
3N. Antonopoulos and L. Gillam (eds.), Cloud Computing: Principles,  
Systems and Applications, Computer Communications and Networks,  
DOI 10.1007/978-1-84996-241-4_1, © Springer-Verlag London Limited 2010

Abstract With cloud computing growing in popularity, tools and technologies are 
emerging to build, access, manage, and maintain the clouds. These tools need to 
manage the huge number of operations within a cloud transparently and without 
service interruptions. Cloud computing promises lower costs, faster implementa-
tion, and more flexibility using mixtures of technologies, and the associated tools 
are critical for achieving this.

In this chapter, we survey several state-of-the-art techniques for building clouds, start-
ing with virtualization technology. We briefly introduce virtual machines (VMs) and 
their main features. Then, we introduce the main tools to manage VMs (hypervisors and 
virtual infrastructure managers) as well as the major technologies used to manage VMs 
in a public cloud. We then present MapReduce, a powerful model that makes it easier to 
write programs that take advantage of the power of cloud computing. We conclude by 
examining four web services tools and technologies that are built for cloud computing.

1.1  Introduction

Computing is being transformed by a new model, cloud computing. In this model, 
data and computation are operated somewhere in a “cloud,” which is some collection 
of data centers owned and maintained by a third party.

Cloud computing refers to the hardware, systems software, and applications 
delivered as services over the Internet. When a cloud is made available in a pay-
as-you-go manner to the general public, we call it a Public Cloud. The term Private 
Cloud is used when the cloud infrastructure is operated solely for a business or an 
organization. A composition of the two types (private and public) is called a Hybrid 

H. Jin (*) 
Services Computing Technology and System Lab, Cluster and Grid Computing Lab,  
Huazhong University of Science and Technology, 430074, Wuhan, China 
e-mail: hjin@hust.edu.cn

Chapter 1
Tools and Technologies for Building Clouds

Hai Jin, Shadi Ibrahim, Tim Bell, Li Qi, Haijun Cao, Song Wu,  
and Xuanhua Shi 



4 H. Jin et al.

Cloud, where a private cloud is able to maintain high service availability by scaling 
up their system with externally provisioned resources from a public cloud when 
there are rapid workload fluctuations or hardware failures.

In general, cloud providers fall into three categories (shown in Fig. 1.1):

Infrastructure as a Service (IaaS): offering web-based access to storage and •	
computing power. The consumer does not need to manage or control the under-
lying cloud infrastructure but has control over the operating systems, storage, 
and deployed applications.
Platform as a Service (PaaS): giving developers the tools to build and host web •	
applications (e.g., APPRIO [1], a software as a service provider, is built using 
the Force.com [2] platform while the infrastructure is provided by the Amazon 
Web Service [3]).

EC2 S3Elastic 
MapReduce

SaaS

PaaS

Iaas

Web Services

Web Services

Hardware Technologies

Cloud Infrastructure
Mangers 

E
n

ab
lin

g
 T

ech
n

o
lo

g
ies

DFSMapReduceVMs

VMM

VIM

·

·

·

Google Clouds:
-Google App
Engine is a
Platform as a
Service for
building web
applications.
-Google Apps are
Software as a
Service such as
Gmail, Google
talk, Calendar
and so on.

Google’s main enabling technologies to build
Google Clouds are: MapReduce, GFS, BigTable,
and web services

GFS MapReduce BigTable

S
aaS

P
aaS

S
aaS

P
aaS

IaaS

Amazon Elastic cloud service (VM-based
computation as a service) uses Xen as
hypervisor and web service technology to
expose the VMs. RightScale (third party), built on
top of EC2, can be used to reduce the
administration burden on the customer.
Amazon Simple Storage (S3). Web service
technology to expose storage resources to the
user.
Amazon Elastic MapReduce. Using Hadoop
over EC2 and S3 to process and analyze huge
amounts of data.

Amazon’s main IaaS services are:

Fig. 1.1 Cloud services and enabling technologies, using Amazon and Google systems as examples

KSartipi
Highlight



51 Tools and Technologies for Building Clouds

Software as a Service (SaaS): applications that are accessible from various client •	
devices through a thin client interface such as a web browser.

The shift toward cloud computing is driven by many factors including ubiquity of 
access (all you need is a browser), ease of management (no need for user experi-
ence improvements as no configuration or backup is needed), and less investment 
(affordable enterprise solution deployed on a pay-per-use basis for the hardware, 
with systems software provided by the cloud providers) [4]. Furthermore, cloud 
computing offers many advantages to vendors, such as easily managed infrastruc-
ture because the data center has homogeneous hardware and system software. 
Moreover, they are under the control of a single, knowledgeable entity.

1.1.1  Cloud Services and Enabling Technologies

For the purposes of this chapter, we define cloud computing as data centers plus a 
layer of system software services designed to support the creation and scalable 
deployment of application services. Our goal here is to examine the tools and tech-
nologies used to build these clouds.

The data center hardware consists of thousands of individual computing nodes 
with their corresponding networking and storage subsystems, power distribution 
and conditioning equipment, and extensive cooling systems. Such data centers 
currently power the services offered by companies such as Google, Amazon, 
Yahoo, and Microsoft’s online services division.

Cloud services (remote data and computation) are exposed as simple and user-
friendly web services. For example, Microsoft’s ADO.NET (originally called 
Astoria) [5] provides the tools to expose any data object from a collection, stored 
in a database or other form, as a URI to an encoded form using a standard such as 
JSON or ATOM representation, and Google’s AppEngine [6] provides a way to 
deploy a remote Python script that becomes a web service that can access data in 
their BigTable database system.

To deliver highly available and flexible services (i.e., computation as a service), 
and owing to the maturity of virtualization technology, Virtual Machines (VMs) 
are used as a standard for object deployment in the cloud. VMs decouple the com-
puting infrastructure from the physical infrastructure. In addition, VMs allow the 
customization of the platform to suit the needs of the end-user. For example, in the 
Amazon Elastic Compute Cloud (EC2) [7], the customer selects his/her preferred 
VM image (virtual appliance) from a list of various versions of Linux and Windows 
servers configured with different web servers and databases. Alternatively, they can 
customize a system to best meet their needs and deploy the new application in 
the VM. Amazon provides a basic set of web services that can be used to deploy 
the VM, create an instance, and secure it. Multiple instances can be created to 
support demand as needed, although this requires more system administration and 
management. Thus, some organizations have developed virtual infrastructure 
tools to manage and monitor VMs in a pool of distributed resources (e.g., Enomaly 

KSartipi
Highlight



6 H. Jin et al.

[8] and OpenNebula [9]). In addition, third-party application hosting framework 
service companies, like RightScale [10] and Elastra [11], have emerged to provide 
higher-level application deployment tools on top of EC2, thereby reducing the 
administration burden on the customer.

Because of the huge amount of data stored by a cloud, efficient processing and 
analysis of data has become a challenging issue. The Google MapReduce [12] 
model has proven to be an efficient approach for data-intensive cloud computing 
(e.g., Google uses its MapReduce framework to process 20 petabytes of data per 
day). MapReduce has been advocated as a good basis for data center computers in 
general [13].

1.2  Virtualization Technology

Virtualization is the idea of partitioning or dividing the resources of a single server 
into multiple segregated VMs. Virtualization technology has been proposed and 
developed over a relatively long period. The earliest use of VMs was by IBM in 
1960, intended to leverage investments in expensive mainframe computers [14]. 
The idea was to enable multitasking – running multiple applications and processes 
for different users simultaneously. Robert P. Goldberg described the need for vir-
tual machines in 1974: “Virtual machine systems were originally developed to 
correct some of the shortcomings of the typical third generation architectures and 
multiprogramming operating systems – e.g., OS/360” [15]. During the 1980s and 
1990s, the prevailing approach to computing was distributed systems, client-
server applications, and the inexpensive x86 server [14]. Recently, owing to the 
rapid growth in IT infrastructure, we have seen the emergence of multicore proces-
sors and a wide variety of hardware, operating systems, and software. In this 
environment, virtualization has had a resurgence of popularity. Virtualization can 
provide dramatic benefits for a computing system, including increased utilization, 
energy saving, rapid deployment, improved maintenance capability, isolation, and 
encapsulation. Moreover, virtualization enables applications to migrate from one 
server to another while they are still running, without downtime, providing flexible 
workload management, and high availability during planned maintenance or 
unplanned events [16–22].

There are numerous reasons that virtualization is effective in practical scenarios, 
for example [23,24]:

Server and application consolidation: under virtualization, we can run multiple •	
applications at the same time on the same server, resulting in more efficient 
utilization of resources.
Configurability: virtualization allows dynamic configuration and bundling of •	
resources for a wider variety of applications than could be achieved at the hard-
ware level – different applications require different resources (some requiring 
more storage, others requiring more computing).



71 Tools and Technologies for Building Clouds

Increased application availability: VM checkpointing and migration allow quick •	
failure recovery from unplanned outages with no interruption in service.
Improved responsiveness: resource provisioning, monitoring, and maintenance •	
can be automated, and common resources can be cached and reused.

1.2.1  Virtual Machines

A VM is a software implementation of a machine (i.e., a computer) that executes 
programs like a physical machine [25]. This differs from a process VM, which is 
designed to run a single program, such as the Java Runtime Environment (JRE). 
A system VM provides a complete system platform that supports the execution of 
a complete operating system (OS).

The VM lifecycle has six phases: create, suspend, resume, save, migrate, and 
destroy. Multiple VMs can run simultaneously in the same physical node. Each VM 
can have a different OS, and a Virtual Machine Monitor (VMM) is used to control 
and manage the VMs on a single physical node. A VMM is often referred to as a 
hypervisor. Above this level, Virtual Infrastructure Managers (VIMs) are used to 
manage, deploy, and monitor VMs on a distributed pool of resources (cluster or 
data center). In addition, Cloud Infrastructure Managers (CIMs) are web-based 
management solutions on the top of IaaS providers (see Fig. 1.2).

1.2.2  Virtualization Platforms

Virtualization technology has been developed to best utilize computing capacity. Server 
virtualization has been described as follows: “In most cases, server virtualization 

• Web based VM management on top of IaaS providers

Cloud Infrastructure Manager (CIM)

• Deploying, control and monitoring of VMs on a distributed pool of resources

Virtual Infrastructure  Manager (VIM)

• Manage the lifecycle of VMs on a single node

Virtual Machine Manager (VMM)

• Have two main layers, the operating system and a software package that is partially or
 fully configured to perform a specific task

Virtual Machines (VMs)

Fig. 1.2 Different layers of VM management tools and technologies



8 H. Jin et al.

is accomplished by the use of a hypervisor (VMM) to logically assign and separate 
physical resources. The hypervisor allows a guest operating system, running on the virtual 
machine, to function as if it were solely in control of the hardware, unaware that other 
guests are sharing it. Each guest operating system is protected from the others and is 
thus unaffected by any instability or configuration issues of the others” [26].

Virtualization methods can be classified into two categories according to 
whether or not the guest OS kernel needs to be modified, as shown in Fig. 1.3: (1) 
full virtualization (supported by VMware [27], Xen [28], KVM [29], and Microsoft 
Hyper-V [30], etc.), and (2) paravirtualization (currently supported only by Xen). 
Full virtualization emulates the entire hardware environment by utilizing hardware 
virtualization support, binary code translation, or binary code rewriting, and thus 
the guest OS does not need to modify its kernel. Having full virtualization is impor-
tant for running non-open-source operating system such as Windows, because it is 
too difficult to modify the Windows kernel without source code. Paravirtualization 
requires the guest OS kernel to be modified to become aware of the hypervisor. 
Because it need not emulate the entire hardware environment, paravirtualization 
can attain better performance than full virtualization.

In paravirtualized architecture, OS-level information about the VM can be 
passed explicitly from the OS to the VMM, and this is done in practice to some 
extent [31,32]. Any explicit information supplied by a paravirtualized OS is guar-
anteed to match what is available inside the OS. However, in some important envi-
ronments, the explicit approach is less valuable, and because paravirtualization 
requires OS-level modification, that functionality cannot be deployed in VMMs 
running beneath legacy or closed-source operating systems anyway.

Table 1.1 compares some of the most relevant commercial and open-source 
software (OSS) technologies for server virtualization, showing the main trade-off 
between the product’s performances.

Fig. 1.3 A comparison between full virtualization and paravirtualization VM hypervisors [33]



91 Tools and Technologies for Building Clouds

1.2.3  Virtual Infrastructure Management

A Virtual Infrastructure Manager (VIM) is responsible for the efficient management 
of a virtual infrastructure as a whole, by providing basic functionality for deploying, 
controlling, and monitoring VMs on a distributed pool of resources. This is done 
by communicating with their VMMs. The major issues being addressed by the 
cloud community are:

Improving the distributed and efficient management of the virtual infrastructure •	
as a whole (i.e., deployment, control, and monitoring)
Providing self-provisioning of the virtual infrastructure•	
Improving the integrity and interoperability of the different virtualization tech-•	
nologies (different hypervisors such as Xen, VMware) as well as the different 
cloud providers
Providing administrators with a uniform user-friendly environment that enables •	
access to a wider range of physically distributed facilities improving productivity

Accordingly, many organizations have introduced virtual infrastructure manage-
ment tools as shown in Table 1.2.

In addition to specific systems such as those listed in the table, open standard 
organizations such as OGF and DMTF contribute many standards for remote 
management of cloud computing infrastructures. The scope of the specifications 
covers all high-level functionality required for the life-cycle management of 
VMs. Some of these standards have been widely adopted to construct grid and 
cloud systems, such as the Open Grid Forum Open Cloud Computing Interface 
(OCCI) [40], The Open Virtualization Format (OVF) [41], and the virtualization 
API (libvirt) [42].

Table 1.1 Comparison of some of the most relevant commercial and open-source software (OSS) 
tools for server virtualization [34]

VMM Type Highlights
Guest 
performance License

KVM [29] Full virtualization Assigns every VM 
as a regular 
Linux process

Close to native Open source

Xen [28] Paravirtualization Supports VM  
migration on fly

Native Open source

VMware [27] Full virtualization Provides a mature 
product family to 
manage virtual 
infrastructure

Close to native Commercial

Microsoft  
hyper-V [30]

Full virtualization Able to trap guest  
calls

Close to native Commercial



10 H. Jin et al.

Table 1.2 Comparison of some of the most relevant commercial and open-source software (OSS) 
tools for virtual infrastructure management

System 
name Brief description

VM 
hypervisor Cloud type

Enomaly 
[8]

A programmable virtual cloud infrastructure 
for small, medium, and large businesses. 
Their Elastic Computing Platform (ECP) 
helps users to design, deploy, and manage 
virtual applications in the cloud, and 
also significantly reduces administrative 
and systems workload. A browser-based 
dashboard enables IT personnel to simply 
and efficiently plan deployments, automate 
VM scaling and load-balancing, and 
analyze, configure, and optimize cloud 
capacity.

Xen, KVM Private and 
public

Eucalyptus 
[35]

“Elastic Utility Computing Architecture Linking 
Your Programs To Useful Systems” – is 
an open-source software infrastructure for 
implementing cloud computing on clusters. 
The current interface to Eucalyptus is 
compatible with Amazon’s EC2, S3, and EBS 
interfaces, but the infrastructure is designed to 
support multiple client-side interfaces.

Xen, KVM, 
VMware

Private and 
public

Nimbus  
[36]

Nimbus has been developed in part within the 
Globus Toolkit 4 framework and provides 
interfaces to VM management functions 
based on the WSRF set of protocols. 
There is also an alternative implementation 
implementing Amazon EC2 WSDL.

Xen Private and 
public

Open  
Nebula 
[9]

Orchestrates storage, network, and virtualization 
technologies to enable the dynamic 
placement of multitier services (groups 
of interconnected VMs) on distributed 
infrastructures, combining both data center 
resources and remote cloud resources, 
according to allocation policies.

Xen, KVM, 
VMWare

Private, hybrid, 
and public 
cloud (EC2, 
Elastic 
Hosts[37])

Usher [38] The design philosophy of Usher is to provide an 
interface whereby users and administrators 
can request VM operations (e.g., start, stop, 
migrate, etc.) while delegating administrative 
tasks for these operations out to smart plug-
ins. Usher’s implementation allows for 
arbitrary action to be taken for nearly any 
event in the system.

Xen Virtual cluster

VNIX [39] With VNIX, administrators can deploy various 
VMs rapidly and easily on computing nodes, 
and manage them with related configuration 
from a single easy-to-use management 
console. In addition, VNIX implements 
several specialized features, involving 
easy monitoring, fast deploying, and 
autoconfiguring.

Xen Cluster



111 Tools and Technologies for Building Clouds

1.2.4  Cloud Infrastructure Manager

A Cloud Infrastructure Manager (CIM) is a web-based solution focused on deploy-
ing and managing services (deploying, monitoring, and maintaining the VMs) on 
top of Infrastructure as a Service (IaaS) clouds. Third-party application-hosting 
framework service companies provide higher-level application deployment tools on 
top of IaaS. Some of these solutions are listed in Table 1.3.

Table 1.3 Cloud infrastructure management solutions

System name Brief description Pricing Cloud provider Users

Rightscale 
[11]

Rightscale is a cloud 
management 
environment, 
cloud-ready server 
template and best-
practice deployment 
library, adaptable 
automation engine, 
and multi-cloud 
engine.

Starting at 
US$500, 
monthly 
fee

Amazon web 
services, 
GoGrid, 
FlexiScale

G.ho.st, 
Animoto, 
and 
MeDeploy 
[43]

Elastra [12] Elastra’s main features 
are: application 
infrastructure 
modeling, federated 
hybrid cloud 
management, lifecycle 
orchestration, 
and deployment 
management.

Pricing not 
published

AWS

Kaavo [44] IMOD is for Application-
Centric Management 
of virtual resources 
in the clouds. It 
provides easy-to-use 
web interface for 
deploying, running, 
and managing 
complex multiserver 
n-tier applications in 
the cloud.

Pricing not 
published

EC2 The 451 Group 
and Infoworld 
[45]

CohesiveFT 
[46]

PN-Cubed is a 
commercial solution 
that enables customer 
control in a cloud, 
across multiple 
clouds, and between 
private infrastructure 
and the clouds.

Starting with 
US$5,000 
per year

EC2, Elastic 
hosts



12 H. Jin et al.

1.3  The MapReduce System

Google’s MapReduce [12] is a programming model that demonstrates a simpler 
way to develop data-intensive applications for large distributed systems. It can be 
leveraged to utilize the resources available through a cloud.

The MapReduce [12] system runs on top of the Google File System (GFS) [47], 
within which data is loaded, partitioned into chunks, and each chunk replicated. 
Data processing is co-located with data storage: when a file needs to be processed, 
the job scheduler consults a storage metadata service to get the host node for each 
chunk, and then schedules a map process on that node, so that data locality is 
exploited efficiently. At the time of writing, because of its remarkable features 
including simplicity, fault tolerance, and scalability, MapReduce is by far the most 
powerful realization of data-intensive cloud computing programming. It is often 
advocated as an easier-to-use, efficient, and reliable replacement for the traditional 
programming model of moving the data to the computation.

The MapReduce abstraction is inspired by the Map and Reduce functions, which 
are commonly used in the functional languages such as Lisp [12]. Users express the 
computation using two functions, map and reduce, which can be carried out on 
subsets of the data in a highly parallel manner. The runtime system is responsible 
for parallelizing and fault handling. The steps of the process are as follows. They 
are illustrated by the widely used “wordcount” example in Fig. 1.4:

The input is read (typically from a distributed file system) and broken up into •	
key/value pairs. The key identifies the subset of data, and the value will have 
computation performed on it. (In the example, the keys are each input word read 
from files A, B, and C, and the values are all a count of one.) The map function 
maps this data into sets of key/value pairs that can be distributed to different 
processors.

Fig. 1.4 Illustrate the Map and Reduce functions using the Wordcount Example



131 Tools and Technologies for Building Clouds

The pairs are partitioned into groups for processing, and are sorted according to •	
their key as they arrive for reduction. (In the example, the pairs are now grouped 
according to the key.)
The key/value pairs are reduced, once for each unique key in the sorted list, to •	
produce a combined result. (In this example, this will be the count of each word).

MapReduce has been applied widely in various fields including data- and compute-
intensive applications, machine learning, and multicore programming. Moreover, 
many implementations have been developed in different programming languages 
for various purposes.

The popular open source implementation of MapReduce, Hadoop [48], was 
developed primarily by Yahoo, where it processes hundreds of terabytes of data on 
at least 10,000 cores [49], and is now used by other companies, including Facebook, 
Amazon, Last.fm, and the New York Times [50]. Research groups from enterprises 
and academia are starting to study the MapReduce model as a better fit for cloud 
computing, and explore the possibilities of adapting it for more applications.

1.3.1  Hadoop MapReduce Overview

The Hadoop common [48], formerly called the Hadoop core, includes filesystem, 
RPC (remote procedure call), and serialization libraries, and provides the basic 
services for building a cloud computing environment with commodity hardware. 
The two main subprojects are the MapReduce framework and the Hadoop 
Distributed File System (HDFS).

The HDFS is a distributed file system designed to run on commodity hardware. 
HDFS is highly fault-tolerant and so can be deployed on low-cost hardware. HDFS 
provides high throughput access to application data and is suitable for applications 
that have large data sets. The Hadoop MapReduce framework is highly reliant on 
its shared file system, and it comes with plug-ins for HDFS, CloudStore [51], and 
the Amazon Simple Storage Service (S3).

The MapReduce framework consists of a single master JobTracker and one slave 
TaskTracker per cluster-node. The master is responsible for scheduling the jobs’ 
component tasks on the slaves (i.e., it queries the HDFS master Namenode about 
data block locations and assigns each task to the TaskTracker that is closest to 
where the data to be processed is physically stored), monitoring them, and re- 
executing any failed tasks. The slaves execute the tasks as directed by the master.

1.4  Web Services

To support cloud computing infrastructure efficiently, and to express business 
 models easily, designers and developers need a group of web services technologies 
to construct a real, user-friendly, and content-rich set of applications on the top of 



14 H. Jin et al.

their clouds. This section introduces four fundamental tools and technologies, 
which can be employed to construct cloud applications viewed at the infrastructure, 
architecture, and presentational level. These technologies are: Remote Procedure 
Call (RPC), Service-Oriented Architecture (SOA), Representational State Transfer 
(REST), and Mashup.

1.4.1  RPC (Remote Procedure Call)

Reliable and stable communications among cloud resources are fundamental to the 
infrastructure, and thus are an important consideration. Remote Procedure Call 
(RPC) has proven to be an efficient mechanism for implementing the client-server 
model in a distributed computing environment. It was proposed initially by Sun 
Microsystems as a great advancement in comparison with sockets (e.g., the pro-
grammer is not concerned with the underlying communications, since they are 
embedded inside the RPC). In RPC, the client must know what features the server 
provides, which are indicated by a service definition, written in IDL (Interface 
Description Language). An RPC call is a synchronous operation that suspends the 
calling program until the results of the call are returned. When an RPC is compiled, 
a stub is included in the compiled code that represents the remote service. When 
the program runs, it calls the stub, which knows where the operation is and how to 
reach the service. The stub will send the message through the network to the server. 
The result of the procedure is returned to the client in the same way.

Many commercial products built over the RPC mechanism have been practically 
proven as efficient and convenient to construct enterprise applications.

In 2002, Microsoft released the .NET Remoting [52], which was incrementally 
evolved from DCOM and Active X, to support. NET applications intercommunicat-
ing in a loosely coupled environment. Similar to RPC stubs, .NET Remoting initial-
izes the “Channel” objects to proxy the remote calls. To improve the transparency 
and convenience, the procedure of serialization and marshalling will be completed 
automatically by .NET runtime. Each .NET Remoting object is identified as a 
unique URL and safely accessed by clients remotely.

Extending from Java Remote Method Invocation (RMI) [53], Java community 
presents a complete specification J2EE [54] to standardize the communications 
among loosely coupled Java components. The enhancements include Enterprise 
Java Beans (EJB), connectors, servlets, and portlets. The complete J2EE structure 
of specifications helps designers to easily construct business logic and assists 
developers in clearly implementing them. Although .Net Remoting and J2EE 
have been widely adopted by the industry, RPC mechanism is not feasible to 
construct Cloud applications. One of the problems with RPC is that RPC imple-
mentations, as shown in Table 1.4, can be incompatible with each other. To use 
one of the possible implementations of RPC will result in a high dependence on 
the particular RPC.



151 Tools and Technologies for Building Clouds

1.4.2  SOA (Service-Oriented Architecture)

The goal of a Service-Oriented Architecture (SOA) [55,56] is to composite together 
fairly large chunks of functionality to form service-oriented applications, which are 
almost entirely built from the existing software services. SOA hired a bunch of 
open standards (1) to wrap the components in different localized runtime environ-
ment (e.g., in Java or .NET); (2) to enable different clients including pervasive 
devices free access; (3) to reuse the existing components to compose more services. 
This significantly reduces development costs and helps designers and developers to 
concentrate more on business models and their internal logic.

SOAs use several communication standards based on XML to enhance the 
interoperability among application systems. As the atomic access point inside an 
SOA, the web services are formally defined by three kernel standards: Web Service 
Description Language (WSDL), Simple Object Access Protocol (SOAP), and 
Universal Description Discovery and Integration (UDDI). Normally, the functional 
interfaces and parameters of specific services are described using the WSDL. Web 
services exchange messages are encoded in the SOAP messaging framework and 
transported over HTTP or other internet protocols (SMTP, FTP, and so forth). 
A typical web service lifecycle envisions the following scenario: A service provider 
publishes the WSDL description of their service in a UDDI, a registry that permits 
Universal Description Discovery and Integration of web services. Subsequently, 
service requesters can inspect the UDDI and locate/discover web services that are 
of interest. Using the information provided by the WSDL description, they can 
directly invoke the corresponding web service. Further, several web services can be 

Table 1.4 Web service toolkits comparisons

Age Dep. Transport Key Tech. Categories Implementations

RPC 1974 – TCP/IP Stubs, IDL Infrastructure, 
IaaS

Java RMI 
[52], XML 
RPC, .Net 
Remoting 
[53], RPyC, 
CORBA

SOA 1998 WS-RPC HTTP,FTP, 
SMTP

WSDL Architecture 
level, PaaS

IBM Websphere, 
Microsoft .Net 
IIS, Weblogic

UDDI
SOAP

REST 2000 HTTP HTTP,FTP, 
SMTP

Web-oriented Architecture 
level, DaaS

RIP, Rails, 
Restlet, Jboss 
RESTEasy, 
Apache CXF, 
Symfony

MASHUP 2000 
later

REST HTTP Web-oriented 
(Web 2.0)

Application 
level, SaaS

Google Mashup 
editor, JackBe, 
Mozilla 
Ubiquity

SOA
RSS



16 H. Jin et al.

composed to achieve more complex functionality. All the invocation procedures are 
similar to RPC except that the communications and deployments are described in 
open standards.

Moreover, the open standards organizations such as W3C, OASIS, and DMTF 
contribute many higher-level standards to help different users construct their reus-
able, interoperable, and discoverable services and applications. Some of these 
standards were widely adopted to construct grid and cloud systems, such as Web 
Services Resources Framework (WSRF) [57], Web Services Security (WS-Security) 
[58], Web Services Policy (WS-Policy) [59], and so on.

1.4.3  REST (Representative State Transfer)

REST [60] is an architectural style that Roy T. Fielding, now chief scientist at Day 
Software, first defined in his doctoral thesis. REST stipulates mechanisms for 
defining and accessing resources in specific distributed systems such as the web. In 
a REST implementation, resources are addressed via uniform resource identifiers 
(URIs). That is, a given URI is used to access the representational state of a 
resource, and also to modify that resource. For example, web URLs can be used to 
give descriptive information about resources, and consumers then need to know 
only the URL to read the information. Furthermore, an authorized user can also 
modify the information if needed.

REST defines three architectural entities as follows [60–62]:

Data elements: resource identifiers such as URIs and URLs, and resource repre-•	
sentations, such as HTML documents, images, and XML documents
Components: Origin servers, gateways, proxies, and user agents•	
Connectors: Clients, servers, and caches•	

The representational state for resources in an HTTP-based REST system should be 
accessed using the standard HTTP methods.

A simple breakdown of these methods is as follows: GET is used to transfer the 
current representational state of a resource from a server to a client; PUT is used to 
transfer the modified representational state of a resource from the client to the 
server; POST is used to transfer the new representational state of a resource from 
the client to the server; and DELETE is used to transfer information needed to 
change a resource to a deleted representational state.

1.4.4  Mashup

A mashup has been defined in Wikipedia [63] as “a web page or application that 
combines data or functionality from two or more external sources to create a new 
service. To be more precise, Mashup technology concentrates on the following tasks 



171 Tools and Technologies for Building Clouds

[64]: (1) Deep access to existing enterprise services and data/content repositories; 
(2) SaaS-style web-based Mashup assembly and use; (3) Assembly models that are 
truly end-user friendly with very little training required; and last, but certainly not 
least, (4) a credible management and maintenance plan for IT departments that must 
support a flood of public end-user built and integrated apps.”

Mashup is concerned with the API (application) level. When building Mashups, 
the developer is always dependent on the providers of the services. As shown in the 
figure, Mashup requires that the XMLHttpRequest is made to third-party domains. 
By compositing services and data from SOA, REST, RSS, ATOM, and other RPC-
like web servers, a Mashup API can conveniently bind the data with AJAX scripts 
to deliver a service to end-users.

Some Mashup editors have been implemented to help developers easily con-
struct Web 2.0 and cloud-oriented applications; currently two are available, Google 
Mashup Editor [65] and Mozilla Ubiquity [66].

1.4.5  Web Services in Practice

All the aforementioned web services tools and technologies have been widely 
implemented by industry and open-source organizations. Table 1.4 also lists their 
main attributes in terms of when they were proposed, dependencies, transport 
mechanism, key technology, categories, and implementations. Understanding these 
features can help developers to quickly adopt the appropriate technologies and 
develop their clouds effectively.

1.5  Conclusions

This chapter has presented the main tools and technologies for building and operating 
clouds. Virtualization technology is foundational to cloud computing because it 
provides a safe and flexible platform using VMs, VM Monitors, Virtual 
Infrastructure, and Cloud Infrastructure Managers. Virtualization technology is still 
developing rapidly, and some of the limitations that currently exist are likely to be 
addressed as virtualization technology becomes more mature. We have also pre-
sented the MapReduce programming model, which is a particularly useful approach 
for processing huge amounts of data because the computation is close to the data.

Finally, we have reviewed a number of different web services technologies that 
provide an easy interface for users to configure and access cloud resources.

Cloud computing is a powerful way to provide computing resources, and the 
tools for creating and maintaining cloud systems and their services are becoming 
increasingly flexible and easy to use, providing users with easy on-demand access 
to massive computing power and storage that previously would only have been 
available to extremely well-resourced organizations.



18 H. Jin et al.

Acknowledgments This work is supported by National 973 Key Basic Research Program under 
grant No.2007CB310900, NSFC under grants No.60673174 and No.60973037, Program for New 
Century Excellent Talents in University under Grant NCET-07-0334, Information Technology 
Foundation of MoE and Intel under grant MoE-INTEL-09-03, and National High-Tech R&D Plan 
of China under grant No.2006AA01A115.

References

 1. APPRIO Homepage (2009) http://www.appirio.com/
 2. Force.com Homepage (2009) http://www.salesforce.com/platform/
 3. Amazon Web Services (2009) http://aws.amazon.com/
 4. Barroso LA, Urs Hölzle U (2009) The datacenter as a computer: an introduction to the design 

of warehouse-scale machines. Morgan & Claypool, USA
 5. ADO.NET Data Service (formally Astroia) (2009) http://msdn.microsoft.com/en-us/data/

bb931106.aspx
 6. Google AppEngine (2009) http://code.google.com/appengine/
 7. Amazon Elastic Cloud Computing (2009) http://aws.amazon.com/ec2/
 8. Enomaly Elastic Computing (2009) http://www.enomaly.com/
 9. Open Nubela Homepage (2009) http://www.opennebula.org/
 10. Rightscale Homepage (2009) http://www.rightscale.com/
 11. Elastra Manage ComplexITy Homepage (2009) http://www.elastra.com/
 12. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters. 

Commun ACM 51(1):107–113
 13. Patterson DA (2008) Technical perspective: the data center is the computer. Commun ACM 

51(1):105
 14. Vmware (2009) http://www.vmware.com/virtualization/history.html
 15. Goldberg RP (1974) Survey of virtual machine research. IEEE Comput Mag 7(6):34–45
 16. Waldspurger CA (December 2002) Memory resource management in VMware ESX server. 

In: Proceedings of the 5th symposium on operating systems design and implementation 
(OSDI ’02), Boston, MA

 17. Fraser K, Hand S, Neugebauer R, Pratt I, Warfield A, Williamson M (2004) Safe hardware 
access with the Xen virtual machine monitor. In: OASIS ASPLOS 2004 workshop

 18. Clark C, Fraser K, Hand S, Hansen JG, Jul E, Limpach C, Pratt L, Warfield A (2005) Live 
migration of virtual machines. In: Proceedings of the 2nd symposium on networked systems 
design and implementation (NSDI ’05), Boston, MA

 19. Garfinkel T, Pfaff B, Chow J, Rosenblum M, Boneh D (2003) Terra: a virtual machine-based 
platform for trusted computing. In: Proceedings of the 19th ACM symposium on operating 
systems principles (SOSP ’03), Bolton Landing (Lake George), New York

 20. Bressoud TC, Schneider FB (1995) Hypervisor based fault tolerance. In: Proceedings of the 
fifteenth ACM symposium on operating systems principles, ACM Press, pp 1–11

 21. Petrini F, Kerbyson DJ, Pakin S (2003) The case of the missing supercomputer performance: 
achieving optimal performance on the 8,192 processors of ASCI Q. In: Proceedings of SC ’03, 
Washington, DC, USA

 22. Koch K (2002) How does ASCI actually complete multi-month 1000-processor milestone 
simulations? In: Proceedings of the conference on high speed computing

 23. Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid computing 360-degree 
compared. In: the Proceedings of the grid computing environments workshop

 24. Nanda S, Chiueh T (2005) A survey on virtualization technologies, RPE Report, February. 
www.ecsl.cs.sunysb.edu/tr/TR179.pdf

 25. Virtual Machine (Wikipedia) (2009) http://en.wikipedia.org/wiki/Virtual_machine



191 Tools and Technologies for Building Clouds

 26. IBM white paper (2009) Seeding the Clouds: Key Infrastructure Elements for Cloud Computing. 
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/oiw03022usen/OIW03022USEN.PDF

 27. VMware – Virtual Infrastructure Software (2009) http://www.vmware.com.
 28. Xen Homepage (2009) http://www.xen.org/.
 29. Kernel-based Virtual Machine (2009) http://kvm.qumranet.com.
 30. Microsoft Hyper-V (2009) http://www.microsoft.com/hyper-v-server/en/us/default.aspx
 31. Pratt I, Warfield A, Barham P, Neugebauer R (2003) Xen and the art of virtualization. In 

Proceedings of the 19th ACM symposium on operating systems principles (SOSP ’03), Bolton 
Landing (Lake George), New York

 32. Whitaker A, Shaw M, Gribble SD (2002) Scale and performance in the Denali isolation ker-
nel. In: Proceedings of the 5th symposium on operating systems design and implementation 
(OSDI’02), Boston, MA

 33. MSDN Architecture Center, Mapping Applications to the Cloud (2009) http://msdn.microsoft.
com/en-us/library/dd430340.aspx

 34. Comparison of platform virtual machines (Wikipedia) (2009) http://en.wikipedia.org/wiki/
Comparison_of_platform_virtual_machines

 35. Eucalyptus system Homepage (2009) http://www.eucalyptus.com/
 36. Nimbus Homepage (2009) http://workspace.globus.org/
 37. Elastic Hosts Homepage (2009) http://www.elastichosts.com/
 38. McNett M, Gupta D, Vahdat A, Voelker GM (2007) Usher: an extensible framework for man-

aging clusters of virtual machines. 21st Large installation system administration conference
 39. Shi XH, Tan H, Wu S, Jin H (2008) VNIX: managing virtual machines on clusters, pp 155–

162. Japan-China joint workshop on frontier of computer science and technology
 40. OGF Open Cloud Computing Interface Working Group (2009) http://www.occi-wg.org/ 

doku.php
 41. VMan Initiative (2009) http://www.dmtf.org/initiatives/vman_initiative/
 42. libvirt: The virtualization API (2009) http://libvirt.org/
 43. RightScale – Testimonials (2009) http://www.rightscale.com/customers/
 44. Kaavo Homepage (2009) http://www.kaavo.com/home
 45. Kaavo – Testimonials (2009) http://www.kaavo.com/testimonials
 46. CohesiveFT Homepage (2009) http://www.cohesiveft.com/
 47. Ghemawat S, Gobioff H, Leung ST (2003) The google file system. In: the proceedings of the 

19th ACM symposium on operating systems principles, Lake George, New York
 48. Hadoop (2009) http://lucene.apache.org/
 49. Yahoo! (2009) Yahoo! Developer Network. http://developer.yahoo.com/blogs/hadoop/2008/02/

yahoo-worlds-largest-production-hadoop.html. Accessed September 2009
 50. Hadoop Credits Page (2009) http://hadoop.apache.org/core/credits.html. Accessed September 

2009
 51. CloudStore (Formely Kosmos File System) (2009) http://kosmosfs.sourceforge.net/
 52. .NET Remoting, http://en.wikipedia.org/wiki/.NET_Remoting
 53. Java RMI, http://en.wikipedia.org/wiki/Java_RMI
 54. J2EE, http://en.wikipedia.org/wiki/J2EE
 55. Service Oriented Architecture (Wikipedia) (2009) http://en.wikipedia.org/wiki/Service-

oriented_architecture
 56. Service-architecture – Service-oriented architecture (SOA) definition (2009) http://www.service-

architecture.com/web-services/articles/service-oriented_architecture_soa_definition.html
 57. WSRF (2009) http://www.oasis-open.org/committees/wsrf/
 58. WS-Security (2009) http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
 59. WS-Policy (2009) http://www.w3.org/Submission/WS-Policy/
 60. Goth G (2004) Critics say web services need a REST. IEEE Distribut Syst Online 5(12): 1–1
 61. Vinoski S (2008) RESTful web services development checklist. IEEE Internet Comput 

12(6):94–96
 62. Vinoski S ((2007) REST eye for the SOA guy. IEEE Internet Comput 11(1):82–84



20 H. Jin et al.

 63. Mashup (web application hybrid), http://en.wikipedia.org/wiki/Mashup_(web_application_hybrid)
 64. Webmashup.com blog, http://www.webmashup.com/blog/category/learn/ (accessed 1 October 

2009)
 65. Google Mashup Editor (2009) http://en.wikipedia.org/wiki/Google_Mashup_Editor
 66. Mozilla Ubiquity (2009) http://ubiquity.mozilla.com/


	Chapter 1: Tools and Technologies for Building Clouds
	1.1 Introduction
	1.1.1 Cloud Services and Enabling Technologies

	1.2 Virtualization Technology
	1.2.1 Virtual Machines
	1.2.2 Virtualization Platforms
	1.2.3 Virtual Infrastructure Management
	1.2.4 Cloud Infrastructure Manager

	1.3 The MapReduce System
	1.3.1 Hadoop MapReduce Overview

	1.4 Web Services
	1.4.1 RPC (Remote Procedure Call)
	1.4.2 SOA (Service-Oriented Architecture)
	1.4.3 REST (Representative State Transfer)
	1.4.4 Mashup
	1.4.5 Web Services in Practice

	1.5 Conclusions
	References


