of the
workflow engine itself and its interactions with the participants that it directly manages.
They are two distinct, though closely related, processes.

The workflow process represents the work of the workflow engine itself. This includes any
activities being performed by the workflow engine itself and the direct interactions between
the workflow engine and the other participants. This process is the workflow engine's view
of the overall business process. It is an interesting twist of nomenclature that even though
the purpose of a workflow engine is to control the flow of work (as its name implies), the
engine itself is often not directly involved in either the actual performance of the work or
movement of the work results. It only provides the control over these activities.

So now you have not one but two processes: the workflow engine's control process and the
overall business process. How do you represent these two processes and the relationship
between them? At the top level, the answer is that you represent the workflow process as a
swimlane in the activity diagrams that represents the overall work process. When you
represent the workflow engine's participation in this manner, you show the activities of the
workflow engine within its swimlane as well as its interactions with the other participants. If
you then extract just this swimlane and its direct interactions with other participants, what
you are left with is a representation of the workflow engine's process.

Maintaining Separation between Processes and Work

When it comes to getting work done, enterprises are constantly innovating. You want to
make sure that the way you are going about implementing and managing business
processes facilitates rather than hinders this evolution. One key to doing this is maintaining
a separation between the work and the process by which that work is accomplished.

You have already seen a couple of examples of this distinction, though you may not have
recognized them as such at the time. The first example was the discussion of different
processes for withdrawing cash from a bank, one involving ATMs and the other a human
teller. Here there were two different processes for performing the same work. Another
example was in the abstraction of milestone status from the work process. The use of
milestones to communicate status (discussed in Chapters 10 and 38) serves to isolate
components that require process status from changes in the underlying business process.

When you are considering the explicit management of a business process, this separation
between the work and the process becomes even more important. Very often the process
being managed is one of the core enterprise business processes. These are the processes
that distinguish the enterprise from its competitors, and enterprises need to continually
evolve these processes to remain competitive. You want to minimize the dependency of the
system designs on the business process designs so that these dependencies do not impede
process evolution. In fact, one of the goals of the workflow effort may be to make it easier
to evolve the process. Other process management goals may require the dynamic definition
or modification of business processes. These considerations lead to the following two
workflow design best practices.

Explicitly Represent Milestone Status

The first design best practice is to explicitly represent the milestone status of the process.
Explicitly representing the milestone status makes it easy to track the changes and capture
the data required for KPI and SLA monitoring. Furthermore, the explicit status
representation provides a mechanism for decoupling consumers of milestone status from
the process representation and its interpretation. Even though it may be possible to derive
milestone status from the process status, doing so creates a dependency on the process
design that makes it more difficult to evolve the process.

Store Work-Related Data outside the Workflow Engine

The second best practice is to store all work-related information, including its milestone
status, independently of the workflow engine's data representations. This work-related
information is typically maintained in a database that plays the role of an operational data
store (ODS) for work-related information. In keeping with the previous best practice, the
current milestone status should be explicitly represented in the ODS, even if that status can
be inferred from other data in the ODS. This allows the milestone status to be directly
obtained without requiring any understanding of the workflow engine, its data
representations, or other work-related data. In this paradigm, when the management
process reaches a unit-of-work milestone, it explicitly updates the unit-of-work status in
the ODS.

These best practices should be considered design guidelines, and not hard and fast rules.
The guidelines are intended to minimize the design dependencies between components, and
thus facilitate the evolution of the overall systems, the business processes, and the work

itself. These design guidelines do, however, carry with them a performance impact. The
separation of the work-related ODS from the workflow engine now requires interactions
between the two whenever ODS information is needed or modified by the workflow engine.
Counterbalancing this is the need for other participants (user interface components in
particular) to access this same information. Maintaining the ODS separation simplifies the
interactions with these other components. It is generally recommended that these best
practices be followed unless a performance analysis specifically indicates that the resulting
design is infeasible. In most cases, the resulting simplicity of the individual component
designs and the evolutionary flexibility obtained by following these best practices will more
than justify any incremental cost in machine hardware or network bandwidth.

Styles of Work Assignment

Managing a business process often requires the assignment of work. The workflow engine
keeps track of what activities need to be performed, assigns the work to participants, and
monitors the subsequent completion of the activities. There are four common patterns of
interaction between the manager and worker that define how work queues are maintained
and which party chooses the next task:

1. Individual Queues, Worker's Choice (the IW pattern): The manager assigns the work
to an individual worker by placing it in a queue for that worker. The worker examines
the queue and selects the next task to be performed.

2. Individual Queues, Manager's Choice (the IM pattern): The manager assigns the work
to an individual worker by placing it in a queue for that worker. The manager
determines which task will be performed next.

3. Group Queue, Worker's Choice (the GW pattern): All work of a particular type is
placed into a common group queue. The worker examines the queue and selects the
next task to be performed.

4. Group Queue, Manager's Choice (the GM pattern): All work of a particular type is
placed in a common group queue. When a worker is ready for the next task, the
manager determines the task that will be performed.

Work Queues and Work Assignments

When there is more than one performer for a given activity, a decision is required as to
which performer will handle each work item. Implicit in this situation is the existence of at
least one queue of pending work and the related issue of where work will pile up if it arrives
faster than the workers can perform the work.

Individual Queues

One approach is to have an individual queue of work for each worker. With this model, the
participant (usually the process manager) that places the work in the queue is pre-assigning
the work to a specific worker. This approach is useful if the individual workers are not
identical in their capabilities (skill level, capacity) or if the work is a continuation of earlier
work that was performed by that individual.

One characteristic of this pre-assignment pattern is that queues of pending work need to be
monitored and managed. Should the worker fall behind, work may have to be reassigned to
ensure the timely handling of all the work involved. The current length of the queue, the
individual's typical work completion rate, and the variability in effort required for each work
item may all need to be considered when pre-assigning the work. These factors complicate
the management of pre-assigned work queues.

Despite the pre-assignment of the work, there is still a decision to be made when the
worker is ready for the next piece of work. In some cases, the queue is sorted (either

statically or dynamically) to reflect the work priority. In others, the worker has the freedom
to select the next piece of work based on his or her own priorities.

Group Queues

The alternative to individual queues is to maintain a single group queue for pending work of
a particular type. With group queues, the work assignment does not occur until a worker is
ready for the next piece of work. This greatly simplifies the management of the queue.

With group queues, the dominant decision is how to manage the work assignments: Do the
workers get to select the next item, or is that choice made for them? If the workers' skills
are uniform, the queue is typically sorted to reflect business priority and the first item in the
queue is assigned. If the worker skills are not equivalent but still easily characterized (junior
vs. senior workers) and the work characteristics are readily matched to worker skills, an
algorithm may be used to select the next task.

Leaving the choice to the worker may be more appropriate in complex situations. When
determining which worker has the skills to handle a given piece of work is too complex to
automate, the worker can evaluate the pending work and select an appropriate work item.
However, it should be pointed out that the pattern is subject to abuse: Workers may
"cherry pick" easy assignments instead of choosing more urgent but difficult tasks.

Initiating Workflow

A workflow process doesn't start by itself. At some point in the larger process, some
participant must explicitly take an action that triggers the start of the workflow process. You
need to determine how the workflow process will actually be triggered and under what
conditions this should occur. The activities and participant interactions leading up to the
triggering of the workflow must be designed. This raises several key design questions with
respect to initiating the workflow:

1. Under what conditions should the workflow process be started?

2. What is the mechanism for determining whether these conditions have been
met?

3. Which participants are involved in this workflow initiation, and what are
their responsibilities in this regard?

4. What is the mechanism by which the execution of the workflow process is
triggered?

5. How will breakdowns in this triggering process be detected? What should
the response to a breakdown be?

Making the Management Process Fault Tolerant

It is the nature of workflow that the execution of the management process is dependent on
the proper operation of the workflow engine. If the engine fails, the management process
must be properly restored or the overall work process will come to a halt. There are three
common strategies that can be used to accomplish this:

1. Make the workflow engine itself fault tolerant so that it remembers exactly where it
was in the management process and resumes execution after recovery.

2. Have the management process occasionally save its state (a technique known as
checkpointing), and recover the process from its last checkpoint in the event of
failure.

3. Invoke the entire management process using request-reply, and in the event of
failure, have the requestor restart the management process from the beginning.

Of course, there is always the option of not making the management process fault tolerant
at all, but if the work process warrants explicit management to begin with, it generally
warrants some level of fault tolerance in the management process.

Selecting the appropriate fault tolerance strategy requires striking an appropriate balance
between the time and computational cost involved in saving the management process state
versus the time and computational cost involved in actually performing the work. Generally,
the time is the primary consideration. Persisting the state of a management process
typically takes a few milliseconds, assuming that the state is being saved on disk. In
contrast, the time involved in actually performing the work can range from microseconds to
months. If this time interval is large, then the additional time it takes to persist the
management process state will have virtually no impact on the overall time it takes to
complete the work process. On the other hand, if this time interval is only a few
microseconds, then the time spent persisting the management process state will greatly
increase the overall time it takes to complete the work process. Figure 42-1 shows some
suggested ranges of task completion times that are suitable for the different control process
fault tolerance strategies.

Figure 42-1. Fault Tolerance Strategies versus Task Completion Time

Task completion time is not the only consideration in selecting a fault tolerance strategy.
Despite the time involved, workflow engines that save the process state after every change
can provide a rich and detailed record of the process execution. This information can be
used to satisfy audit requirements and provide the raw data necessary to both measure
process performance and determine compliance with service-level agreements. On the other
hand, while checkpointing and request-reply invocations require less management process
time, recovering from failures with these strategies may result in the repetition of work
tasks that were completed prior to the failure. This can complicate the design of the
management process and may make the strategy unsuitable.

Using Fault-Tolerant Workflow Engines

Fault-tolerant workflow engines save the state of the control process every time that state
changes so that the exact state of the control process can be recovered after a failure. In a
typical workflow engine, this state changes three times for each activity: once when the
activity becomes eligible to execute, again when a participant assumes responsibility for the
activity, and a third time when the activity is completed. If you assume that the state is
being saved onto disk, then a reasonable working assumption is that at least three disk
accesses will be required for each activity executed in the overall process.[2] This is the case
whether the workflow engine employs a database as its underlying storage mechanism or
writes its state directly to disk. Since there is some variation between workflow engines in
this regard, the actual state-preservation strategy employed by your selected engine must
be clearly understood to be able to anticipate the overhead involved in its use.

[2] This will vary somewhat depending upon the actual workflow engine being used. Some actually access
the disk more than three times, while others may be able to do some consolidation of disk accesses.
When using any workflow engine, the engine's rate of disk utilization must be clearly understood in order
to determine the disk performance required to support the process.

Another consideration is the manner in which the activity of starting of the management
process is coordinated with the activities leading up to its creation. Bear in mind that if the
workflow engine fails before the management process is successfully created, then there is
no process to be recovered. For reliability, it is prudent to create the control process using a
request-reply interaction that does not return the reply until the process has been
successfully created and saved to disk. If the process creation should fail, then the
requestor can take appropriate action. Note that a message delivery service that requires
an acknowledgment of message receipt and will redeliver a message if a receipt is not
returned can play the role of the requestor in this pattern. The Java Message Service (JMS)
is a common example of such a message delivery service.

For true fault tolerance, the state updates must be written to disk synchronously: It is not
safe (in a fault tolerance sense) for the management process to proceed without first
verifying that the state has been properly saved. Synchronous writes typically take a few
milliseconds at a minimum for each save operation.[3] If the time it takes to update the disk
is relatively short compared to the time that it takes to actually perform the task being
managed, then these delays will not be noticeable. If, on the other hand, the activity is a
small computational task that only takes a few microseconds, then the delays introduced in
saving the state will be very noticeable in the overall work process. Thus, this technique for

achieving control process fault tolerance tends to be used when the work tasks take a
second or longer to execute. People-oriented tasks and large computational tasks fit well
into this model. The time it takes to save the state can be calculated in a relatively
straightforward manner, as described in Chapter 39.

[3] There are disk subsystems available that have a shorter update time. These systems have redundant
battery-backed memory-resident buffers so that a synchronous write only requires a memory update,
and is therefore faster (the data is actually written to disk later). Such systems, however, tend to be
expensive.

You should note that disk activity is also required when a workflow process is first begun.
The amount of work involved can vary tremendously from one workflow engine to another.
Some workflow engines copy the entire process definition, which involves many disk
accesses, while others simply reference a shared process definition and require
correspondingly less activity. If workflow processes are started at a rate greater than once a
minute, it is prudent to determine the practical rate at which your selected workflow engine
can start processes and how that rate varies with the number of activities in the process.

There are other benefits that derive from frequently saving the process state. Fault-tolerant
workflow engines typically save a wealth of information about the process execution. The
times at which each task became ready to run, the work was actually begun, and the work
was actually completed are typically recorded. These provide much of the raw data required
to support continuous process-improvement efforts, calculate time-based key performance
indicators, and determine compliance with time-based service-level agreements. Additional
details, such as the identity of the individual who actually performed the task, are often
recorded as well. Such data can make individual performance measurements and
corresponding incentive compensation possible. It can also be used to provide an audit trail
of what work was performed, when, and by whom.

If you intend to use this additional information captured by the workflow engine, you must
not forget that the simple capture of the raw data is just the beginning. As was discussed in
Chapter 38, the flow of this information into the analysis process needs to be factored into
the design. This analysis process is another business process that must, itself, be driven
through the design process.

Finally, you should note that the fault-tolerant recovery of the control process state may
not, in and of itself, be sufficient to restore the overall work process to the correct state. If
failures have occurred in other components as well, those components must also be
restored to a state that is consistent with the control process state. For example, it is not
unusual for a human participant to have a user interface that is populated with data related
to the current task. This interface typically presents the user with a choice of possible
actions, such as indicating completion of the task. If a power outage occurs, the user may
need to be reminded that he or she was in the middle of a task when the outage occurred,
and the user interface will need to be restored to the state that it was in at the time of
failure in order to resume the work. Both the workflow engine and the user interface need
to be restored to a mutually consistent state for the overall work process to proceed.

Checkpointing the Management Process State

Another approach to making the management process fault tolerant is to save its state only
at selected points in the process. This approach is commonly referred to as checkpointing,

and the saved control process state is referred to as a checkpoint. With this approach, the
designer of the management process determines the points at which the process state will
be saved. If the workflow engine should fail, then the management process is recovered
from its last checkpoint and resumed from that point.

The use of checkpointing often impacts the design of the process. To begin with, you must
bear in mind that if the workflow engine fails before the first checkpoint is taken, then
process will not be recovered! For reliability, it is prudent to initiate the process with a
request-reply exchange and not return the reply until after the first checkpoint has been
reached. Then, if the process should fail prior to the reply being returned, the requestor can
take the appropriate recovery action.

The process design may be further impacted by the fact that some activities are not safely
repeatable. Checkpointing has the property that when a control process is recovered from a
checkpoint, activities after that checkpoint that had been executed before the failure may
be executed again after the recovery. But some activities cannot be safely repeated. For
example, if an electronic funds transfer was completed just prior to the failure, you
probably don't want to transfer the funds again. Workflow engines often have features that
can be used to avoid repeating the execution of activities after a checkpoint recovery, but
the use of these features must be incorporated into the actual process design. The process
designer must be acutely aware of both the workflow engine's features and whether each
activity can be safely repeated.

One of the features that can be used to avoid repeating an activity execution is the
incorporation of the checkpoint into a database transaction. Database inserts are a common
form of activity that is not repeatable. Many workflow engines with checkpointing provide
the ability to include the checkpoint within the scope of a database transaction. When this is
done, the checkpoint is created if and only if the database transaction successfully commits.
The process designer does not have to worry about the unwanted repetition of these
database operations after a checkpoint restart. If the workflow engine fails prior to the
database commit, the transaction is automatically rolled back, and it is as if the database
operations never occurred. If the transaction is successfully committed, the new checkpoint
is created and the database operation will not be repeated after a checkpoint recovery.

Another feature that can be used to avoid repeating an activity execution is a "checkpoint
recovery" flag. This flag is set to "true" when the engine is recovering a process from a
checkpoint and serves as a warning that activity repetition is a possibility. This indicator can
be used in the process design to initiate alternate courses of action after a checkpoint
recovery. For example, if an activity after a checkpoint involves a nonrepeatable interaction
with another system, the alternative course of action after recovery may be to query the
other system to determine whether an interaction was successfully completed prior to the
failure. The query result is then used to determine whether that particular interaction needs
to be performed or can be skipped.

Taking advantage of the checkpoint recovery flag requires extra design work that may
impact the design of other components in addition to the workflow engine. At a minimum,
using the checkpoint recovery flag requires the design of alternate courses of action for
each activity that cannot be safely repeated. Beyond this, additional interfaces on other
components may be required so that the workflow engine can determine whether a
particular activity has already been performed. Finally, the design of other components may
need to be further altered so that sufficient data is retained to make it possible to even

answer this question.

As with engines that implement fault tolerance, the use of checkpointing has performance
implications that must be considered. When a checkpoint is taken, most workflow engines
save the entire state of the process to disk. The volume of data and the time that it takes
to write it must be accounted for in the design. In contrast with the relatively small amount
of data written on an activity-by-activity basis, the volume of data written in a checkpoint
can be substantially larger. In this case, the time it takes to actually transfer the data to
disk may no longer be small enough to be ignored. In this case, the size of a checkpoint
should be determined and the maximum rate at which checkpoints can be practically
created should be computed.

Request-Reply Invocation of the Management Process

Both of the two previous approaches stressed the importance of initiating the creation of the
management process using a request-reply exchange so that the requestor can respond
appropriately if the process is not successfully created. But the use of request-reply makes
possible a third alternative: simply doing all the work before returning the reply. This totally
eliminates the need for the workflow engine to ever persist its state and sets the stage for
the most efficient control process execution. When the actual work process is fully
automated, the result can be a very efficient process that does not access a disk unless the
actual work requires it. The request-reply pattern was discussed in Chapter 27. The most
common use of this pattern is to manage a fully automated process.

Note that this use of request-reply does not alter at all the burden of fault tolerance that is
placed upon the requestor! Regardless of which fault tolerance approach is selected, the
requestor must still take appropriate action if the reply is not received. This means re-
invoking the management process, which requires the management process to be designed
so that it can be called more than once. All of the process design issues discussed in the
checkpointing alternative again come into play.

Hybrid Fault Tolerance Techniques

Many business processes involve a combination of short-duration automated activities and
long-duration activities. A single fault tolerance strategy may not work well for these
processes. The request-reply approach may not be appropriate due to the long duration of
the process. The use of a fault-tolerant workflow engine may add too much overhead to the
automated activities. Checkpointing may not provide satisfactory error recovery for the
manual processes. However, it is possible to combine these techniques to arrive at a
satisfactory solution.

The way to combine fault tolerance techniques is to partition the process into a primary
process with callable subprocesses, using one fault tolerance technique for the primary
process and another for the subprocesses. One common partitioning is that the primary
process contains long-running activities (usually involving people), and this process calls
subprocesses that are sequences of automated activities. Here the primary process can use
a fault-tolerant workflow engine, and the subprocesses can use the request-reply
technique.

Another common partitioning is that the primary process is an automated one that invokes

long-running processes for exception handling. Here the primary process can use
checkpointing or request-reply, and the exception handling workflow can use a fault-
tolerant workflow engine. The initiation of the exception handling process should be
implemented with request-reply to preserve the fault tolerance of the overall process.

Human Interfaces

When people participate in workflow, they require a means of interacting with the systemâ
!”a user interface. The interface makes it possible for people to understand (and possibly
select) the tasks to be performed and to report back the status of tasks. Frequently, this
user interface is also the means by which people perform their tasks. But the user interface
is more than just a window into the system. It is a distinct component with its own specific
responsibilities and system interfaces that allow it to interact with the workflow engine and
other system components.

The overall role that this user interface (UI) component plays and the specific
responsibilities it must fulfill are driven by both the nature of the tasks being performed by
the user and the design of the process of which these tasks are a part. The UI component
has specific responsibilities in coordinating the work performance with the workflow status
updates. The exact nature of these responsibilities depends on the style of work assignment
that is selected.

When the user interface also provides the means for actually performing the work, the UI
component may play an additional role in coordinating the completion of the work with the
task status in the workflow engine so that the management process state accurately reflects
the true status of the work. After a system failure, the UI component must also be restored
to a state that will allow work in progress to continue. The strategy chosen for failure
recovery determines the responsibilities of the UI component in this regard. All of these
responsibilities require both human- and system-facing interfaces. Determining the actual
responsibilities of the UI component will have a significant impact on its design.

Work Assignment Responsibilities

The style of work assignment that is selected determines many of the user interface
component responsibilities. If the workflow engine is actually assigning the tasks, then it is
usually the responsibility of the UI component to query the workflow engine to obtain the
next task assignment for the user. The performance of this query is often tied to the
completion of the user's previous task in a manner that is transparent to the user. For
example, the user interface may have a "Done" or "Submit" button that the user activates
to indicate that a task has been completed. When the button is activated, the UI component
interacts with the workflow engine to do two things: indicate the completion of the current
task and obtain the next task.

If, on the other hand, the user is selecting the tasks to be performed, the UI component
has a different set of responsibilities. It must query the workflow engine to obtain a list of
the tasks that the user might perform and display the returned list of tasks for the user so
that he or she can select one or more tasks to perform. This list often includes additional
information from other sources that the UI component must also obtain. After the user
selects the task(s), the UI component again interacts with the workflow engine to indicate
that the user has taken responsibility for the task(s). Finally, after the work has been
completed, the user interacts with the UI to indicate which tasks have been completed. The
UI must, once again, interact with the workflow engine a third time to communicate the
completion of the tasks.

The UI component design gets considerably more complicated when users can have more
than one task in progress at the same time. This situation often arises when people are
making phone calls or sending e-mail and waiting for responses. The user interface must be
capable of presenting the details of these multiple tasks, either switching back and forth
between tasks quickly or presenting them simultaneously. In terms of task status, this
activity of switching back and forth between tasks is not necessarily of interest to the
workflow engine, but many workflow processes do require the capture of statistical
information, such as how long it took to perform each activity. In these cases, simply noting
the start and end time of the activity will not give an accurate view. The user interface must
be designed to recognize clearly which task is being performed at any given time and
capture the required duration information, typically passing it on to the workflow engine.

Data Responsibilities

Many times the user interface is also the tool used to perform the task that has just been
assigned. In this role, the UI component generally must obtain information from other
sources and display that information so that it is available to the user. Often this involves
complex navigation through information and the generation of additional queries.
Performing the task generally involves the entry of information as well, whether it is the
result of a simple decision or the actual entry of data. To support this, the user interface
may also provide the means of entering or updating data, and may have the additional
responsibility for validating the data as well.

For the overall business process to flow smoothly, the performance of the user's task,
including these updates, must be accurately reflected in the task status as represented in
the workflow engine. One approach is to have the user take an explicit action to indicate
that the task has been completed, independent of the actual data updates. This approach
has a couple of disadvantages. One is that the need to perform this extra activity can be
annoying from the user's perspective. After all, the work has been actually completed and
this extra activity is just bookkeeping. Another disadvantage is that it creates the
opportunity for inconsistencies between the task state in the workflow engine and the actual
state of the work. The user could fail to indicate that the task is complete, or could indicate
that it is complete when, in fact, it is not. Either way, much of the benefit of maintaining
the task status in the workflow engine has been lost.

Another approach to updating the task status is to integrate the task status update with the
mainstream task performance activity in the user interface. One typical technique is to have
the user edit the data into the user interface, but not apply the data to the underlying
systems until a "submit" button is pressed. When the button is pressed, the user interface
component both applies the data to the underlying systems and updates the task status in
the workflow engine. In a variation of this, the data updates are delivered to the workflow
engine which then performs the actual updates and marks the work complete. This design
also affords the opportunity to invoke a data validation function as part of this operation. In
service-oriented architectures, the entire activity of validating the data, updating the
underlying systems, and updating the task status can be encapsulated as a service. This
encapsulates all of the associated business rules and makes the same functionality available
to other components as well.

User Interface Failure Recovery

The user interface generally reflects the state of the task being worked on. After a user has
taken responsibility for a task, the UI component is in a state that allows the user to
indicate that this task has now been completed. The UI component typically retrieves and
displays task-related information so that the user can use and update this information. If
the UI component should fail or be turned off by the user at this point, it must be possible
to return the interface to the same state after the UI component is restarted. This becomes
more complicated if the user has a number of tasks in progress, as the user may need to
be reminded as to which tasks are in progress.

There are a couple of options available for restoring the user interface to the correct state.
One is to have the user interface component save its state, and the other is to have it
reconstruct the state based on information stored in other components. Having the interface
component save its state requires that the state be saved in a fault-tolerant manner, which
in turn requires that all user interfaces have high-performance access to fault-tolerant
storage mechanisms. This can become increasingly complicated and expensive as the
number of users increases and becomes geographically distributed. For this reason, this
approach to user interface recovery is not often encountered in practice.

The other basic option for recovery is to have the user interface reconstruct its state from
information persisted in other components. The list of tasks that the user was working on
can be recovered from the workflow engine, and the relevant information displayed in the
interface can be recovered from the original data sources. But this information may not be
exactly as it was in the user interface at the time of failure. Edits that were not committed
to storage prior to the failure will be lost. Thus, this recovery style operates very much like
checkpointing in the workflow engine: The component will be recovered to the last saved
state. While this may require some rework on the part of users, it is generally performs
better, is simpler to implement, and is less demanding of system resources than having the
user interface maintain its own state.

Regardless of which approach is selected for user interface recovery, it is clear that the
choice will define some of the responsibilities of the UI component. If the UI component is
reconstructing its state, this choice may impose responsibilities on other components as
well. The workflow engine and components storing information related to the unit of work
will require query interfaces that will allow the UI component to retrieve the information
necessary to reconstruct its state. Thus, it is important for the recovery strategy to be well
defined before these components are constructed.

Related Processes

When a workflow is dependent on other processes for triggering events, you need to
document both the basic workflow and the related processes that it depends upon. Although
it is theoretically possible to show all of these processes in a single UML activity diagram,
the resulting diagram depicts many things going on at the same time and can be difficult to
understand. Such diagrams are not particularly useful in helping people grasp how the
business processes actually work. It is generally preferable to document the basic workflow
on its own diagram, and then show each of the dependent processes and their interaction
with the workflow process in separate diagrams.

Consider Figure 42-2, a variation on the order fulfillment process in which workflow is now
being used to manage the packing and shipping of the order. The diagram depicts the
events leading up to the creation of the workflow and the workflow itself, but when it comes
to the interaction between the warehouse worker and the workflow needed to get the next
pack-and-ship order, there is something missing. What is it?

Figure 42-2. Order Shipping Using Workflow

[View full size image]

In the non-workflow version of this process, the warehouse system printed out a stack of

pick orders and associated packing slips, and the worker simply picked up the next order
from the pile and worked on it. But in the workflow version, the worker must interact with
the workflow system to obtain the next pick order. This interaction is actually a small
processâ!”and a level of detail that you probably don't want in this high-level diagram.

When workflow is employed, one of the objectives is generally to make the worker's tasks
as simple as possible, specifically eliminating activities that do not add value to the process.
In keeping with this, it is commonplace to create a user interface in which a single user
action both indicates that one task is complete and initiates the assignment of the next task
to the user. Figure 42-3 shows a typical workflow task completion process.

Figure 42-3. Workflow Task Completion Process

[View full size image]

This task completion process involves more than just one workflow. It interacts with the
workflow containing the task that was just completed, providing the triggering event for the
wait for task completion activity. It searches all workflows that have tasks

(presumably pack-and-ship tasks) that could be performed by this worker to determine
which task the warehouse worker should perform next. Finally, it interacts with the selected
workflow to assign the task to the warehouse worker, providing the triggering event for the
assign to warehouse worker activity.

The task completion process is a separate and distinct process from the workflow process.
It is another example of a related process. Workflow processes always have related
processes: At a minimum, they have the process that leads up to the creation of the
workflow process instance. Generally, the processes related to workflow are triggered by
external events and interact with a few steps of one or more workflows.

You will also find related processes when the unit-of-work in one process does not
correspond exactly with the unit-of-work in another process. Retail store chains with
regional distribution warehouses provide a common example. Different stores order stock
from the warehouse, but the warehouse, in response, does not send a truck on a dedicated
trip to each store. Instead, a delivery trip is planned in which one truck visits a number of
stores. Here the unit-of-work for the delivery is the trip, not the individual store order. In
particular, the triggering event for the delivery trip does not come from any of the orders: It
is time-based instead.

Related processes always require design work. As an architect, it is your responsibility to
determine the interactions between these processes, paying particular attention to
triggering events and the potential for lost work.

Prioritized Work

Optimizing the flow of work through a process often involves prioritizing the tasks. To do
this, the information required to prioritize the work must be available and readily accessible
to the component prioritizing the work. Prioritization is a sorting activity and is
computationally intensive. You must factor this into your design, taking into consideration
how complicated the sorting will be, when and how often it occurs, and which component
does the sorting.

One approach to prioritization is to save the tasks in sorted order as they become eligible to
be performed. The indexing capabilities of databases are often used for this, with the task's
indexed values being updated when a task becomes ready. This can get quite complicated if
there are a number of factors influencing the sort, and even more so if those factors change
over time.

Consider a regional distribution warehouse that has a fleet of trucks servicing a number of
retail stores in the region. The trucks run a regularly scheduled route. When an order is
received, its corresponding warehouse pick-and-pack order is inserted into the list by the
scheduled departure date and time for the truck that will deliver the order to the store. But
if a truck has to be rescheduled (due to a breakdown, for example), then all the orders for
that truck must be returned to the list of pending deliveries and re-inserted into their
proper position. This eventuality must be designed for, which reveals one of the basic
limitations of the presorted approach: Contingencies that were not anticipated and designed
for may be difficult to accommodate.

A second approach is to dynamically sort the tasks as part of the work assignment activity.
This approach is very flexible, but requires the sort to be performed every time a task
assignment and the computational cost of the sort must be taken into consideration. The
advantage, however, is that arbitrary last-minute changes are readily accommodated.
Consider the warehouse pick-and-pack operation again, only this time the orders are sorted
each time a warehouse worker asks for the next order to be filled. Last-minute changes to
truck schedules can now be handled automatically.

A third intermediate approach is to periodically sort the tasks. This greatly reduces the
number of times that the sort is performed, but has its own limitations: Tasks that have
become ready since the sort was last performed may not be appropriately placed in the list.
Periodic sorts are generally used when the sorting is part of a larger scheduling activity
which is, itself, performed periodically. Once again, consider the regional distribution
warehouse. In this variation there is a significant variability in the volume of goods sent to
any given store on a particular day. Establishing a route that has the same trucks visiting
the same stores every day will result in some trucks being under-utilized while others are
overloaded. Because of this, a planning exercise is performed each day that determines
which trucks will service which stores, which orders will go on which trucks, and what the
departure schedule will be for the trucks. One output of this process is the scheduling
(prioritization) of the pick-and-pack orders for the warehouse so that the orders are filled in
the same sequence as the trucks depart. Note that here, should a truck become
unavailable, the planning exercise must be repeated to reallocate those orders to other
trucks.

Dynamic Work Assignments

In some work situations tasks are assigned based on the nature of the individual task and
the qualifications of the performer. In credit card fraud investigation, for example, fraud
cases involving small losses are assigned to junior investigators, while those involving large
losses are assigned to senior investigators. To make this possible, some key information
concerning the work item and the performer's qualifications must be available, as must an
algorithm for deciding which investigators are eligible to work on which tasks. The projected
loss for each fraud case, the loss threshold distinguishing junior from senior work, and the
junior/senior ranking of each investigator must be available as data items.

Dynamic work assignments have broader implications as well. The business process origins
of the projected loss, the threshold, and the performer qualifications must be determined.
Related business processes need to be added to the inventory and the need for additional
development determined. The dynamic work assignment itself is an activity whose
responsibility must be assigned to a component. Depending upon the location of the
reference data, additional interactions may be required. The earlier in the design process
these issues can be identified, the more easily they can be accommodated by the design.

There are other requirements that can further complicate the design of dynamic work
assignment. One is the need to dynamically adjust the work assignment rules. In the credit
card fraud investigation example, there may be times when there are a disproportionate
number of low-loss cases and the junior investigators become overloaded. To respond to
such situations, it may be desirable to temporarily lower the low-high loss threshold so that
some of the low-loss cases are now assigned to senior investigators. Alternatively, it may
be desirable to temporarily ask senior investigators to play the junior investigator role. Both
alternatives require monitoring processes to observe the loading condition and make the
appropriate adjustment. Having senior investigators play junior investigator roles
additionally requires a distinction between the strict qualifications of the investigators and
the role they happen to be playing at the moment. This requires a data element to reflect
the current role and a process for determining what that role ought to be when a user logs
in.

The business rules for assigning work can be arbitrarily complex and their implementation
can have far-reaching impact on related business processes and systems. It is prudent to
make sure that these business rules are well understood early in the design process.
Particular attention must be paid to identifying aspects of these rules that are liable to
change.

Dynamic Result and Process Definitions

For the most part, the business processes and the results they generate will be known at
the time the business process and supporting systems are being designed. But sometimes
the required activities and the generated results cannot be determined until the process is
actually executing. This is a common occurrence when the business process itself includes
some type of design activity. The results of this design activity may depend on factors that
will not be known until the business process is initiated, and the activities required to
implement the resulting design will likely depend on that design as well.

Consider a telecommunications company that designs and installs telephone systems in
buildings. These systems can range from the simple installation of a few phone lines and
handsets in a small business to the installation of wiring closets, switchboards, switches,
and associated cabling in a high-rise office building. The company wants to use workflow to
manage the process of designing and installing these telephone systems. Obviously, the
phone system must be designed before it can be installed. Furthermore, the installation
process cannot be defined until the design has been completed. Installing a few telephone
lines involves different activities than wiring a high-rise office building and installing an
entire telephone switching system. Business processes such as these present three major
design challenges:

1. Representing a design

2. Specifying the implementation process

3. Accommodating subsequent changes

Representing a Design

The first major challenge is deciding how to represent the design coming out of the design
process. In the telephone system example, the results include an inventory of the
components and wiring that need to be installed and the instructions for configuring them
and connecting them together. The results may also include a list of the permits required
and engineering reviews that need to be conducted prior to commencing the installation.

The design representation task is somewhat simplified if the design building-blocks and the
ways in which they can be assembled is standardized. In such cases, the enumeration of
elements and the means for specifying their assembly can be built into the system at design
time. The run-time activity then becomes a matter of selecting which elements are
required, indicating how many of each are needed and how they are to be assembled. The
representations of this information can be fixed and incorporated into the system along with
the user interfaces necessary to capture the information.

If the design itself is open-ended, then the problem is more complex. You need to
determine the manner in which the design will be represented. If the design needs to be in
machine-readable form, they you must define the language that will be used to describe the
design. Developing languages is a very specialized task that requires extensive modeling
experience. If you, yourself, do not have these skills, engage someone who does. Much of

the subsequent design will be based on this language definition. Changing it once
implementation has begun will be an expensive and time-consuming process. This is one
place where you should make every possible effort to do it right the first time.

Specifying an Implementation Process

The second major design challenge is deciding how to specify the process that will be
required to actually execute the design. This is both a user interface challenge and a
technology challenge. From a user interface perspective, it must be obvious to the user
both what needs to be done (i.e., the user is expected to define the process it will take to
implement the design) and how to express what needs to be done (the language used to
define the implementation process).

From a technology perspective, the process being defined must be expressed in a manner
that the workflow engine can then monitor and manage. The user interface is interacting
with the workflow engine to either convey a new process design or modify an existing one.
The challenges here are similar to those for capturing any design.

If all of the activities required to implement and assemble building-blocks are standard,
then the implementation process can be assembled from these standard activities. These
activities may, themselves, be standard subprocesses. The assembly approach allows the
convenient use of both automated and manual activities. This approach lends itself to the
management of the process as well.

A more complicated case arises when the implementation activities are not standard. Each
new element in the design requires the definition of corresponding implementation
activities. At this point, the user is essentially defining a business process from scratch,
which potentially entails every design consideration discussed in this book! While the
flexibility of this approach is attractive on the surface, the complexity of its implementation
should not be underestimated.

Accommodating Subsequent Changes

The third design challenge lies in making provisions for changes in the design and in the
resulting implementation process. It is a fact of life that design is often an iterative process.
The result is that changes can arise virtually anywhere during the design and
implementation. Such changes require both the design and the ensuing implementation
process to be modified. Thus the systems supporting the design activity must allow for the
modification of an existing design as well as the creation of a new one. Similarly, the
systems supporting the definition and execution of the implementation process must also
allow for the modification of a currently executing implementation process.

Summary

Enterprises can often benefit from the management of complex business processes. The
goals for this management directly determine the manner in which the process is managed.
Therefore, it is important to clearly understand the management goals before implementing
any form of process management.

There is a subtle but real distinction between the management process and the work
process it manages. There are always portions of the work process that precede the starting
of the work processes and interactions between the participants that do not involve the
management process. For the most part, the management process contains supervisory
activities that interact with the real work process and its participants.

It is a good design practice to maintain a clear separation between the management
process and the work it manages. Information relating to the work is best kept in an
operational data store independent of the workflow engine executing the management
process. It is good practice to explicitly represent milestone-level work status in this data
store and have the management process update this status when milestones are reached.
This facilitates the evolution of the process without impacting other business processes that
utilize this status information.

Additional management processes are often required to assign work to individuals. If work
is pre-assigned, it may be necessary to monitor and manage the queues of assigned work
in order to ensure the timely completion of all work tasks. Alternatively, the assignment
may be deferred until a worker is ready for the next task. There is variability also in which
party assigns the tasks: the worker or the manager. The optimal choices depend upon the
nature of the work.

There are often human interfaces associated with management processes. These interfaces
allow the workers to interact with the management process, but they are typically also the
vehicle for performing the work. The coordination between the actual work completion and
the status update in the workflow engine needs to be carefully designed to ensure proper
operation after systems and communications failures.

There are a number of design challenges often encountered in workflow design. Workflow
processes generally interact with other processes, and these interactions are necessary for
the proper operation of all these processes. The prioritization of work and the presence of
design activities in the business process can also present challenges.

Key Process Management and Workflow Questions

1. What are the goals of the process management? Why is the process being
managed, and what are the expected results of the management?

2. In the proposed design, has the state of the work process been abstracted
as a series of milestones?

3. Is the milestone status obtainable in a manner that is independent of the
process design and the representation of work-related data?

4. Is the milestone status stored independently of the workflow engine?

5. Is work-related data being stored independently of the workflow engine?

6. How is work assigned? Is it dynamically assigned or pre-assigned? Who
made the task assignments?

7. What event leads to the initiation of the workflow, and what is the process
leading up to the workflow initiation?

8. How is management process fault tolerance achieved? What fault tolerance
strategy is being employed, and under what circumstances does the
selected workflow engine save state? How do other components re-
synchronize their state with the workflow state after recovery?

9. What are the responsibilities of the user interface component with respect
to work assignment and task completion? What is the process for
completing a task? What is the process for obtaining the next task?

10. How is the update of information in databases and files coordinated with the
completion of the task in the workflow engine?

11. How is the user interface restored to an appropriate state after failure
recovery?

12. What other processes interact with the workflow process?

13. How is the work prioritized? What information is necessary to support the
prioritization, and how is this information maintained?

14. Are there dynamic work assignments? What information is necessary to
decide who can work on which task? How is this information maintained?
What is the algorithm for deciding?

15. Is there design activity in the business process? If so, how are the resulting
design and its implementation process captured? Is the work involved in
dynamic definition justified by the business benefits?

Suggested Reading

Sharp, Alec, and Patrick McDermott. 2001. Workflow Modeling: Tools for Process
Improvement and Application Development. Norwood, MA: Artech House.

Chapter 43. The Enterprise Architecture Group
Enterprise systems are built over time, piece by piece, project by project. It is rare that an
individual project team has both the time and the perspective to consider the enterprise
systems as a whole. It is the enterprise architecture group's responsibility to establish this
perspective and guide the day-to-day activities of individual projects.

Throughout this book there are a number of chapters that discuss specific issues requiring
this type of perspective and guidance. A look at the topic areas of these chapters reveals
the scope of the enterprise architecture group's responsibilities: business processes, domain
modeling, communications, data, coordination, fault tolerance, high availability, load
distribution, security, monitoring, architecture evaluation, and testing. In fact, the
enterprise architecture responsibilities encompass the full scope of total architecture. The
overall responsibility is to ensure that the people, business processes, information, and
systems fit together smoothly and serve the purposes of the enterprise.

There are some challenges to be faced in this regard. Some of these are organizational in
nature and are discussed in the companion work, Succeeding with SOA. The discussions in
this book focus on the technical issues.

Half a Group Is Better than Noneâ!”But Not Good Enough

Many enterprises end up with only half of an enterprise architecture group. Because of the
need to share and manage infrastructure, they have created one or more organizations that
address the infrastructure portions of the enterprise architecture: networks, machines,
messaging, and the software platforms used for application development.

While these infrastructure groups undeniably add value to the enterprise, their contribution
is not enough to ensure a robust set of solutions and services supporting flexible, efficient
business processes. Without higher-level guidance, the infrastructure gets used in
inconsistent and often inappropriate ways.

When this happens, the business eventually concludes that the solutions and business
processes are in a state of disarray. At this point, a group is typically commissioned to
examine the situation and make recommendations for moving forward. They examine the
flaws in the existing systems, examine the latest trends in building business processes and
systems, identify the best practices, and select the preferred hardware and software
required to support these best practices. The infrastructure group retools itself to support
the new tools, advertizes their availability, and goes on about its business.

The key to succeeding with this new approach lies in the appropriate use of the new
infrastructure. Even the best infrastructure can be abused nearly as readily as it can be
used appropriately. The best practices for its use must be established and clearly
understood by all architects, particularly at the project level.

Chapter 43. The Enterprise Architecture Group
Enterprise systems are built over time, piece by piece, project by project. It is rare that an
individual project team has both the time and the perspective to consider the enterprise
systems as a whole. It is the enterprise architecture group's responsibility to establish this
perspective and guide the day-to-day activities of individual projects.

Throughout this book there are a number of chapters that discuss specific issues requiring
this type of perspective and guidance. A look at the topic areas of these chapters reveals
the scope of the enterprise architecture group's responsibilities: business processes, domain
modeling, communications, data, coordination, fault tolerance, high availability, load
distribution, security, monitoring, architecture evaluation, and testing. In fact, the
enterprise architecture responsibilities encompass the full scope of total architecture. The
overall responsibility is to ensure that the people, business processes, information, and
systems fit together smoothly and serve the purposes of the enterprise.

There are some challenges to be faced in this regard. Some of these are organizational in
nature and are discussed in the companion work, Succeeding with SOA. The discussions in
this book focus on the technical issues.

Half a Group Is Better than Noneâ!”But Not Good Enough

Many enterprises end up with only half of an enterprise architecture group. Because of the
need to share and manage infrastructure, they have created one or more organizations that
address the infrastructure portions of the enterprise architecture: networks, machines,
messaging, and the software platforms used for application development.

While these infrastructure groups undeniably add value to the enterprise, their contribution
is not enough to ensure a robust set of solutions and services supporting flexible, efficient
business processes. Without higher-level guidance, the infrastructure gets used in
inconsistent and often inappropriate ways.

When this happens, the business eventually concludes that the solutions and business
processes are in a state of disarray. At this point, a group is typically commissioned to
examine the situation and make recommendations for moving forward. They examine the
flaws in the existing systems, examine the latest trends in building business processes and
systems, identify the best practices, and select the preferred hardware and software
required to support these best practices. The infrastructure group retools itself to support
the new tools, advertizes their availability, and goes on about its business.

The key to succeeding with this new approach lies in the appropriate use of the new
infrastructure. Even the best infrastructure can be abused nearly as readily as it can be
used appropriately. The best practices for its use must be established and clearly
understood by all architects, particularly at the project level.

Best Practice Development

The problem with the infrastructure-only approach to enterprise architecture is that simply
identifying industry best practices for business process and solution design, and then
putting the infrastructure in place to support them, does not ensure that the enterprise will
benefit from the infrastructure investment. Industry best practices require some
interpretation in their implementation. They describe the styles in which things should be
done, but these styles are only skeletons of the ideas. They must be tailored to the specific
circumstances of the enterprise in order to provide their expected value.

Tailoring best practices requires making choicesâ!”choices that reflect the realities of the
enterprise and its specific needs. Individual project teams, for the most part, have neither
the time nor the perspective required to make these choices. Leaving these choices up to
the project teams virtually guarantees inconsistency in the choices, and consistency is as
important as the choices themselves in reaping the benefits from best practices.

The enterprise architecture group must assume the leadership role in introducing new
technology and developing the enterprise-specific best practices for using that technology.
This best practice development cannot be an ivory tower exercise. A best practice has to be
effectively applied to realize its benefits, and half the challenge in its development is
ensuring that it can be readily and practically applied. A major part of the challenge lies in
finding the right level of formality for structuring and enforcing the best practice. Too much
formality and applying the best practice becomes onerousâ!”too little, and there isn't
enough compliance to realize the benefits.

The development of workable best practices is an iterative process. It entails proposing the
best practice, applying it in one or more projects, evaluating the results of that application,
and then refining the best practice if the results are not satisfactory. The enterprise
architecture group needs to be engaged in all four phases of this development, perhaps
even modifying the best practice on the fly to ensure a good project outcome. Taking the
ivory tower approach and letting the project team wrestle with an inappropriate best
practice will result in both the rejection of the best practice and the loss of credibility for the
enterprise architecture group that created it.

Knowledge Transfer

For best practices to be effective, project teams need to be aware of their existence and
learn how to apply them. During the development of the best practice, knowledge transfer
is accomplished through the direct participation of the people in the enterprise architecture
group engaged in formulating the best practice. Unfortunately, direct participation doesn't
scale to dozens, hundreds, or thousands of projects. Rolling out best practices in the
enterprise presents a challenging knowledge transfer problem. Solving the knowledge
transfer problem requires investment in three areas: documentation, training, and
mentoring.

Documentation

Documentation is the key to making knowledge transfer work. If you don't get the
knowledge out of people's heads and down on paper, then the only way to transfer that
knowledge is face-to-face interaction. Face time is expensive and does not scale well.
Quality documentation is the key to successfully promulgating best practices.

In documenting best practices there is a tendency to just create a reference manualâ!”a
document that describes, in gory detail, the do's and don'ts of the best practice. While this
type of documentation is essential, by its nature it assumes that the reader is already
somewhat familiar with the best practice and its purpose, and is simply seeking clarification
on the details of its application.

Best practice reference materials need to be augmented with introductory materials on two
different levels. At the overview level, introductory materials are required to provide a broad
overview of the architectural approach and the families of best practices needed to ensure
its successful implementation. Then, on a more detailed level, additional introductory
material is required in each best practice area to introduce the best practice and explain the
rationale behind it. This material will give the reader an intuitive understanding of why the
best practice is needed and how it satisfies the need. The intent of this introductory
documentation, on both levels, is to make it practical for people to educate themselves
about the architecture and the best practices for its implementation.

Training

Training is simply a structured approach to knowledge transfer. Done properly, this training
should provide an introduction to the reference material along with a detailed understanding
of the most important best practices. Realistically, however, there is never enough
classroom time to explore all of the best practices and all of their details. Thus training, by
itself, provides an incomplete and therefore unsatisfactory approach to knowledge transfer.
Documentation is still the key to success.

Mentoring

Simply exposing project architects to the best practices surrounding architecture
development is not sufficient to ensure that they acquire sufficient knowledge to efficiently

and appropriately apply those best practices. Project architects need a place to go and seek
advice when they have questions about best practices and their application. It is the
responsibility of the enterprise architecture group to provide such guidance and leadership.

Governance

Another important role for the enterprise architecture group is to participate in the
governance activities surrounding the development of solutions and services. As the
originators of the architecture concepts and best practices, the enterprise architects
comprise the only group that can meaningfully evaluate a proposed solution or service and
determine whether it is both appropriate to the project challenge and consistent with the
enterprise best practices.

You have to be careful, though, that governance does not become a collection of after-the-
fact nay-saying activities in which the enterprise architects point out all the things that the
project did wrong. Such a situation indicates a serious breakdown in knowledge transfer
activities. Unless the knowledge transfer problem is remedied, governance reviews will
continue to result either in significant rework to bring projects into compliance or in the
project simply ignoring the review suggestions because of business pressures. The
enterprise will head down the path of evolving chaos.

Designing with Evolving Requirements

Perhaps the biggest challenge faced by the enterprise architecture group is that of
constantly evolving requirements. Imagine for a moment that you are architecting buildings
rather than information systems. A client asks you to design a building. "What kind of
building?" you ask. "A high-rise," replies the client. "Residential or commercial?" you ask. "A
mixture," replies the client. Your conversation continues as you seek a better understanding
of the intended utilization of the building.

Unfortunately, many of the answers in this hypothetical conversation are conjectures. For
example, when you ask what kind of commercial businesses should be planned for, the
client speculates about the types of business that are anticipated, but confesses that the
actual commercial usage of the space will not be known until the building has been
constructed and the space has actually been leased.

In this requirements-gathering conversation, you come to realize that beyond a certain
level of detail, the answers to the questions have become pure guesswork. Does this mean
you can't design the building? Well, that depends on what you mean by design. Do you
have enough information to design the building down to the last detail? No. You do not
have enough information to specify the location of every last wall, door, and closetâ!”at
least not without making many potentially invalid assumptions about how the space will be
utilized. But do you need all of this information to design the building? Not necessarily.

What if you conceive of the building as a structure of relatively large interconnected but
unfinished spaces accessible via common corridors, elevators, and escalators? Each space
can later be customizedâ!”internally subdivided into smaller spacesâ!”to meet the needs of
a specific tenant. You can then construct the building, and later design and build the
interior of each space, as it is leased. This is, in fact, a common approach for the design of
commercial spaces in office buildings and shopping malls.

To execute this design strategy, you need to have an idea of the variety of tenants that
may potentially occupy the space. You also need an understanding of the types of
interactions that will be required between these large spaces, the common spaces in the
building, and the exterior of the building. What level of human traffic will there be? What
kind of vehicular traffic will there be? What material movements may be required as each
space is built out? What material movements may be required daily basis in operation? How
much power, water, heating, air conditioning, and sanitary drainage will be required?

Once you establish these usage boundaries, then you can go about designing the large
spaces with appropriate access and the needed utilities. This overall structure and
organization of the spaces, their accesses, and their utility services form the architecture of
the building. Certain portions of the design, such as the external façade, the entrances, and
the common spaces, can be detailed at this point so that the building can be constructed. As
each space is leased, the detailed design and implementation of its interior will occur. Note
that there is nothing that prevents any of these spaces from being detailed as the building is
designedâ!”the detail is just not a prerequisite for the construction of the building.

There are, of course, limitations to this approach. First and foremost you have made a

fundamental assumption that there will never be a need to access one of these large spaces
directly from another. All movement of people and materials between large spaces will
occur via the shared common spaces (including the external environment of the building).
Furthermore, in defining the accesses and utility needs of the large spaces, you are making
assumptions about the utilization of these spaces that may be very difficult to alter once the
building is constructed. For example, if you do not anticipate that the space might be used
as a showroom for physically large items, you may not provide large-access openings.
Consequently, the space may not be suitable for a tenant wishing to sell recreational
vehicles or yachts. Similarly, if you do not anticipate that the space might be used for a
ceramics workshop, you might not make provisions for certain things, such as adequate
power or gas to operate kilns, or adequate ventilation or air conditioning to keep the space
comfortable. The assumptions you make about use of the spaces will ultimately constrain
the practical use of the space. After all, you are not going to be able to build a space
shuttle in a shopping mall.

This methodology is a hierarchical approach to design. Rather than directly creating the
complete design, you are creating a framework within which actual designs can be detailed
as they are needed. The very nature of this hierarchical design approach requires placing
some limitations on the utilization of the spaces in order to proceed with the design. Does
this imply that the building could never be used for these other purposes? Not necessarily.
It does mean that some portion of the physical structure of the building and its utility
services would have to be significantly altered to accommodate these usages. This is a risk
inherent in this type of design process. The extreme risk is that for some usages, the
required changes to the building might not be feasibleâ!”an entirely different building
design would be required. But for the most part, the risk boils down to costâ!”it will cost
more if the building structure needs to be modified.

Hierarchical Architectures

The hierarchical approach to architecture described in this example applies equally well to
the design of information systems. The "spaces" in the building correspond to the
anticipated applications and business services. The accesses to those "spaces" and the
provided utility services correspond to the communications facilities, physical plant facilities
(heating, air conditioning, power, etc.), and infrastructure services provided to support
those applications and business services. But how do you determine what kind of support
will be required? What kinds of questions do you need to ask to determine the facilities and
services that will be required?

These questions turn out to be the same ones you ask in any project. What are the business
processes that will be supported, and what are their requirements in terms of throughput,
response time, availability, security, and so forth? What interactions are required among the
applications to support these processes? How will the participants interact, and how will the
data be managed? What kind of coordination will be required, and how will business process
breakdowns be detected? How will fault tolerance, workload distribution, security, and
monitoring be addressed? How will the system be tested? Is there workflow involved? Can
the proposed architecture handle the demands that will be placed upon it?

The questions remain the same, but they take on a different flavor when doing a
hierarchical design because the detailed business processes are not yet known. But at the
same time these business processes are not completely unknown either. Unless you are

starting a new business from scratch, most of the business processes are already in place!
The enterprise already has processes for taking and filling orders, hiring people, purchasing
goodsâ!”the processes for performing all of the enterprise's daily activities.

The existing business processes may not be in their ultimate form yet, but you can learn a
lot from them that will help you understand the hierarchical framework requirements.
Remember that the activities comprising the existing business processes, and the
information they produce and consume, will not, for the most part, change as the business
processes evolve. What will generally change is who performs the activity (person or
machine), when the activity is performed, and how the related information is managed.
Process characteristics such as throughput, response time, and fault tolerance may want
improvement (these are often the drivers for moving to a new architecture), but these will
be improvements on the existing process requirements. Thus you can use your
understanding of existing processes, coupled with an understanding of the types of
improvements desired, to guide the architectural development.

For the most part, the reason you are putting the new enterprise architecture in place is to
facilitate the evolution of these existing business processes. You can test your design
concepts for the new architecture by taking representative examples of the existing
business processes, hypothesizing the types of changes you would like to make, and then
doing a high-level hypothetical design of these processes within the proposed architectural
framework.

In working out the new architecture, you do not need to do a hypothetical design for every
business process. Far from it! You only need to do hypothetical designs for those processes
that will present challenges to the architectureâ!”the same challenges discussed back in
Chapter 7. Furthermore, you don't even need to do a design for all of these processes!
Many of the processes will result in similar patterns of interaction between the participants
with similar requirements in terms of throughput, response time, and so on. You only need
to do one design for each pattern, scaling up its usage requirements to reflect the total
volume of activity in the set of business processes that will follow the pattern.

In the end, what you seek is an understanding of the important business process patterns
and the manner in which they will be implemented in the new architecture. These patterns
should be documented and used as guides by project architects as they go about
implementing the actual business processes. The representative business processes and
their corresponding implementations in the new architecture should be documented in the
same manner as an actual design. Project architects then analyze the actual business
processes, identify the corresponding enterprise architecture pattern, and use the pattern to
guide their actual implementation. Of course, project architects must always be on the
lookout for business processes that do not have corresponding patterns in the enterprise
architecture guide. These processes will require a new design pattern. The enterprise
architecture group should stand ready to participate in the formulation of the new design
pattern.

Geographic Deployment

One of the great variables in distributed system design is the quality of service available for
communications between components. An interaction between two components that is
eminently practical when they are co-located on a high-speed LAN may become completely

infeasible when the components are located at opposite ends of an unreliable low-bandwidth
dial-up WAN connection. While this is an obvious consideration in any design, it is an acute
enterprise architecture issue as the enterprise evolves geographically. Mergers, acquisitions,
and organizational realignments all impact thinking about where data centers and users may
reside. Evolving technology is also changing the picture. Users who were once chained to
desktop workstations now employ wireless technology in handheld devices and cell phones
so that they can work wherever they happen to be.

For these reasons, you must consider the potential deployments of applications along with
both business and infrastructure services in the enterprise architecture. This is not to say
that the actual deployed locations for applications and services must be fixed in the
architecture; rather, the variability in where they might be located must be considered.
This, in turn, will impact your thinking about the choice of coordination mechanisms and the
buffering of information in the design patterns. It may even impact the design of the
business process itself to make it more tolerant of intermittent communications.

Organizational Alignment

Business processes rarely, if ever, take place entirely within the systems. People interact
with the systems and with each other during the execution of the process, particularly when
exceptions occur. As such, your patterns for business processes must include the required
interactions between people as well as the interactions between systems.

In an enterprise business process, it is common to have interactions among people in
different organizations. An online merchant may have one organization responsible for
taking orders, another that operates the warehouse and ships the orders, and a third that
operates a call center for handling customer inquiries. If the warehouse encounters a
problem with an order that requires contacting the customer, it may need to interact with
the call center to get the issue resolved.

Proposed business process patterns must be overlaid upon the possible organizational
structures that may be encountered to determine whether the complexity of the interaction
is appropriate. Typically, interactions between organizations need to be kept simple and at a
fairly high level to make them manageable. This organizational overlay will also help to
determine the appropriate organizational measurements and incentives required to achieve
the desired level of business process optimization.

Summary

Architecture encompasses many issues with scope that exceeds the boundaries of individual
projects. To achieve consistency in the overall architecture and the employment of best
practices, an active enterprise architecture group is required. This group is responsible for
all aspects of the enterprise's total architecture, structuring the interactions between
business processes, people, information, and systems in a manner that achieves the
enterprise's goals.

Many times this enterprise architecture effort focuses primarily on the infrastructure,
establishing the hardware and software environment for hosting solutions and services but
not directing the actual solution and service architectures themselves. The resulting
unconstrained use of the infrastructure leads to chaos. The establishment and enforcement
of solution and service development best practices is an essential element in attaining a
flexible architecture that promotes rather than retards the evolution of business processes.

In addition to developing best practices, the enterprise architecture group has a significant
knowledge transfer responsibility as well. It needs to ensure that best practice
documentation can support efficient self-education, and that there are appropriate training
courses in place to bring architects up to speed on the family of best practices and their
application. Finally, they need to establish an effective mentoring program for project
architects.

A third major responsibility for the enterprise architecture group is governance. As the
originators of the enterprise architecture and related best practices, the enterprise
architects are obligated to oversee and review the work of individual projects to ensure
their compliance. This active involvement will further serve to stimulate the evolution of the
enterprise architecture.

Developing an architecture in the face of evolving requirements is challenging. A
hierarchical approach, partitioning the architecture into major interacting elements, yields a
strategy that does not initially require details about the major elements. Representative
business processes that illustrate typical interactions among major elements can be used
both to evaluate the proposed partitioning and to document the usage patterns. These
usage patterns then serve as guides for project architects as they implement the actual
business processes.

Key Enterprise Architecture Group Questions

1. Is there an active enterprise architecture group?

2. Does the enterprise architecture scope encompass business processes,
systems, data, and infrastructure?

3. Does the enterprise architecture group establish best practices for the use
of the architecture? Are these best practices developed iteratively, factoring
actual usage experience into the formulation of the best practices?

4. Is there an effective knowledge transfer program for best practices? Does it
encompass documentation that supports self-education? Are there formal
training courses? Is there a mentorship program in place for project
architects?

5. Is the enterprise architecture group actively involved in governance with
respect to project compliance with enterprise architecture standards and
best practices? Does the enterprise architecture group have the requisite
authority to achieve compliance?

6. Is the enterprise architecture defined hierarchically? Is its implementation
illustrated through the use of representative business processes? Are these
representative usages documented well enough to serve as guides for
project architects?

Afterword
Focus Your Work

Seek the Expertise of Others

Be Pragmatic, But Consider the Long View

Focus Your Work

There are many things to consider when evolving the enterprise architectureâ!”so many
that it is not practical to consider every issue for every business process scenario. If you do,
you'll end up spending the majority of your time considering issues that, in the end, don't
really matter.

To maintain focus, you need to continually ask yourself three key questions about each
design issue:

1. Is the design issue relevant?

2. Is satisfying the requirement important to the enterprise?

3. Is the proposed solution sufficient?

The relevance of the design issue is your first consideration. If it is not relevant, don't
waste time on it. You don't need to worry about the security of information that is in the
public domain, nor do you need to worry about distributing load for a lightweight
transaction that only occurs once a day. Let common sense be your guide. Identify the
design issues that are truly relevant and focus your attention on those.

The next consideration is the business importance of satisfying specific requirements. Many
requirements are wants rather than needs, and you need to distinguish between the two
before you break your back trying to satisfy the requirement. How critical is satisfying the
requirement to the success of the enterprise? What level of effort is actually warranted?
The enterprise will not suffer if a stringent response-time requirement for a relatively
unimportant business process is relaxed a bit to simplify the design. Recognize that
requirements related to less important business processes tend to be negotiable. When
unimportant business processes present design challenges, your time may be better spent
pushing back on the requirements and negotiating a simpler design.

The final consideration is the sufficiency of the proposed solution. You don't always need the
best possible solution. If your projected demand five years in the future requires 1,000
messages per second, does it really matter whether the messaging subsystem can deliver
10,000 or 100,000 messages per second? You don't need (and probably cannot afford) the
best possible solution to every design challenge. You need to know when a solution is good

enough and then turn your attention to more pressing needs.

In the end, architecture is about judgmentâ!”your judgment about what is relevant,
important, and sufficient. Keep focused on what is important to your enterprise.

Afterword
Focus Your Work

Seek the Expertise of Others

Be Pragmatic, But Consider the Long View

Focus Your Work

There are many things to consider when evolving the enterprise architectureâ!”so many
that it is not practical to consider every issue for every business process scenario. If you do,
you'll end up spending the majority of your time considering issues that, in the end, don't
really matter.

To maintain focus, you need to continually ask yourself three key questions about each
design issue:

1. Is the design issue relevant?

2. Is satisfying the requirement important to the enterprise?

3. Is the proposed solution sufficient?

The relevance of the design issue is your first consideration. If it is not relevant, don't
waste time on it. You don't need to worry about the security of information that is in the
public domain, nor do you need to worry about distributing load for a lightweight
transaction that only occurs once a day. Let common sense be your guide. Identify the
design issues that are truly relevant and focus your attention on those.

The next consideration is the business importance of satisfying specific requirements. Many
requirements are wants rather than needs, and you need to distinguish between the two
before you break your back trying to satisfy the requirement. How critical is satisfying the
requirement to the success of the enterprise? What level of effort is actually warranted?
The enterprise will not suffer if a stringent response-time requirement for a relatively
unimportant business process is relaxed a bit to simplify the design. Recognize that
requirements related to less important business processes tend to be negotiable. When
unimportant business processes present design challenges, your time may be better spent
pushing back on the requirements and negotiating a simpler design.

The final consideration is the sufficiency of the proposed solution. You don't always need the
best possible solution. If your projected demand five years in the future requires 1,000
messages per second, does it really matter whether the messaging subsystem can deliver
10,000 or 100,000 messages per second? You don't need (and probably cannot afford) the
best possible solution to every design challenge. You need to know when a solution is good

enough and then turn your attention to more pressing needs.

In the end, architecture is about judgmentâ!”your judgment about what is relevant,
important, and sufficient. Keep focused on what is important to your enterprise.

Seek the Expertise of Others

As is evidenced by the length of this book, there are many things you need to consider as
you evolve the enterprise architecture. The field is both vast and growing daily. In a
practical sense, there is no way that you can become an expert in every architectural facet
and fully understand every implication of every decision that you make. How then can you
be successful as an architect?

The trick is to know the limits of your own knowledge and seek out the expertise of others
when you reach your limits. In your dealings with others, you should never be ashamed to
say, "I don't know" as long as you follow up with "... but I will find out." At the end of the
day, your personal credibility is your strongest asset, and you should never do anything to
compromise that.

You need a work-around for your own personal limitations. If you have concluded that a
particular design issue is important, it is your obligation to see that the issue is
appropriately addressed. You must either educate yourself on the topic or locate an expert
in the area to assist you.

For topics that you believe will recur frequently, your best course of action is to educate
yourself, although you may well choose to employ the assistance of an expert in the area as
part of this educational process. That is, after all, why you take courses instead of just
reading text books. At a minimum, you need to learn enough about the topic to recognize
design challenges and determine when additional expertise is required. In most areas, you
should find sufficient information in this book to bring you up at least to this level.

Regardless of your personal efforts, you will from time to time encounter severe design
challenges for which you simply do not have the time to develop the required expertise. In
such cases, you have little choice other than to engage an expert in the area. As a result
and over time, you will develop relationships with experts in various areas. Treat these
relationships with respectâ!”they are as valuable to you as your own knowledge. When you
approach an expert, you should have a design question formulated as concisely as you can
with clearly stated scenarios and challenges. Most experts enjoy this type of challenge and
will respond willingly to your requests. What they do not enjoy is answering questions you
could have answered yourself. Do your homework first, and answer as many questions for
yourself as you can.

Be Pragmatic, But Consider the Long View

A good enterprise architecture is an effective compromise between pragmatic needs for
working solutions and the architectural ideals that enable graceful evolution. Your challenge
is to guide the enterprise towards this compromise on a continuing basis as both the needs
and the supporting architecture evolve.

Making these compromises requires business decisions. To be effective in your role, you
need to help the enterprise understand, in business terms, the consequences of the
decisions that are being made. Most of these decisions involve "pay me now or pay me
later" tradeoffs that affect the viability of the enterprise in both the short term and the long
term. Too much emphasis on long-range ideals may leave the enterprise ill equipped to
address current market challenges. Too much emphasis on short-term pragmatics may leave
the enterprise ill equipped to address future market challenges.

Your understanding of the business and your ability to help the business understand the
consequences of technical decisions are critical to enterprise success. As businesses become
increasingly dependent upon information technology they are becoming ever more
dependent upon finding an effective architecture that meets both short-term and long-term
needs. Your role is becoming increasingly important to the survival of the enterprise.

You are living and working in a world of accelerating change. Keep one eye on the present
and the other on the future. Maintain a balanced view of both the business and the
technology. Understand what is truly important to the enterprise. Be honest and forthright
about your observations and conclusions. And above all, enjoy the ride!

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Abstraction of services
Accept event action
Access control
 channel enforcement
 with a mediation service
 policy enforcement points
 with proxies
Access rate
Activity assignments
Activity diagrams 2nd
Activity execution management patterns (AEMPS)
Activity partitions 2nd
Adapter(s)
 API-based
 categories of
 combination techniques
 database-based
 file-based
 patterns
 polling
 protocol-based
 standardizing
 system of record
 using callbacks
Additive changes
Alexander, Christopher 2nd
Annunciating breakdowns 2nd
Annunciation
API-based adapters
Application architecture styles
Apprenticeships 2nd
Architecture fundamentals
 architect's role
 collaboration
 enterprise architecture
 functional organization
 nonfunctional requirements
 refinement
 structural organization
 total architecture
Architecture in context
Artifacts 2nd 3rd 4th
Assertions
Assignment strategies
Association class
Associations (UML) 2nd
Asterisk
Asymmetric encryption
Asynchronous replication 2nd
Asynchronous request-reply 2nd

 event driven
 and sequencing
Asynchronous status feedback
ATM example
 access control
 business process metrics
 business process scoring
 component load analysis
 deployment diagram
 domain model
 goals and stakeholders
 initial cut domain model
 network load estimates
 primary and related business processes
Audit trails
Authentication process
Authorization
Automated versus manual recovery
Availability (process constraint) [See also High availability.]

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Bandwidth
 communications 2nd
 demand estimates
 use estimates
 WAN 2nd
Basili, Victor R.
Batch processing
Batch transfers
Batch-oriented architectures
Bernstein, Philip A.
Best practices 2nd 3rd 4th
Binary data 2nd
Blind algorithmic assignment for load distribution
Boehm, Barry 2nd 3rd
Brain-dead failures
Breakdown(s)
 analysis
 annunciations 2nd
 automated versus manual recovery
 and coordination patterns
 detecting 2nd
 and fire-and-forget coordination patterns
 and observability
 paycheck test
 recording 2nd
 recovery strategies
 resiliency
 status report
 undetetectable [See also Coordination and breakdown detection; Fault tolerance (FT); High
availability.]
Broadcast-style notifications
Buffering 2nd 3rd
Bundling operations
Business impact scoring
Business process
 fundamentals
 interactions [See Related processes.]
 inventory
 model repository
 monitoring
 patterns
 variants
Business process architecture
 activities and scenarios
 activity diagrams
 level of detail
 modeling interactions
 modeling scenarios
 participants 2nd
 project efficiency

 results
Business process constraints
 case studies 2nd 3rd
 compliance
 exception handling
 fault tolerance
 high availability
 management
 monitoring
 performance
 reporting
 security
 and system constraints
 user acceptance testing
Business Process Modeling Notation (BPMN)
Business significance 2nd 3rd
"The Byzantine Generals Problem"

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Cache update pattern
Cached composites
Cached data 2nd 3rd 4th
Caching reference data
Callbacks
Capacity 2nd 3rd
Case studies
 credit card fraud investigation
 failing to monitor SLA performance
 fault tolerance through process design
 late identification of performance requirements
Catalog sales example 2nd
Centralized sequence management
Change scenarios
Channel enforcement of access control
Character representations
Checkpoint recovery flag
Checkpointing 2nd
Checkpoints
Chen Entity-Relationship (ER) diagrams 2nd
Claimed identity 2nd 3rd
Classes
Classifiers
Cluster manager
Cold standby
Collaboration 2nd 3rd 4th 5th 6th 7th
Common access technology 2nd
Common data models (CDM)
 comma-separated value format
 and content transformation
 data structures
 defining
 and domain model
 and industry standards
 multiple representations 2nd
 schema changes
 selection criteria
 transformations
 XML
Common data semantics
Common enterprise resource planning (ERP)
Common object model (COM)
Common operation semantics
Communication structures
Communications and modularization
Communications patterns 2nd
Communications protocols 2nd
Compartments (UML class notation)
Compensating transactions
Complexity scoring of business processes

Compliance constraints 2nd 3rd 4th
Composite patterns
Composite service
Composite structure diagram
Composition
Constraints [See Business process constraints; Compliance constraints; Nonfunctional requirements;
Performance constraints; System constraints.]
Content transformation 2nd
Content-based routing
Continuous processes
Control flows 2nd 3rd
Coordination and breakdown detection
 activity execution management patterns (AEMPS)
 coordination pattern styles
 delegation
 with fire-and-forget coordination patterns
 with request-reply patterns
Coordination patterns
 and breakdown detections
 enterprise architecture
 styles
 and work in progress
CORBA
Correlated monitoring
Correlating identifiers
Cost feasibility
COTS products
CPU requirements, estimating
CPU utilization
Credit card fraud case study
Cross-reference manager
Cross-reference table
CRUD operations
Currency conversion, and reference data

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Data caches 2nd
Data consistency
 and business processes
 distributed transactions
 editing in multiple systems
 maintaining with distributed transactions
 managed by business processes
 reconciling inconsistencies
 replicated data
 resolving discrepancies
 system of record
Data description language (DDL) 2nd
Data discrepancies, resolving
Data (enterprise architecture)
 common data models
 content transformation
 identifiers
 naming schemes
 quality management
 systems of record 2nd
Data loss, and RPO
Data management 2nd
Data marshalling
Data rate measurements
Data replication
Data representation
Data structures 2nd 3rd 4th 5th 6th [See also Common data models (CDM).]
Data transformation 2nd 3rd
Data warehouse
Database-based adapters
Database-managed replication
Deadlock
Death March
Decomposition 2nd
Decryption 2nd
Delegation 2nd 3rd 4th 5th
Demand analysis
Denial-of-service attacks
Dependent processes
Deployment 2nd
Development process
 architecture in context
 architecture tasks
 charter 2nd 3rd
 differences
 incremental
 integration test
 Total Architecture Synthesis (TAS)
Diagrams, level of complexity
Differentiation 2nd 3rd 4th 5th

Digital signatures
Direct component monitoring
Direct service access
Direct transformations
Disaster scenarios
Discrete processes 2nd [See also Process(es).]
Disk geometry
Disk performance
Distributed information systems
 and CORBA
 sequence of design issues
 systems architecture
Distributed messaging servers
Distributed sequence management
Distributed Transaction Processing: The XA Specification
Distributed transactions
Distribution management
Domain modeling
 ATM example
 banking example
 domain modeling summary
 reverse engineering
 UML class notation
Dynamic results and process definitions
Dynamic work assignments

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Elision techniques
 abstracting subprocesses
 communications
 participant activity
 supporting participants
Emergent behavior
Encryption 2nd [See also Process security.]
Enterprise architecture: communications
 defining a strategy
 interaction standards
 preferred protocols
 standardizing adapters
Enterprise architecture: coordination
 breakdown annunciation
 breakdown recording
 preferred coordination patterns
 recovery processes
Enterprise architecture: data
 common data models
 content transformation
 data quality management
 identifiers
 naming schemes
 systems of record
Enterprise architecture: FT, HA, and LD
 business process classification policy
 composite patterns
 failover patterns
 information storage
Enterprise architecture for services
Enterprise architecture fundamentals
Enterprise architecture group
 best practice development
 business process patterns
 common data models
 designing with evolving requirements
 governance
 infrastructure subhalf of group
 knowledge transfer 2nd 3rd
 maintaining the domain model repository
 process and domain modeling
 and project architects
 reviewing project models
 standards and best practices
 UML class diagrams
Enterprise resource planning (ERP)
Enumerated values, checking
Environments for functional and system testing
Error checking
Error detection and correction (RAID 5)

Errors, identity
ETL (Extract, Transform, and Load)
Event-driven asynchronous request-reply
Event-driven cache update pattern
Event-driven (interaction pattern)
Event-driven multi-party fire-and-forget
Event-driven multi-party request-reply
Event-driven processes
Event-driven single-party request-reply
Event-driven two-party fire-and-forget
Evolving requirements 2nd
Evolving the load model
Exception handling 2nd
External process dependencies

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Failover
 fault tolerance (FT)
 inter-site 2nd 3rd 4th
 intra-site 2nd 3rd
 management
 stateless and stateful
 strategy reference table
Failure detection
Failure mode testing
Fault
Fault tolerance (FT)
 and business process constraints
 case study
 composite patterns for services
 design 2nd
 direct component monitoring
 failover
 failover management
 heartbeat monitoring
 hybrid techniques
 intermediaries
 liveness checks
 management process
 persistent state
 redirecting clients
 and service access intermediaries
 statistics
 voting
 and workflow engines [See also Breakdown(s); High availability; Stateless and stateful failover.]
Feasibility 2nd 3rd 4th
File-based adapters
Fire-and-forget coordination patterns
 breakdown detection
 event-driven multi-party
 event-driven two-party
 non-event-driven
First-cut model
First-cut structure
Fork and join nodes
Functional organization
Functional testing

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Generalization relationship
Geographic deployment
Geographic distribution
Governance processes 2nd 3rd
Granularity and authorization
Graphical domain modeling
Group queue, manager's choice (GM pattern)
Group queue, worker's choice (GW pattern)
Groups and authorization
GUID (Globally Unique Identifier) 2nd

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Hard-wired composition
Harmon, Paul 2nd
Heartbeat monitoring
Hierarchical architectures
Hierarchical identifiers
Hierarchical naming structure
High availability
 business process constraints
 and fault tolerance
 fundamentals 2nd
 and intermediaries
 and persistent state [See also Stateless and stateful failover.]
Highly available business processes
Hosting relationships
Hot standby
HTML
HTTP
HTTPS 2nd
Human interfaces
Human-to-system transport

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

IBM Websphere MQ 2nd
Identifier-mapping
Identifiers (unique names)
 GUIDs
 hierarchical identifiers
 identity authorities
 identity errors
 mapping
 recycling
 UUIDs
Identity and authentication
Identity authorities
Identity errors
Inbound communication 2nd
Incremental implementation
Independent processes
Indirection 2nd 3rd
Individual queues, manager's choice (IM pattern)
Individual queues, worker's choice (IW pattern)
Initial cut domain model
Inputs 2nd 3rd 4th 5th
Instantiation
Integration testing 2nd
Interaction patterns 2nd 3rd
Interaction standards
Interface
 notification
 perspective
 stability 2nd
 standardizations [See also Human interfaces; Native interfaces; Service interfaces.]
Intermediaries 2nd
International Standards Organization (ISO)
Internet corporation for assigned names and numbers (ICANN)
Internet domain names
Internet hostnames
Inter-process coupling
Inter-site failover 2nd 3rd 4th
Interviewing stakeholders 2nd
Intra-site failover 2nd 3rd
IP networks
IP-redirectors 2nd 3rd 4th

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Java Business Interface (JBI)
Java Messaging Service (JMS) 2nd 3rd 4th 5th 6th
JNDI (Java Naming and Directory Interface)

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Key performance indicators (KPI) 2nd 3rd 4th
Knowledge transfer 2nd 3rd

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Labeling messages
Lamport, Leslie
LAN (local area network) 2nd
Languages
Latency 2nd 3rd 4th
LDAP 2nd 3rd 4th
Liveness checks 2nd
Load analysis
Load distribution (LD)
 assignment strategies
 distribution management
 geographic distribution
 routing requests
 and sequencing 2nd
 and shared data
 and transports
 work assignment strategies
 work distribution management
Load model
Location-based routing
Locks 2nd
Long-distance communications
Lookup service

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

"The Magical Number Seven, Plus or Minus Two"
Managed coordination
Management (process)
Management utilities, batch
Mapping 2nd
Marshalling the data 2nd
Maturity levels, process
McDermott, Patrick 2nd
Mean time between failures (MTBF)
Mean time to repair (MTTR)
Mediated transports
Mediation service
Memory (human)
Mentoring 2nd 3rd
Message acknowledgment 2nd
Message delivery
Message destinations
Message persistence 2nd 3rd
Message roles
Message semantics
Message Transmission Unit (MTU)
Message-based service access
Messages and operations
 content representation
 content transformation
 message semantics
Messaging servers
 capacity limitations
 estimating disk performance
 geographic distribution
 use of a single server
Messaging service provider
Messaging services
Metadata management 2nd
Migration governance
Milestones
 basic process milestones 2nd
 grouping milestones
 monitoring process status
 recognizing milestones
 reducing inter-process coupling
 state diagrams
MIME
Mirroring
Modeling deployment
Modeling existing processes
Modularization
 and communications bandwidth
 and communications latency
 and data marshalling

 and geographic distribution
Monitoring business processes 2nd
Multiple component failover
 clustering
 fault-tolerant processes
 intra-site vs. inter-site failover
 peer application failover
Multiplicity of associations 2nd 3rd 4th 5th

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Namespaces 2nd
Naming operations
Naming schemes
Native interfaces 2nd 3rd
Near-real-time
Near-real-time update
Nested composition
Nested synchronous request-reply
Network load 2nd 3rd 4th
Network overload
Newcomer, Eric
Nodes
Nonfunctional requirements 2nd 3rd 4th
Nonrepudiation
Notational shortcuts
Notification interface 2nd

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Object flows 2nd 3rd 4th 5th
Object Modeling Technique
Object-Oriented Modeling and Design with UML
Objects 2nd 3rd
Observability
Operating system polling
Operating system processes 2nd
Operational data store (ODS) 2nd 3rd
Operations
Orchestration [See also Coordination patterns; Process management and workflow.]
Order management system
Order of assembly 2nd
Order-of-magnitude 2nd 3rd
Order-of-magnitude range
Outbound communication 2nd
Out-Only message exchange
Overloads, capacity testing
Owned objects
Ownership (objects)

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Parallel interfaces
Parsers
Participants 2nd 3rd 4th
Partitions 2nd
Pattern(s)
 activity execution management patterns (AEMPS)
 adapter
 business process
 communications 2nd
 composite
 coordination 2nd
 delegation
 enterprise architecture
 interaction 2nd 3rd
 reference table
 request-reply
Paycheck test 2nd
Peak loads 2nd
Peak rates 2nd 3rd
Pease, Marshall
Performance
 metrics
 monitoring
 and process monitoring
 testing
Performance constraints
 case study
 key performance indicators (KPI)
 and milestones
 performance service-level agreement (SLA)
 rates and response times
Performance evaluation
Performance service-level agreements (SLA) [See also Service-level agreements (SLA).]
Persistence 2nd
Person-to-person interaction
Phone directory example
Ping-pong effect (split-brain syndrome)
Point-to-point interactions
Point-to-point intermediaries
Policy agents 2nd
Policy enforcement point 2nd 3rd 4th
Policy statements (systems of record)
Polling 2nd 3rd 4th
Primary processes 2nd
Principles of Transaction Processing for the Systems Professional
Prioritized work
Private key
Process(es)
 algebras
 continuous

 discrete
 and domain modeling
 inputs
 monitors
 process maturity
 results
 structured
 triggers 2nd [See also Related processes.]
Process Change: A Manager's Guide to Improving, Redesigning, and Automating Processes
Process management and workflow
 communications pattern
 dynamic result and process definitions
 dynamic work assignments
 fault tolerance
 human interfaces
 initiating workflow
 milestone status
 prioritization
 process management
 related processes
 work assignment
Process managers 2nd
Process maturity levels
Process metrics
Process monitoring
 and performance
 performance monitoring
 status
 supervisory processes
Process security
 authentication
 authorization
 channel enforcement
 digital signatures
 encryption
 identity and authentication
 multi-zone security
 reference data servers
 security guidelines
 trust zones 2nd 3rd
Producer-consumer interactions 2nd
Project charter 2nd 3rd
Project models
Protocol-based adapters
Proxies
Proxy access 2nd
Proxy deployment
Public key
Pull strategy 2nd
Pure reference
Purge strategy

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Quality attributes [See Nonfunctional requirements.]
Quality management (data) 2nd
Queues 2nd

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

RAID 5
RAID arrays 2nd
Ranking business processes
Rates and response times
Read-only shared data
Real time (term usage)
Real-time data synchronization
Real-time transfer
Reconciliation process
Record sequence number
Recording breakdowns 2nd
Recovering from breakdowns
Recovery point objective (RPO) 2nd 3rd
Recovery processes
Recovery time objective (RTO) 2nd 3rd
Redirecting clients after service failure
Redundant systems
Reference data 2nd 3rd
Reference data manager
Reference data servers
Reference information 2nd 3rd 4th 5th 6th 7th
Referenced objects
Refined domain model
Refinement
Regression testing
Related processes
 batch transfers
 dependent processes
 event-driven processes
 external process dependencies
 independent processes
 modeling existing processes
 process management and workflow
 real-time transfer
 scoping
 service definition
 shared state
 triggering events
Replicated data maintenance
Reply-time SLAs
Repository maintenance
Request-reply exchange 2nd
Request-reply invocation
Request-reply patterns
Requirements
 collaborations 2nd
 differentiation 2nd
 intent of
 patterns of interaction 2nd 3rd
 UML activity diagrams

 use case limitations [See also Business process constraints.]
Resiliency, and breakdowns
Response times
Results validation
 enumerated values
 semantic checks 2nd
 syntactic checks 2nd
Reuse of services 2nd
Reverse engineering 2nd
Roles 2nd 3rd
Role-specific activities
Rule evaluations

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Satellite communications 2nd
Saturation point
Scenarios and variations 2nd
Schedule feasibility
Schema changes, CDM
Scope creep 2nd
Scope of TAS
Scoping projects
 business process inventory
 business process variants
 first iterations
 goals and stakeholders
 intent of
 interviewing stakeholders
 primary processes
 process metrics
 ranking business processes
 related processes
Security [See also Process security.]
Seek time, disk
SEI Capabiliy Maturity Model (CMM)
Self-describing data structures 2nd 3rd 4th
Semantic checks 2nd
Send JMS Message
Send signal action
Sequencing, and bundling
Sequencing (workload)
Serial interfaces
Service(s)
 access
 cached information
 composite service
 defined
 enterprise architecture
 operations
 owned objects
 referenced objects
 relationships
 request routing
 reuse
 structural changes
 UDDI registries
Service interfaces
 common access technology
 common data representation technology 2nd
 common data semantics
 common operation semantics
 interface commonality
 stability of 2nd
Service lookup

Service reuse patterns
Service-level agreements (SLA)
 and disaster scenarios
 measuring compliance
 reply-time
 risk-related
Sharp, Alec 2nd
Shostak, Robert
Signals
Simultaneous interactions
Single system of record 2nd 3rd
Site disaster recovery 2nd 3rd 4th 5th 6th
Smart backups
SOAP (Simple Object Access Protocol) 2nd 3rd 4th
Socket-level protocols 2nd
Space shuttle
Spiral development
Split-brain syndrome
SSL protocol 2nd 3rd
Stability (interface) 2nd
Standardized protocol 2nd
Standardizing adapters
Standardizing interfaces
Standards and best practices 2nd 3rd 4th
State information
Stateless and stateful failover
 and asynchronous replication
 of components
 persistent-state component failover
 stateful
 stateless
 and storage replication
 and synchronous replication
 and work in progress
Status report
Stereotypes (user-defined) 2nd
Storage manager
Storage replication
 asynchronous replication
 and persistent-state component failover
 synchronous replication
Stress scenarios
Striping (disk)
Structure notation
Structured processes
Subcomponents
Subscription 2nd 3rd
Succeeding with SOA
Supervisory processes
Swimlane [See Partitions.]
Symmetric encryption
Synchronous replication
Synchronous request-reply 2nd 3rd 4th 5th
Synchronous writes
Syntactic checks 2nd
System capacity testing
System constraints
System of record 2nd 3rd

System testing
Systems architecture
 CORBA
 credit card fraud case study
 designing
 distributed systems 2nd
 periodic evaluation
 sequencing issues
 synthesis
System-to-system transport

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Tail transaction logs
Test harnesses
Testing
 failure mode
 functional
 integration
 performance
 regression
 system
 test harnesses
 unit [See also User acceptance testing.]
Throughput 2nd 3rd 4th
TIBCO Rendezvous 2nd
Time stamps
Time-based trigger
Tokens 2nd
Top-level system architecture
 communications bandwidth
 communications latency
 data marshalling
 evaluations 2nd
 first-cut structure
 geographic distribution
 identifying services
 modeling deployment
 modeling system interactions
 peak loads
 response times
Total architecture 2nd
Total Architecture Synthesis (TAS)
 business process architecture
 evaluations
 iterations
 project feasibilty 2nd 3rd
 scope
 spiral development
 systems architecture
Training [See also Mentoring.]
Transaction(s)
 ACID properties
 compensating
 coordinator 2nd
 data consistency
 formal and informal
 identifier 2nd 3rd
 two-phase commit distributed
Transfer rate
Transport
 capacity
 destinations

 human-to-system
 messaging servers
 person-to-person
 point-to-point
 selecting
 -supplied services
 system-to-system
Triggering events
 batch communications
 database adapters
 and dependent processes
 event-driven processes
 and independent processes
 management utilities
 real time (term usage)
Triggers
Trust zones 2nd 3rd
T1/T3 connections
Two-phase commit protocol

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

UDDI registries
UML
 activity diagrams 2nd 3rd
 activity notation 2nd 3rd 4th 5th
 associations 2nd
 class 2nd
 class diagrams
 class notation
 classes
 collaboration 2nd 3rd
 components
 composite structure diagram
 implementation notation
 instance specifications
 special symbols
 structure notation
 use case diagrams
 use case notation 2nd 3rd
 user-defined stereotypes
Unbounded value
Uncorrelated monitoring at two points
Undetetectable breakdowns
Unicode
The Unified Modeling Language Reference Manual
Unit testing
Unsolicited notification
Usage patterns
Use case descriptions 2nd
User acceptance testing
User interface (UI)
User-defined stereotypes 2nd
Userid/password authentication
UUID (Universally Unique Identifier)

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Validation checks
Vehicle identification number (VIN)
Versioning
Volume of data
Voting and fault tolerance (FT) 2nd 3rd

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

WAN (wide-area network) 2nd 3rd 4th
Warm standby
Weighted assignments
Work assignment 2nd
Work pull strategy 2nd
Workflow
 diagrams
 dynamic result and process definitions
 dynamic work assignments
 engines 2nd 3rd
 fault tolerance
 human interfaces
 milestone status
 prioritization
 process management
 related processes
 work assignment
Workflow Modeling: Tools for Process Improvement and Application Development 2nd
World Manufacturer's Identifier (WMI)
WSDL (Web Services Description Language) 2nd 3rd 4th
WS-Security

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

XA protocol
XML
XML data structures 2nd
XML Schema Definition (XSD) 2nd 3rd 4th

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Y2K problem
Yourdon, Ed

