
2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 1 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC Final specs@openid.net

 December 5, 2007

OpenID Authentication 2.0 - Final
Abstract

OpenID Authentication provides a way to prove that an end user controls an Identifier. It
does this without the Relying Party needing access to end user credentials such as a
password or to other sensitive information such as an email address.

OpenID is decentralized. No central authority must approve or register Relying Parties or
OpenID Providers. An end user can freely choose which OpenID Provider to use, and can
preserve their Identifier if they switch OpenID Providers.

While nothing in the protocol requires JavaScript or modern browsers, the authentication
scheme plays nicely with "AJAX"-style setups. This means an end user can prove their
Identity to a Relying Party without having to leave their current Web page.

OpenID Authentication uses only standard HTTP(S) requests and responses, so it does not
require any special capabilities of the User-Agent or other client software. OpenID is not tied
to the use of cookies or any other specific mechanism of Relying Party or OpenID Provider
session management. Extensions to User-Agents can simplify the end user interaction,
though are not required to utilize the protocol.

The exchange of profile information, or the exchange of other information not covered in this
specification, can be addressed through additional service types built on top of this protocol
to create a framework. OpenID Authentication is designed to provide a base service to enable
portable, user-centric digital identity in a free and decentralized manner.

Table of Contents

1. Requirements Notation and Conventions
2. Terminology
3. Protocol Overview
4. Data Formats
 4.1. Protocol Messages
 4.2. Integer Representations
5. Communication Types
 5.1. Direct Communication
 5.2. Indirect Communication
6. Generating Signatures
 6.1. Procedure
 6.2. Signature Algorithms
7. Initiation and Discovery
 7.1. Initiation
 7.2. Normalization

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#anchor1
http://openid.net/specs/openid-authentication-2_0.html#terminology
http://openid.net/specs/openid-authentication-2_0.html#anchor2
http://openid.net/specs/openid-authentication-2_0.html#anchor3
http://openid.net/specs/openid-authentication-2_0.html#anchor4
http://openid.net/specs/openid-authentication-2_0.html#btwoc
http://openid.net/specs/openid-authentication-2_0.html#anchor6
http://openid.net/specs/openid-authentication-2_0.html#direct_comm
http://openid.net/specs/openid-authentication-2_0.html#indirect_comm
http://openid.net/specs/openid-authentication-2_0.html#generating_signatures
http://openid.net/specs/openid-authentication-2_0.html#anchor11
http://openid.net/specs/openid-authentication-2_0.html#sign_algos
http://openid.net/specs/openid-authentication-2_0.html#anchor12
http://openid.net/specs/openid-authentication-2_0.html#initiation
http://openid.net/specs/openid-authentication-2_0.html#normalization

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 2 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 7.3. Discovery
8. Establishing Associations
 8.1. Association Session Request
 8.2. Association Session Response
 8.3. Association Types
 8.4. Association Session Types
9. Requesting Authentication
 9.1. Request Parameters
 9.2. Realms
 9.3. Immediate Requests
10. Responding to Authentication Requests
 10.1. Positive Assertions
 10.2. Negative Assertions
11. Verifying Assertions
 11.1. Verifying the Return URL
 11.2. Verifying Discovered Information
 11.3. Checking the Nonce
 11.4. Verifying Signatures
 11.5. Identifying the end user
12. Extensions
13. Discovering OpenID Relying Parties
14. OpenID Authentication 1.1 Compatibility
 14.1. Changes from OpenID Authentication 1.1
 14.2. Implementing OpenID Authentication 1.1 Compatibility
15. Security Considerations
 15.1. Preventing Attacks
 15.2. User-Agents
 15.3. User Interface Considerations
 15.4. HTTP and HTTPS URL Identifiers
 15.5. Denial of Service Attacks
 15.6. Protocol Variants
Appendix A. Examples
Appendix A.1. Normalization
Appendix A.2. OP-Local Identifiers
Appendix A.3. XRDS
Appendix A.4. HTML Identifier Markup
Appendix A.5. XRI CanonicalID
Appendix B. Diffie-Hellman Key Exchange Default Value
Appendix C. Acknowledgements
16. Normative References
§ Author's Address

1. Requirements Notation and Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in .

Throughout this document, values are quoted to indicate that they are to be taken literally.
When using these values in protocol messages, the quotes MUST NOT be used as part of the

[RFC2119]

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#discovery
http://openid.net/specs/openid-authentication-2_0.html#associations
http://openid.net/specs/openid-authentication-2_0.html#anchor17
http://openid.net/specs/openid-authentication-2_0.html#anchor20
http://openid.net/specs/openid-authentication-2_0.html#assoc_types
http://openid.net/specs/openid-authentication-2_0.html#assoc_sess_types
http://openid.net/specs/openid-authentication-2_0.html#requesting_authentication
http://openid.net/specs/openid-authentication-2_0.html#anchor27
http://openid.net/specs/openid-authentication-2_0.html#realms
http://openid.net/specs/openid-authentication-2_0.html#anchor28
http://openid.net/specs/openid-authentication-2_0.html#responding_to_authentication
http://openid.net/specs/openid-authentication-2_0.html#positive_assertions
http://openid.net/specs/openid-authentication-2_0.html#negative_assertions
http://openid.net/specs/openid-authentication-2_0.html#verification
http://openid.net/specs/openid-authentication-2_0.html#verify_return_to
http://openid.net/specs/openid-authentication-2_0.html#verify_disco
http://openid.net/specs/openid-authentication-2_0.html#verify_nonce
http://openid.net/specs/openid-authentication-2_0.html#verifying_signatures
http://openid.net/specs/openid-authentication-2_0.html#identifying
http://openid.net/specs/openid-authentication-2_0.html#extensions
http://openid.net/specs/openid-authentication-2_0.html#rp_discovery
http://openid.net/specs/openid-authentication-2_0.html#compat_mode
http://openid.net/specs/openid-authentication-2_0.html#anchor34
http://openid.net/specs/openid-authentication-2_0.html#anchor38
http://openid.net/specs/openid-authentication-2_0.html#security_considerations
http://openid.net/specs/openid-authentication-2_0.html#anchor41
http://openid.net/specs/openid-authentication-2_0.html#anchor43
http://openid.net/specs/openid-authentication-2_0.html#anchor44
http://openid.net/specs/openid-authentication-2_0.html#anchor45
http://openid.net/specs/openid-authentication-2_0.html#anchor46
http://openid.net/specs/openid-authentication-2_0.html#anchor47
http://openid.net/specs/openid-authentication-2_0.html#anchor48
http://openid.net/specs/openid-authentication-2_0.html#normalization_example
http://openid.net/specs/openid-authentication-2_0.html#anchor49
http://openid.net/specs/openid-authentication-2_0.html#XRDS_Sample
http://openid.net/specs/openid-authentication-2_0.html#anchor50
http://openid.net/specs/openid-authentication-2_0.html#anchor51
http://openid.net/specs/openid-authentication-2_0.html#pvalue
http://openid.net/specs/openid-authentication-2_0.html#anchor52
http://openid.net/specs/openid-authentication-2_0.html#rfc.references1
http://openid.net/specs/openid-authentication-2_0.html#rfc.authors
http://openid.net/specs/openid-authentication-2_0.html#RFC2119

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 3 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

value.

2. Terminology

Identifier:
An Identifier is either a "http" or "https" URI, (commonly referred to as a "URL"
within this document), or an [XRI_Syntax_2.0]. This document defines
various kinds of Identifiers, designed for use in different contexts.

User-Agent:
The end user's Web browser which implements HTTP/1.1 .

Relying Party:
RP. A Web application that wants proof that the end user controls an Identifier.

OpenID Provider:
OP. An OpenID Authentication server on which a Relying Party relies for an
assertion that the end user controls an Identifier.

OP Endpoint URL:
The URL which accepts OpenID Authentication protocol messages, obtained by
performing discovery on the User-Supplied Identifier. This value MUST be an
absolute HTTP or HTTPS URL.

OP Identifier:
An Identifier for an OpenID Provider.

User-Supplied Identifier:
An Identifier that was presented by the end user to the Relying Party, or selected
by the user at the OpenID Provider. During the initiation phase of the protocol, an
end user may enter either their own Identifier or an OP Identifier. If an OP
Identifier is used, the OP may then assist the end user in selecting an Identifier to
share with the Relying Party.

Claimed Identifier:
An Identifier that the end user claims to own; the overall aim of the protocol is
verifying this claim. The Claimed Identifier is either:

The Identifier obtained by the User-Supplied
Identifier, if it was an URL.
The , if it was an XRI.

OP-Local Identifier:
An alternate Identifier for an end user that is local to a particular OP and thus not
necessarily under the end user's control.

3. Protocol Overview

1. The end user by presenting a User-Supplied Identifier
to the Relying Party via their User-Agent.

2. After the User-Supplied Identifier, the Relying Party
 on it and establishes the OP Endpoint URL that the end user uses for

authentication. It should be noted that the User-Supplied Identifier may be an OP
Identifier, as discussed in , which allows selection of a Claimed
Identifier at the OP or for the protocol to proceed without a Claimed Identifier if
something else useful is being done via an .

XRI

[RFC2616]

normalizing

CanonicalID

initiates authentication

normalizing performs
discovery

Section 7.3.1

extension

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#XRI_Syntax_2.0
http://openid.net/specs/openid-authentication-2_0.html#RFC2616
http://openid.net/specs/openid-authentication-2_0.html#normalization
http://openid.net/specs/openid-authentication-2_0.html#canonicalid
http://openid.net/specs/openid-authentication-2_0.html#initiation
http://openid.net/specs/openid-authentication-2_0.html#normalization
http://openid.net/specs/openid-authentication-2_0.html#discovery
http://openid.net/specs/openid-authentication-2_0.html#discovered_info
http://openid.net/specs/openid-authentication-2_0.html#extensions

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 4 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

3. (optional) The Relying Party and the OP establish an -- a shared
secret established using [RFC2631]. The OP
uses an association to sign subsequent messages and the Relying Party to verify
those messages; this removes the need for subsequent direct requests to verify
the signature after each authentication request/response.

4. The Relying Party redirects the end user's User-Agent to the OP with an OpenID
.

5. The OP establishes whether the end user is authorized to perform OpenID
Authentication and wishes to do so. The manner in which the end user
authenticates to their OP and any policies surrounding such authentication is out
of scope for this document.

6. The OP redirects the end user's User-Agent back to the Relying Party with either
an assertion that or a message that

.
7. The Relying Party the information received from the OP including

checking the Return URL, verifying the discovered information, checking the
nonce, and verifying the signature by using either the shared key established
during the association or by sending a direct request to the OP.

4. Data Formats

4.1. Protocol Messages

The OpenID Authentication protocol messages are mappings of plain-text keys to plain-text
values. The keys and values permit the full Unicode character set (UCS). When the keys and
values need to be converted to/from bytes, they MUST be encoded using [RFC3629].

Messages MUST NOT contain multiple parameters with the same name.

Throughout this document, all OpenID message parameters are REQUIRED, unless
specifically marked as OPTIONAL.

4.1.1. Key-Value Form Encoding

A message in Key-Value form is a sequence of lines. Each line begins with a key, followed by
a colon, and the value associated with the key. The line is terminated by a single newline
(UCS codepoint 10, "\n"). A key or value MUST NOT contain a newline and a key also MUST
NOT contain a colon.

Additional characters, including whitespace, MUST NOT be added before or after the colon or
newline. The message MUST be encoded in UTF-8 to produce a byte string.

Key-Value Form encoding is used for signature calculation and for to
Relying Parties.

association
Diffie-Hellman Key Exchange

Authentication request

authentication is approved
authentication failed

verifies

UTF-8

direct responses

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#associations
http://openid.net/specs/openid-authentication-2_0.html#RFC2631
http://openid.net/specs/openid-authentication-2_0.html#requesting_authentication
http://openid.net/specs/openid-authentication-2_0.html#positive_assertions
http://openid.net/specs/openid-authentication-2_0.html#negative_assertions
http://openid.net/specs/openid-authentication-2_0.html#verification
http://openid.net/specs/openid-authentication-2_0.html#RFC3629
http://openid.net/specs/openid-authentication-2_0.html#direct_response

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 5 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

4.1.2. HTTP Encoding

When a message is sent to an HTTP server, it MUST be encoded using a form encoding
specified in Section 17.13.4 of . Likewise, if the "Content-Type" header is
included in the request headers, its value MUST also be such an encoding.

All of the keys in the request message MUST be prefixed with "openid.". This prefix prevents
interference with other parameters that are passed along with the OpenID Authentication
message. When a message is sent as a POST, OpenID parameters MUST only be sent in, and
extracted from, the POST body.

All messages that are sent as HTTP requests (GET or POST) MUST contain the following
fields:

openid.ns

Value: "http://specs.openid.net/auth/2.0"

This particular value MUST be present for the request to be a
valid OpenID Authentication 2.0 request. Future versions of
the specification may define different values in order to allow
message recipients to properly interpret the request.

If this value is absent or set to one of
"http://openid.net/signon/1.1" or
"http://openid.net/signon/1.0", then this message SHOULD
be interpreted using

.

openid.mode

Value: Specified individually for each message type.

The "openid.mode" parameter allows the recipient of the
message to know what kind of message it is processing. If
"openid.mode" is absent, the party processing the message
SHOULD assume that the request is not an OpenID message.

This model applies to messages from the User-Agent to both the Relying Party and the OP, as
well as messages from the Relying Party to the OP.

4.1.3. Example

Non-normative

The following examples encode the following information:

Key | Value
--------+---------------------------
mode | error
error | This is an example message

[HTML401]

OpenID Authentication 1.1
Compatibility mode

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#HTML401
http://openid.net/specs/openid-authentication-2_0.html#compat_mode

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 6 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

 TOC TOC

Key-Value Form encoded:

mode:error
error:This is an example message

x-www-urlencoded, as in a HTTP POST body or in a URL's query string (section
3):

openid.mode=error&openid.error=This%20is%20an%20example%20message

4.2. Integer Representations

Arbitrary precision integers MUST be encoded as big-endian signed two's complement binary
strings. Henceforth, "btwoc" is a function that takes an arbitrary precision integer and returns
its shortest big-endian two's complement representation. All integers that are used with
Diffie-Hellman Key Exchange are positive. This means that the left-most bit of the two's
complement representation MUST be zero. If it is not, implementations MUST add a zero byte
at the front of the string.

Non-normative example:

Base 10 number | btwoc string representation
---------------+----------------------------
0 | "\x00"
127 | "\x7F"
128 | "\x00\x80"
255 | "\x00\xFF"
32768 | "\x00\x80\x00"

5. Communication Types

5.1. Direct Communication

Direct communication is initiated by a Relying Party to an OP endpoint URL. It is used for
 and .

5.1.1. Direct Request

[RFC3986]

establishing associations verifying authentication assertions

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#RFC3986
http://openid.net/specs/openid-authentication-2_0.html#associations
http://openid.net/specs/openid-authentication-2_0.html#check_auth

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 7 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

The message MUST be encoded as a POST body, as specified by .

All direct requests are HTTP POSTs, and so contain the required fields listed in
.

5.1.2. Direct Response

The body of a response to a consists of an HTTP Response body in
. The content-type of the response SHOULD be "text/plain".

All Key-Value form message MUST contain the following field:

ns

Value: "http://specs.openid.net/auth/2.0"

This particular value MUST be present for the response to be
a valid OpenID 2.0 response. Future versions of the
specification may define different values in order to allow
message recipients to properly interpret the request.

If this value is absent or set to one of
"http://openid.net/signon/1.1" or
"http://openid.net/signon/1.0", then this message SHOULD
be interpreted using

.

5.1.2.1. Successful Responses

A server receiving a valid request MUST send a response with an HTTP status code of 200.

5.1.2.2. Error Responses

If a request is malformed or contains invalid arguments, the server MUST send a response
with a status code of 400. The response body MUST be a message with the
following fields:

ns

As specified in .

error

Value: A human-readable message indicating the cause of
the error.

contact

Section 4.1.2

Section 4.1.2

Direct Request Key-
Value Form

OpenID Authentication 1.1
Compatibility mode

Key-Value Form

Section 5.1.2

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#http_encoding
http://openid.net/specs/openid-authentication-2_0.html#http_encoding
http://openid.net/specs/openid-authentication-2_0.html#direct_request
http://openid.net/specs/openid-authentication-2_0.html#kvform
http://openid.net/specs/openid-authentication-2_0.html#compat_mode
http://openid.net/specs/openid-authentication-2_0.html#kvform
http://openid.net/specs/openid-authentication-2_0.html#direct_response

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 8 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

 TOC TOC

Value: (optional) Contact address for the administrator of the
sever. The contact address may take any form, as it is
intended to be displayed to a person.

reference

Value: (optional) A reference token, such as a support ticket
number or a URL to a news blog, etc.

The OP MAY add additional fields to this response.

5.2. Indirect Communication

In indirect communication, messages are passed through the User-Agent. This can be
initiated by either the Relying Party or the OP. Indirect communication is used for

 and .

There are two methods for indirect communication: HTTP redirects and HTML form
submission. Both form submission and redirection require that the sender know a recipient
URL and that the recipient URL expect indirect messages, as specified in . The
initiator of the communication chooses which method of indirect communication is
appropriate depending on capabilities, message size, or other external factors.

All indirect messages arrive as HTTP requests, and so contain the required fields listed in
.

5.2.1. HTTP Redirect

Data can be transferred by issuing a 302, 303, or 307 HTTP Redirect to the end user's User-
Agent. The redirect URL is the URL of the receiver with the OpenID Authentication message
appended to the query string, as specified in .

5.2.2. HTML FORM Redirection

A mapping of keys to values can be transferred by returning an HTML page to the User-Agent
that contains an HTML form element. Form submission MAY be automated, for example by
using JavaScript.

The <form> element's "action" attribute value MUST be the URL of the receiver. Each Key-
Value pair MUST be included in the form as an <input> element. The key MUST be encoded
as the "name" attribute and the value as the "value" attribute, such that the User-Agent will
generate a message as specified in when the form is submitted. The form
MUST include a submit button.

5.2.3. Indirect Error Responses

authentication requests authentication responses

Section 4.1.2

Section 4.1.2

Section 4.1.2

Section 4.1.2

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#requesting_authentication
http://openid.net/specs/openid-authentication-2_0.html#responding_to_authentication
http://openid.net/specs/openid-authentication-2_0.html#http_encoding
http://openid.net/specs/openid-authentication-2_0.html#http_encoding
http://openid.net/specs/openid-authentication-2_0.html#http_encoding
http://openid.net/specs/openid-authentication-2_0.html#http_encoding

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 9 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

In the case of a malformed request, or one that contains invalid arguments, the OpenID
Provider MUST redirect the User-Agent to the "openid.return_to" URL value if the value is
present and it is a valid URL.

openid.ns

As specified in .

openid.mode

Value: "error"

openid.error

Value: A human-readable message indicating the cause of
the error.

openid.contact

Value: (optional) Contact address for the administrator of the
sever. The contact address may take any form, as it is
intended to be displayed to a person.

openid.reference

Value: (optional) A reference token, such as a support ticket
number or a URL to a news blog, etc.

The server MAY add additional keys to this response.

If the malformed or invalid message is received by the Relying Party, or "openid.return_to" is
not present or its value is not a valid URL, the server SHOULD return a response to the end
user indicating the error and that it is unable to continue.

6. Generating Signatures

The most common usage of an association is as a Message Authentication Code (MAC) key
used to sign OpenID Authentication messages.

When generating MAC keys, the recommendations in SHOULD be followed.

6.1. Procedure

To generate a message signature:

1. Determine the list of keys to be signed, according to the message to be signed
(See). The list of keys to be signed MUST be part of the message.
The list is stored with the key "openid.signed". The value is a comma-separated
list of keys, with the "openid." prefix stripped. This algorithm is only capable of
signing keys that start with "openid."

2. Iterate through the list of keys to be signed in the order they appear in

Section 4.1.2

[RFC1750]

Section 10.1

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#http_encoding
http://openid.net/specs/openid-authentication-2_0.html#RFC1750
http://openid.net/specs/openid-authentication-2_0.html#positive_assertions

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 10 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

 TOC TOC

"openid.signed" list. For each key, find the value in the message whose key is
equal to the signed list key prefixed with "openid."

3. Convert the list of key/value pairs to be signed to an octet string by encoding
with .

4. Determine the signature algorithm from the . Apply the
 to the octet string.

6.2. Signature Algorithms

OpenID Authentication supports two signature algorithms:

HMAC-SHA1 - 160 bit key length (and)
HMAC-SHA256 - 256 bit key length (and

If supported, the use of HMAC-SHA256 is RECOMMENDED.

7. Initiation and Discovery

7.1. Initiation

To initiate OpenID Authentication, the Relying Party SHOULD present the end user with a
form that has a field for entering a User-Supplied Identifier.

The form field's "name" attribute SHOULD have the value "openid_identifier", so that User-
Agents can automatically determine that this is an OpenID form. Browser extensions or other
software that support OpenID Authentication may not detect a Relying Party's support if this
attribute is not set appropriately.

7.2. Normalization

The end user's input MUST be normalized into an Identifier, as follows:

1. If the user's input starts with the "xri://" prefix, it MUST be stripped off, so that
XRIs are used in the canonical form.

2. If the first character of the resulting string is an XRI Global Context Symbol ("=",
"@", "+", "$", "!") or "(", as defined in Section 2.2.1 of , then
the input SHOULD be treated as an XRI.

3. Otherwise, the input SHOULD be treated as an http URL; if it does not include a
"http" or "https" scheme, the Identifier MUST be prefixed with the string
"http://". If the URL contains a fragment part, it MUST be stripped off together
with the fragment delimiter character "#". See for more
information.

4. URL Identifiers MUST then be further normalized by both following redirects when
retrieving their content and finally applying the rules in Section 6 of

Key-Value Form Encoding
association type

signature algorithm

[RFC2104] [RFC3174]
[RFC2104] [FIPS180‑2]

[XRI_Syntax_2.0]

Section 11.5.2

[RFC3986]

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#kvform
http://openid.net/specs/openid-authentication-2_0.html#associations
http://openid.net/specs/openid-authentication-2_0.html#sign_algos
http://openid.net/specs/openid-authentication-2_0.html#RFC2104
http://openid.net/specs/openid-authentication-2_0.html#RFC3174
http://openid.net/specs/openid-authentication-2_0.html#RFC2104
http://openid.net/specs/openid-authentication-2_0.html#FIPS180-2
http://openid.net/specs/openid-authentication-2_0.html#XRI_Syntax_2.0
http://openid.net/specs/openid-authentication-2_0.html#http_s_identifiers
http://openid.net/specs/openid-authentication-2_0.html#RFC3986

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 11 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

to the final destination URL. This final URL MUST be noted by the Relying Party as
the Claimed Identifier and be used when .

See .

7.3. Discovery

Discovery is the process where the Relying Party uses the Identifier to look up ("discover")
the necessary information for initiating requests. OpenID Authentication has three paths
through which to do discovery:

1. If the identifier is an XRI, will yield an XRDS document
that contains the necessary information. It should also be noted that Relying
Parties can take advantage of XRI Proxy Resolvers, such as the one provided by
XDI.org at http://www.xri.net. This will remove the need for the RPs to perform
XRI Resolution locally.

2. If it is a URL, the [Yadis] SHALL be first attempted. If it
succeeds, the result is again an XRDS document.

3. If the Yadis protocol fails and no valid XRDS document is retrieved, or no
 are found in the XRDS document, the URL is retrieved and

 SHALL be attempted.

7.3.1. Discovered Information

Upon successful completion of discovery, the Relying Party will have one or more sets of the
following information (see the for definitions). If more than one set of
the following information has been discovered, the precedence rules defined in

 are to be applied.

OP Endpoint URL
Protocol Version

If the end user did not enter an OP Identifier, the following information will also be present:

Claimed Identifier
OP-Local Identifier

If the end user entered an OP Identifier, there is no Claimed Identifier. For the purposes of
making OpenID Authentication requests, the value
"http://specs.openid.net/auth/2.0/identifier_select" MUST be used as both the Claimed
Identifier and the OP-Local Identifier when an OP Identifier is entered.

7.3.2. XRDS-Based Discovery

If XRI or Yadis discovery was used, the result will be an XRDS Document. This is an XML
document with entries for services that are related to the Identifier. It is defined in

 [XRI_Resolution_2.0]. See for an example XRDS document.

requesting authentication

normalization example

[XRI_Resolution_2.0]

Yadis protocol

Service Elements
HTML-Based discovery

Terminology section

[XRI_Resolution_2.0]

Section
3 of Appendix A.3

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#requesting_authentication
http://openid.net/specs/openid-authentication-2_0.html#normalization_example
http://openid.net/specs/openid-authentication-2_0.html#XRI_Resolution_2.0
http://openid.net/specs/openid-authentication-2_0.html#Yadis
http://openid.net/specs/openid-authentication-2_0.html#service_elements
http://openid.net/specs/openid-authentication-2_0.html#html_disco
http://openid.net/specs/openid-authentication-2_0.html#terminology
http://openid.net/specs/openid-authentication-2_0.html#XRI_Resolution_2.0
http://openid.net/specs/openid-authentication-2_0.html#XRI_Resolution_2.0
http://openid.net/specs/openid-authentication-2_0.html#XRDS_Sample

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 12 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

 TOC TOC

 TOC TOC

7.3.2.1. OpenID Service Elements

7.3.2.1.1. OP Identifier Element

An OP Identifier Element is an <xrd:Service> element with the following information:

An <xrd:Type> tag whose text content is
"http://specs.openid.net/auth/2.0/server".
An <xrd:URI> tag whose text content is the OP Endpoint URL

7.3.2.1.2. Claimed Identifier Element

A Claimed Identifier Element is an <xrd:Service> element with the following information:

An <xrd:Type> tag whose text content is
"http://specs.openid.net/auth/2.0/signon".
An <xrd:URI> tag whose text content is the OP Endpoint URL.
An <xrd:LocalID> tag (optional) whose text content is the OP-Local Identifier.

7.3.2.2. Extracting Authentication Data

Once the Relying Party has obtained an XRDS document, it MUST first search the document
(following the rules described in) for an OP Identifier Element. If
none is found, the RP will search for a Claimed Identifier Element.

7.3.2.3. XRI and the CanonicalID Element

When the Identifier is an XRI, the <xrd:XRD> element that contains the OpenID
Authentication <xrd:Service> element MUST also contain a <CanonicalID> element. The
content of this element MUST be used as the Claimed Identifier (see). This is a
vital security consideration because a primary purpose of the <CanonicalID> element is to
assert a persistent identifier that will never be reassigned, thus preventing the possibility of
an XRI being ("taken over") by a new registrant.

The Relying Party MUST confirm that the provider of the XRD that contains the
<CanonicalID> element is authoritative for that Canonical ID and that this XRDS document is
authoritative for the OpenID Service Element. Relying Parties should either do this manually
or ensure that their resolver does this.

When using XRI resolution, the Canonical ID MUST be used as the Claimed Identifier. For an
XRI to be a valid Identifier, both the <ProviderID> and <CanonicalID> MUST be present in
the discovered XRDS document.

[XRI_Resolution_2.0]

Section 11.5

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#XRI_Resolution_2.0
http://openid.net/specs/openid-authentication-2_0.html#identifying

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 13 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

When using URL Identifiers, the CanonicalID element MUST be ignored if present.

7.3.2.4. Additional Information

The "openid" namespace is no longer used as of OpenID Authentication 2.0. The "xrd"
namespace is "xri://$xrd*($v*2.0)".

For compatibility with deployed code, it is RECOMMENDED that Relying Parties also accept
"http://openid.net/signon/1.0" or "http://openid.net/signon/1.1" for the value of
<xrd:Type>, as described in the section.
It is RECOMMENDED that Relying Parties supporting OpenID Authentication 2.0 choose to
use, if available, endpoints with the type "http://specs.openid.net/auth/2.0/server" and
"http://specs.openid.net/auth/2.0/signon", in this order, as specified in

If an OP supports extensions (), the extensions SHOULD be listed as additional
<xrd:Type> child elements of the <xrd:Service> element.

7.3.3. HTML-Based Discovery

HTML-Based discovery MUST be supported by Relying Parties. HTML-Based discovery is only
usable for discovery of Claimed Identifiers. OP Identifiers must be XRIs or URLs that support
XRDS discovery.

To use HTML-Based discovery, an HTML document MUST be available at the URL of the
Claimed Identifier. Within the HEAD element of the document:

A LINK element MUST be included with attributes "rel" set to "openid2.provider"
and "href" set to an OP Endpoint URL

A LINK element MAY be included with attributes "rel" set to "openid2.local_id"
and "href" set to the end user's OP-Local Identifier

The protocol version when HTML discovery is performed is
"http://specs.openid.net/auth/2.0/signon".

The host of the HTML document MAY be different from the end user's OP's host.

The "openid2.provider" and "openid2.local_id" URLs MUST NOT include entities other than
"&", "<", ">", and """. Other characters that would not be valid in the HTML
document or that cannot be represented in the document's character encoding MUST be
escaped using the percent-encoding (%xx) mechanism described in .

As discussed in the section, these
discovery tags are not the same as in previous versions of the protocol. While the same data
is conveyed, the names have changed which allows a Relying Party to determine the protocol
version being used. A Relying Party MAY encounter a Claimed Identifier which uses HTML-
Based Discovery to advertise both version 1.1 and 2.0 Providers.

OpenID Authentication 1.1 Compatibility mode

Section 7.3.2.2

Section 12

[RFC3986]

OpenID Authentication 1.1 Compatibility mode

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#compat_mode
http://openid.net/specs/openid-authentication-2_0.html#extracting_auth
http://openid.net/specs/openid-authentication-2_0.html#extensions
http://openid.net/specs/openid-authentication-2_0.html#RFC3986
http://openid.net/specs/openid-authentication-2_0.html#compat_mode

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 14 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

 TOC TOC

8. Establishing Associations

An association between the Relying Party and the OpenID Provider establishes a shared
secret between them, which is used to verify subsequent protocol messages and reduce
round trips.

It is RECOMMENDED that a Relying Party form associations if it is possible for it to do so. If a
Relying Party is incapable of creating or storing associations, provides an
alternate verification mechanism referred to as Stateless Mode.

8.1. Association Session Request

An association session is initiated by a from a Relying Party to an OP
Endpoint URL with the "openid.mode" key having the value of "associate".

8.1.1. Common Request Parameters

These parameters are common to all association requests:

openid.ns

As specified in .

openid.mode

Value: "associate"

openid.assoc_type

The preferred association type. The association type defines
the algorithm to be used to sign subsequent messages.

Value: A valid association type from

openid.session_type

The preferred association session type. This defines the
method used to encrypt the association's MAC key in transit.

Value: A valid association session type from .

Note: Unless using transport layer encryption, "no-
encryption" MUST NOT be used.

8.1.2. Diffie-Hellman Request Parameters

The following parameters are common to requests whose requested association session type
is "DH-SHA1" or "DH-SHA256":

Section 11.4.2

direct request

Section 4.1.2

Section 8.3

Section 8.4

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#check_auth
http://openid.net/specs/openid-authentication-2_0.html#direct_comm
http://openid.net/specs/openid-authentication-2_0.html#http_encoding
http://openid.net/specs/openid-authentication-2_0.html#assoc_types
http://openid.net/specs/openid-authentication-2_0.html#assoc_sess_types

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 15 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

openid.dh_modulus

Value: base64(btwoc(p))

Default: See

openid.dh_gen

Value: base64(btwoc(g))

Default: g = 2

openid.dh_consumer_public

Value: base64(btwoc(g ^ xa mod p))

See for more information on these parameters.

NOTE: The 'btwoc' function is defined in .

8.2. Association Session Response

An association session response is a direct response from the OP to the Relying Party in
.

8.2.1. Common Response Parameters

ns

As specified in .

assoc_handle

The association handle is used as a key to refer to this
association in subsequent messages.

Value: A string 255 characters or less in length. It MUST
consist only of ASCII characters in the range 33-126
inclusive (printable non-whitespace characters).

session_type

The value of the "openid.session_type" parameter from the
request. If the OP is unwilling or unable to support this
association type, it MUST return an

.

assoc_type

The value of the "openid.assoc_type" parameter from the
request. If the OP is unwilling or unable to support this
association type, it MUST return an

Appendix B

Section 8.4.2

Section 4.2

Key-
Value Form

Section 5.1.2

unsuccessful
response

unsuccessful

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#pvalue
http://openid.net/specs/openid-authentication-2_0.html#dh_sessions
http://openid.net/specs/openid-authentication-2_0.html#btwoc
http://openid.net/specs/openid-authentication-2_0.html#kvform
http://openid.net/specs/openid-authentication-2_0.html#direct_response
http://openid.net/specs/openid-authentication-2_0.html#refuse_assoc
http://openid.net/specs/openid-authentication-2_0.html#refuse_assoc

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 16 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

.

expires_in

The lifetime, in seconds, of this association. The Relying
Party MUST NOT use the association after this time has
passed.

Value: An integer, represented in base 10 ASCII.

8.2.2. Unencrypted Response Parameters

mac_key

The MAC key (shared secret) for this association,
[RFC3548] encoded.

8.2.3. Diffie-Hellman Response Parameters

dh_server_public

Value: base64(btwoc(g ^ xb mod p))

Description: The OP's Diffie-Hellman public key.

enc_mac_key

Value: base64(H(btwoc(g ^ (xa * xb) mod p)) XOR MAC
key)

Description: The MAC key (shared secret), encrypted with
the secret Diffie-Hellman value. H is either "SHA1" or
"SHA256" depending on the session type.

NOTE: The 'btwoc' function is defined in

8.2.4. Unsuccessful Response Parameters

If the OP does not support a session type or association type, it MUST respond with a direct
error message indicating that the association request failed. If there is another association
session type or association type that is supported, the OP SHOULD include that information in
the response.

ns

As specified in .

error

response

Base 64

Section 4.2

Section 5.1.2

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#refuse_assoc
http://openid.net/specs/openid-authentication-2_0.html#RFC3548
http://openid.net/specs/openid-authentication-2_0.html#btwoc
http://openid.net/specs/openid-authentication-2_0.html#direct_response

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 17 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

 TOC TOC

 TOC TOC

Value: A human-readable message indicating why the
association request failed.

error_code

Value: "unsupported-type"

session_type

Value: (optional) A valid association session type from
 that the OP supports.

assoc_type

Value: (optional) An association type supported by the OP
from .

Upon receipt of an "unsupported-type" response, the Relying Party MAY make another
request with the specified association session type and association type. If no association is
established, the Relying Party MAY continue the authentication process in

.

8.3. Association Types

8.3.1. HMAC-SHA1

An association of type "HMAC-SHA1" uses the signature algorithm.

8.3.2. HMAC-SHA256

An association of type "HMAC-SHA256" uses the signature algorithm.

8.4. Association Session Types

OpenID Authentication defines three valid association session types: "no-encryption", "DH-
SHA1", and "DH-SHA256".

8.4.1. No-Encryption Association Sessions

In a "no-encryption" association session, the OP sends the association MAC key in plain-text
to the Relying Party. This makes it possible for an eavesdropper to intercept the key, and
forge messages to this Relying Party when not using transport layer encryption. Therefore,
"no-encryption" association sessions MUST NOT be used unless the messages are using

Section 8.4

Section 8.3

Direct
Verification

HMAC-SHA1

HMAC-SHA256

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#assoc_sess_types
http://openid.net/specs/openid-authentication-2_0.html#assoc_types
http://openid.net/specs/openid-authentication-2_0.html#check_auth
http://openid.net/specs/openid-authentication-2_0.html#sign_algos
http://openid.net/specs/openid-authentication-2_0.html#sign_algos

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 18 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

transport layer encryption. See for more information.

The MAC key sent by the OP MUST be the length specified for the requested association type,
as specified in .

8.4.2. Diffie-Hellman Association Sessions

The "DH-SHA1" and "DH-SHA256" association types use Diffie-Hellman Key Exchange to
securely transmit the shared secret.

The MAC key MUST be the same length as the output of H, the hash function - 160 bits (20
bytes) for DH-SHA1 or 256 bits (32 bytes) for DH-SHA256, as well as the output of the
signature algorithm of this association.

The Relying Party specifies a modulus, p, and a generator, g. The Relying Party chooses a
random private key xa and OpenID Provider chooses a random private key xb, both in the
range [1 .. p-1]. The shared secret used to encrypt the MAC key is thus g ^ (xa * xb) mod p
= (g ^ xa) ^ xb mod p = (g ^ xb) ^ xa mod p. For more information, see . For
information on the selection of random values, see .

9. Requesting Authentication

Once the Relying Party has successfully performed discovery and (optionally) created an
association with the discovered OP Endpoint URL, it can send an authentication request to the
OP to obtain an assertion. An authentication request is an .

9.1. Request Parameters

openid.ns

As specified in .

openid.mode

Value: "checkid_immediate" or "checkid_setup"

Note: If the Relying Party wishes the end user to be able to
interact with the OP, "checkid_setup" should be used. An
example of a situation where interaction between the end
user and the OP is not desired is when the authentication
request is happening asynchronously in JavaScript.

openid.claimed_id

Value: (optional) The Claimed Identifier.

"openid.claimed_id" and "openid.identity" SHALL be either
both present or both absent. If neither value is present, the

Section 15.1.1

Section 6.2

[RFC2631]
[RFC1750]

indirect request

Section 4.1.2

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#preventing_eavesdropping
http://openid.net/specs/openid-authentication-2_0.html#sign_algos
http://openid.net/specs/openid-authentication-2_0.html#RFC2631
http://openid.net/specs/openid-authentication-2_0.html#RFC1750
http://openid.net/specs/openid-authentication-2_0.html#indirect_comm
http://openid.net/specs/openid-authentication-2_0.html#http_encoding

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 19 of 40http://openid.net/specs/openid-authentication-2_0.html

assertion is not about an identifier, and will contain other
information in its payload, using .

It is RECOMMENDED that OPs accept XRI identifiers with or
without the "xri://" prefix, as specified in the
section.

openid.identity

Value: (optional) The OP-Local Identifier.

If a different OP-Local Identifier is not specified, the claimed
identifier MUST be used as the value for openid.identity.

Note: If this is set to the special value
"http://specs.openid.net/auth/2.0/identifier_select" then the
OP SHOULD choose an Identifier that belongs to the end
user. This parameter MAY be omitted if the request is not
about an identifier (for instance if an extension is in use that
makes the request meaningful without it; see
openid.claimed_id above).

openid.assoc_handle

Value: (optional) A handle for an association between the
Relying Party and the OP that SHOULD be used to sign the
response.

Note: If no association handle is sent, the transaction will
take place in .

openid.return_to

Value: (optional) URL to which the OP SHOULD return the
User-Agent with the response indicating the status of the
request.

Note: If this value is not sent in the request it signifies that
the Relying Party does not wish for the end user to be
returned.

Note: The return_to URL MAY be used as a mechanism for
the Relying Party to attach context about the authentication
request to the authentication response. This document does
not define a mechanism by which the RP can ensure that
query parameters are not modified by outside parties; such a
mechanism can be defined by the RP itself.

openid.realm

Value: (optional) URL pattern the OP SHOULD ask the end
user to trust. See . This value MUST be sent if
openid.return_to is omitted.

Default: return_to URL

extensions

Normalization

Stateless Mode

Section 9.2

http://openid.net/specs/openid-authentication-2_0.html#extensions
http://openid.net/specs/openid-authentication-2_0.html#normalization
http://openid.net/specs/openid-authentication-2_0.html#check_auth
http://openid.net/specs/openid-authentication-2_0.html#realms

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 20 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

9.2. Realms

A "realm" is a pattern that represents the part of URL-space for which an OpenID
Authentication request is valid. A realm is designed to give the end user an indication of the
scope of the authentication request. OPs SHOULD present the realm when requesting the end
user's approval for an authentication request. The realm SHOULD be used by OPs to uniquely
identify Relying Parties. For example, OPs MAY use the realm to allow the end user to
automate approval of authentication requests.

A realm pattern is a URL, with the following changes:

A realm MUST NOT contain a URI fragment
A realm MAY contain a wild-card at the beginning of the URL authority section. A
wild-card consists of the characters "*." prepended to the DNS name in the
authority section of the URL.

A URL matches a realm if:

The URL scheme and port of the URL are identical to those in the realm. See
 [RFC3986], section 3.1 for rules about URI matching.

The URL's path is equal to or a sub-directory of the realm's path.
Either:

1. The realm's domain contains the wild-card characters "*.",
and the trailing part of the URL's domain is identical to the
part of the realm following the "*." wildcard, or

2. The URL's domain is identical to the realm's domain

When present, the "openid.return_to" URL MUST match the "openid.realm", or the OP MUST
return an .

It is RECOMMENDED that OPs protect their users from making assertions with overly-general
realms, like http://*.com/ or http://*.co.uk/. Overly general realms can be dangerous when
the realm is used for identifying a particular Relying Party. Whether a realm is overly-general
is at the discretion of the OP.

9.2.1. Using the Realm for Return URL Verification

OpenID providers SHOULD verify that the return_to URL specified in the request is an
OpenID relying party endpoint. To verify a return_to URL, obtain the relying party endpoints
for the realm by performing . As always when performing
discovery, the discovered URL is the URL of the last HTTP response, following redirects. If
any redirects are followed when performing discovery on the realm, verification has failed. If
discovery has successfuly completed, check to make sure that the return_to URL matches
one of the relying party endpoints.

A realm may contain a wildcard, and so may not be a valid URL. In that case, perform
discovery on the URL obtained by substituting "www" for the wildcard in the realm.

To match a return_to URL against a relying party endpoint, use the same rules as for
matching the return_to URL against the realm, treating the relying party's endpoint URL as

RFC
3986

indirect error response

discovery on the relying party

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#RFC3986
http://openid.net/specs/openid-authentication-2_0.html#indirect_error
http://openid.net/specs/openid-authentication-2_0.html#rp_discovery

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 21 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

the realm. Relying party endpoint URLs MUST NOT contain a domain wildcard, and SHOULD
be as specific as possible.

If verification is attempted and fails, the provider SHOULD NOT send a positive assertion to
that return_to URL.

Providers MAY cache verified return_to URLs.

9.3. Immediate Requests

When requesting authentication, the Relying Party MAY request that the OP not interact with
the end user. In this case the OP MUST respond immediately with either an assertion that
authentication is successful, or a response indicating that the request cannot be completed
without further user interaction. This is accomplished by an authentication request with
"openid.mode" set to "checkid_immediate".

10. Responding to Authentication Requests

When an authentication request comes from the User-Agent via ,
the OP SHOULD determine that an authorized end user wishes to complete the
authentication. If an authorized end user wishes to complete the authentication, the OP
SHOULD send a to the Relying Party.

Methods of identifying authorized end users and obtaining approval to return an OpenID
Authentication assertion are beyond the scope of this specification. See for
OpenID Provider security considerations.

If the relying party requested OP-driven identifier selection by setting "openid.identity" to
"http://specs.openid.net/auth/2.0/identifier_select" and there are Identifiers for which the
end user is authorized to issue authentication responses, the OP SHOULD allow the end user
to choose which Identifier to use.

If the Relying Party supplied an association handle with the authentication request, the OP
SHOULD attempt to look up an association based on that handle. If the association is missing
or expired, the OP SHOULD send the "openid.invalidate_handle" parameter as part of the
response with the value of the request's "openid.assoc_handle" parameter, and SHOULD
proceed as if no association handle was specified.

If no association handle is specified, the OP SHOULD use a private association for signing the
response. The OP MUST store this association and MUST respond to later requests to check
the signature of the response via .

Relying Parties SHOULD accept and verify assertions about Identifiers for which they have
not requested authentication. OPs SHOULD use private associations for signing unsolicited
positive assertions.

If the "openid.return_to" value is omitted in the request, the Relying Party does not wish to
receive an authentication assertion from the OP. This can be useful when using extensions to
transfer data from the Relying Party to the OP.

indirect communication

positive assertion

Section 15.1.2.1

Direct Verification

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#indirect_comm
http://openid.net/specs/openid-authentication-2_0.html#positive_assertions
http://openid.net/specs/openid-authentication-2_0.html#rp_mitm_proxy
http://openid.net/specs/openid-authentication-2_0.html#check_auth

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 22 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC 10.1. Positive Assertions

Positive assertions are with the following fields:

openid.ns

As specified in .

openid.mode

Value: "id_res"

openid.op_endpoint

The OP Endpoint URL.

openid.claimed_id

Value: (optional) The Claimed Identifier. "openid.claimed_id"
and "openid.identity" SHALL be either both present or both
absent.

Note: The end user MAY choose to use an OP-Local Identifier
as a Claimed Identifier.

Note: If neither Identifier is present in the assertion, it is not
about an identifier, and will contain other information in its
payload, using .

openid.identity

Value: (optional) The OP-Local Identifier

Note: OpenID Providers MAY assist the end user in selecting
the Claimed and OP-Local Identifiers about which the
assertion is made. The openid.identity field MAY be omitted if
an extension is in use that makes the response meaningful
without it (see openid.claimed_id above).

openid.return_to

Value: Verbatim copy of the return_to URL parameter sent in
the request.

openid.response_nonce

Value: A string 255 characters or less in length, that MUST
be unique to this particular successful authentication
response. The nonce MUST start with the current time on the
server, and MAY contain additional ASCII characters in the
range 33-126 inclusive (printable non-whitespace
characters), as necessary to make each response unique.
The date and time MUST be formatted as specified in section
5.6 of , with the following restrictions:

indirect responses

Section 4.1.2

extensions

[RFC3339]

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#indirect_comm
http://openid.net/specs/openid-authentication-2_0.html#http_encoding
http://openid.net/specs/openid-authentication-2_0.html#extensions
http://openid.net/specs/openid-authentication-2_0.html#RFC3339

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 23 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

All times must be in the UTC timezone, indicated
with a "Z".
No fractional seconds are allowed

For example: 2005-05-15T17:11:51ZUNIQUE

openid.invalidate_handle

Value: (optional) If the Relying Party sent an invalid
association handle with the request, it SHOULD be included
here.

openid.assoc_handle

Value: The handle for the association that was used to sign
this assertion.

openid.signed

Value: Comma-separated list of signed fields.

Note: This entry consists of the fields without the "openid."
prefix that the signature covers. This list MUST contain at
least "op_endpoint", "return_to" "response_nonce" and
"assoc_handle", and if present in the response, "claimed_id"
and "identity". Additional keys MAY be signed as part of the
message. See .

For example,
"op_endpoint,identity,claimed_id,return_to,assoc_handle,response_nonce".

openid.sig

Value: Base 64 encoded signature calculated as specified in
.

10.2. Negative Assertions

If the OP is unable to identify the end user or the end user does not or cannot approve the
authentication request, the OP SHOULD send a negative assertion to the Relying Party as an

.

When receiving a negative assertion in response to a "checkid_immediate" mode request,
Relying Parties SHOULD construct a new authentication request using "checkid_setup" mode.
Details about how this differs from OpenID Authentication 1.1 can be found in .

10.2.1. In Response to Immediate Requests

If the request was an immediate request, there is no chance for the end user to interact with
pages on the OP to provide identifying credentials or approval of a request. A negative
assertion of an immediate request takes the following form:

Generating Signatures

Section 6

indirect response

Section 14

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#generating_signatures
http://openid.net/specs/openid-authentication-2_0.html#generating_signatures
http://openid.net/specs/openid-authentication-2_0.html#indirect_comm
http://openid.net/specs/openid-authentication-2_0.html#compat_mode

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 24 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

openid.ns

As specified in .

openid.mode

Value: "setup_needed"

10.2.2. In Response to Non-Immediate Requests

Since the OP may display pages to the end user and request credentials from the end user, a
negative response to a request that is not immediate is definitive. It takes the following
form:

openid.ns

As specified in .

openid.mode

Value: "cancel"

Often, if the user does not wish to or cannot complete the authentication request, the
OpenID authentication process will be aborted and the Relying Party will not get a cancel
mode response (the end user may quit or press the back button in their User-Agent instead
of continuing). If a RP receives the "cancel" response, authentication was unsuccessful and
the RP MUST treat the end user as non-authenticated.

11. Verifying Assertions

When the Relying Party receives a positive assertion, it MUST verify the following before
accepting the assertion:

The value of "openid.return_to" matches the URL of the current request
()
Discovered information matches the information in the assertion ()
An assertion has not yet been accepted from this OP with the same value for
"openid.response_nonce" ()
The signature on the assertion is valid and all fields that are required to be
signed are signed ()

If all four of these conditions are met, assertion is now verified. If the assertion contained a
Claimed Identifier, the user is now authenticated with that identifier.

11.1. Verifying the Return URL

To verify that the "openid.return_to" URL matches the URL that is processing this assertion:

Section 4.1.2

Section 4.1.2

Section 11.1
Section 11.2

Section 11.3

Section 11.4

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#http_encoding
http://openid.net/specs/openid-authentication-2_0.html#http_encoding
http://openid.net/specs/openid-authentication-2_0.html#verify_return_to
http://openid.net/specs/openid-authentication-2_0.html#verify_disco
http://openid.net/specs/openid-authentication-2_0.html#verify_nonce
http://openid.net/specs/openid-authentication-2_0.html#verifying_signatures

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 25 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

The URL scheme, authority, and path MUST be the same between the two URLs.
Any query parameters that are present in the "openid.return_to" URL MUST also
be present with the same values in the URL of the HTTP request the RP received.

11.2. Verifying Discovered Information

If the Claimed Identifier in the assertion is a URL and contains a fragment, the fragment part
and the fragment delimiter character "#" MUST NOT be used for the purposes of verifying the
discovered information.

If the Claimed Identifier is included in the assertion, it MUST have been by the
Relying Party and the information in the assertion MUST be present in the discovered
information. The Claimed Identifier MUST NOT be an OP Identifier.

If the Claimed Identifier was not previously discovered by the Relying Party (the
"openid.identity" in the request was "http://specs.openid.net/auth/2.0/identifier_select" or a
different Identifier, or if the OP is sending an unsolicited positive assertion), the Relying Party
MUST perform discovery on the Claimed Identifier in the response to make sure that the OP
is authorized to make assertions about the Claimed Identifier.

If no Claimed Identifier is present in the response, the assertion is not about an identifier and
the RP MUST NOT use the User-supplied Identifier associated with the current OpenID
authentication transaction to identify the user. Extension information in the assertion MAY
still be used.

Discovered Value Response Field

Claimed Identifier openid.claimed_id
OP-Local Identifier openid.identity
OP Endpoint URL openid.op_endpoint
Protocol Version openid.ns

This table shows the mapping of into fields in the

 Discovered Information to Authentication Response Mapping Discovered Information to Authentication Response Mapping

If using a discovery mechanism that yields an XRDS document, the protocol version, OP
Endpoint URL and the OP-Local Identifier (if different than the Claimed Identifier) MUST be
present in one <xrd:Service> element. There MAY be unused fields in that <xrd:Service>
element.

Non-normative example:

<Service xmlns="xri://$xrd*($v*2.0)">
 <Type>http://specs.openid.net/auth/2.0/signon</Type>
 <URI>http://provider.example.com/openid</URI>
 <URI>https://provider.example.com/openid</URI>
</Service>

discovered

discovered information OpenID
Authentication 2.0 "id_res" response

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#discovery
http://openid.net/specs/openid-authentication-2_0.html#discovered_info
http://openid.net/specs/openid-authentication-2_0.html#positive_assertions

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 26 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

In this example XRDS snippet, the <xrd:Service> element has two <xrd:URI> elements,
which map to OP Endpoint URLs as per . If an assertion has either value for
"openid.op_endpoint", then that field matches this <xrd:Service> element. The other
<xrd:URI> element is unused.

11.3. Checking the Nonce

To prevent replay attacks, the agent checking the signature keeps track of the nonce values
included in positive assertions and never accepts the same value more than once for the
same OP Endpoint URL.

When using "check_authentication", the OP MUST NOT issue more than one
successful response to a request with the same value for
"openid.response_nonce".
When the Relying Party checks the signature on an assertion, the Relying Party
SHOULD ensure that an assertion has not yet been accepted with the same value
for "openid.response_nonce" from the same OP Endpoint URL.

The time-stamp MAY be used to reject responses that are too far away from the current time,
limiting the amount of time that nonces must be stored to prevent attacks. The acceptable
range is out of the scope of this specification. A larger range requires storing more nonces for
a longer time. A shorter range increases the chance that clock-skew and transaction time will
cause a spurious rejection.

11.4. Verifying Signatures

If the Relying Party has stored an association with the association handle specified in the
assertion, it MUST check the signature on the assertion itself. If it does not have an
association stored, it MUST request that the OP verify the signature via .

11.4.1. Verifying with an Association

The Relying Party follows the same procedure that the OP followed in
, and then compares the signature in the response to the signature it generated. If

the signatures do not match, the assertion is invalid.

If an authentication request included an association handle for an association between the OP
and the Relying party, and the OP no longer wishes to use that handle (because it has
expired or the secret has been compromised, for instance), the OP will send a response that
must be verified directly with the OP, as specified in . In that instance, the
OP will include the field "openid.invalidate_handle" set to the association handle that the
Relying Party included with the original request.

Section 7.3.1

Direct Verification

generating the
signature

Section 11.4.2

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#discovered_info
http://openid.net/specs/openid-authentication-2_0.html#check_auth
http://openid.net/specs/openid-authentication-2_0.html#generating_signatures
http://openid.net/specs/openid-authentication-2_0.html#check_auth

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 27 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

11.4.2. Verifying Directly with the OpenID Provider

To have the signature verification performed by the OP, the Relying Party sends a
 to the OP. To verify the signature, the OP uses a private association that was

generated when it issued the .

11.4.2.1. Request Parameters

openid.mode

Value: "check_authentication"

Exact copies of all fields from the authentication response, except for
"openid.mode".

For verifying signatures an OP MUST only use private associations and MUST NOT use
associations that have shared keys. If the verification request contains a handle for a shared
association, it means the Relying Party no longer knows the shared secret, or an entity other
than the RP (e.g. an attacker) has established this association with the OP.

To prevent replay attacks, the OP MUST NOT issue more than one verification response for
each authentication response it had previously issued. An authentication response and its
matching verification request may be identified by their "openid.response_nonce" values.

11.4.2.2. Response Parameters

ns

As specified in .

is_valid

Value: "true" or "false"; asserts whether the signature of the
verification request is valid.

invalidate_handle

Value: (optional) The "invalidate_handle" value sent in the
verification request, if the OP confirms it is invalid.

Description: If present in a verification response with
"is_valid" set to "true", the Relying Party SHOULD remove
the corresponding association from its store and SHOULD
NOT send further authentication requests with this handle.

Note: This two-step process for invalidating associations is
necessary to prevent an attacker from invalidating an
association at will by adding "invalidate_handle" parameters
to an authentication response.

direct
request

positive assertion

Section 5.1.2

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#direct_request
http://openid.net/specs/openid-authentication-2_0.html#positive_assertions
http://openid.net/specs/openid-authentication-2_0.html#direct_response

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 28 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

 TOC TOC

11.5. Identifying the end user

The Claimed Identifier in a successful authentication response SHOULD be used by the
Relying Party as a key for local storage of information about the user. The Claimed Identifier
MAY be used as a user-visible Identifier. When displaying URL Identifiers, the fragment MAY
be omitted.

11.5.1. Identifier Recycling

OpenID Providers with large user bases can use fragments to recycle URL Identifiers if it is so
desired. When reassigning a URL Identifier to a new end user OPs should generate a new,
unique fragment part.

The full URL with the fragment part constitutes the Claimed Identifier in positive assertions,
therefore Relying Parties will distinguish between the current and previous owners of the
fragment-less URL.

This mechanism allows the (presumably short, memorable) recycled URL Identifiers without
the fragment to be used by end users at login time and by Relying Parties for display
purposes.

11.5.2. HTTP and HTTPS URL Identifiers

Relying Parties MUST differentiate between URL Identifiers that have different schemes.
When end user input is processed into a URL, it is processed into a HTTP URL. If the same
end user controls the same URL, differing only by scheme, and it is desired that the Identifier
be the HTTPS URL, it is RECOMMENDED that a redirect be issued from the HTTP URL to the
HTTPS URL. Because the HTTP and HTTPS URLs are not equivalent and the Identifier that is
used is the URL after following redirects, there is no foreseen reduction in security when
using this scheme. If an attacker could gain control of the HTTP URL, it would have no effect
on the HTTPS URL, since the HTTP URL is not ever used as an Identifier except to initiate the
discovery process.

12. Extensions

An Extension to OpenID Authentication is a protocol that "piggybacks" on the authentication
request and response. Extensions are useful for providing extra information about an
authentication request or response as well as providing extra information about the subject
of the authentication response.

OpenID extensions are identified by a Type URI. The Type URI MAY be used as the value of
an <xrd:Type> element of an OpenID <xrd:Service> element in an XRDS document
associated with a Claimed Identifier. The Type URI is also used to associate key-value pairs
in messages with the extension.

To associate keys and values in a message with an extension, the key MUST be associated

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 29 of 40http://openid.net/specs/openid-authentication-2_0.html

with the Type URI. To associate keys with a Type URI, establish an alias by adding a key
prefixed with "openid.ns." and ending with the alias text whose value is the Type URI. Once
an alias has been established, all pairs in the message whose keys start with "openid."
followed by the alias text, followed by a period or the end of the key are associated with that
extension. This mechanism is similar to the XML namespaces.

A namespace alias MUST NOT contain a period and MUST NOT be the same as another
namespace alias in the same message. A namespace alias also MUST NOT be in the following
list of disallowed aliases:

assoc_handle
assoc_type
claimed_id
contact
delegate
dh_consumer_public
dh_gen
dh_modulus
error
identity
invalidate_handle
mode
ns
op_endpoint
openid
realm
reference
response_nonce
return_to
server
session_type
sig
signed
trust_root

A namespace MUST NOT be assigned more than one alias in the same message. If a
message is a response to another message, the response MAY use a different alias to refer to
the same namespace.

Non-normative example:

An extension's type URI is "<http://example.com/ext/1.0>".

openid.ns.x=http://example.com/ext/1.0

openid.x=example

openid.x.foo=bar

openid.xx=notx

In this example, the keys "openid.x" and "openid.x.foo" are associated with the extension;
the "openid.xx" key is not.

Extensions MUST NOT define multiple parameters with the same name. Extensions that need

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 30 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

to send multiple values for the same parameter name must define their own conventions for
doing so.

13. Discovering OpenID Relying Parties

Relying Party discovery allows for software agents to discover sites that support OpenID. It
also allows OpenID providers to automatically verify that a return_to URL in an OpenID
request is an OpenID relying party endpoint for the specified realm.

Relying Parties SHOULD use the Yadis protocol to publish their valid return_to URLs. The
relying party MAY publish this information at any URL, and SHOULD publish it under the
realm so that providers can verify return_to URLs.

A Relying Party discovery XRDS document MUST contain one or more <xrd:Service>
elements:

Containing at least one <xrd:URI> element.
Where all <xrd:URI> tags contain a URL that accepts OpenID 2.0 Authentication
responses.
Containing a <xrd:Type> tag whose content is
"http://specs.openid.net/auth/2.0/return_to".

Non-normative example:

<Service xmlns="xri://$xrd*($v*2.0)">
 <Type>http://specs.openid.net/auth/2.0/return_to</Type>
 <URI>http://consumer.example.com/return</URI>
</Service>

14. OpenID Authentication 1.1 Compatibility

This section describes how to interact with OpenID Authentication 1.1 Relying Parties and
OPs. OpenID Authentication 2.0 implementations SHOULD support OpenID Authentication 1.1
compatibility, unless security considerations make it undesirable.

14.1. Changes from OpenID Authentication 1.1

(non-normative)

This specification is based on the original specification for OpenID Authentication as written
by Brad Fitzpatrick. That specification did not have a version number, but was called OpenID
1.0, and then OpenID 1.1 when it was revised. The protocol outlined in this specification is
intended to be backwards-compatible with the revised OpenID protocol. The changes to the
specification are outlined in this section.

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 31 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

 TOC TOC

14.1.1. Updated Initiation and Discovery

Supports OP Identifiers. This new variation of the protocol flow is initiated by an
end user entering an OP Identifier instead of their own Identifier. This allows the
OP to assist the end user in selecting an Identifier.
Supports the use of XRIs as Identifiers. XRIs may be used as Identifiers for both
end users and OPs, and provide automatic mapping from one or more
reassignable i-names to a synonymous persistent Canonical ID that will never be
reassigned.
When URLs are used as Identifiers, they are normalized according to the
guidelines in , for better compatibility with the existing Web
infrastructure.
Uses the Yadis protocol for discovery. This allows for using multiple OPs for a
single Identifier, for load-balancing and fallback in the case of OP failure.
Additionally, it allows for discovery of supported extensions and other associated
services.

14.1.2. Security improvements

A nonce is now part of the protocol for built-in protection against replay attacks, which was
previously implemented out-of-band by each library or application.

A new association type, HMAC-SHA256, and a new association session type, DH-SHA256,
allow for stronger signatures on authentication assertions.

An actual which looks at protecting the protocol from
end-to-end.

14.1.3. Extensions

Extensions are now an officially supported mechanism to support data exchange and other
Relying Party-OP communication along with the authentication exchange. Extensions allow
for the exchange of arbitrary attributes, as well as for protocol extensions, such as the
inclusion of additional information about the Relying Party in the authentication request.

Because extensions can transfer arbitrary data, the Identifier is now optional in
authentication messages.

14.2. Implementing OpenID Authentication 1.1 Compatibility

All messages in OpenID Authentication 1.1 omit the "openid.ns" parameter, which is an easy
way for an RP to determine if the message is from an OpenID Authentication 1.1 endpoint.
OpenID Authentication 1.1 supports only HMAC-SHA1 associations.

Error responses in OpenID Authentication 1.1 did not define "contact" or "reference". OpenID
Authentication 1.1 did allow for the addition of extra fields in error responses. It is
RECOMMENDED for contact and reference to be sent even when using OpenID Authentication

[RFC3986]

Security Considerations section

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#RFC3986
http://openid.net/specs/openid-authentication-2_0.html#security_considerations

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 32 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

1.1, since they may be useful for debugging and do not affect compatibility.

14.2.1. Relying Parties

When HTML discovery is performed, the OP endpoint URL is marked by the link
relationship "openid.server" rather than "openid2.provider". The end user's OP-
Local Identifier is marked by the link relationship "openid.delegate" rather than
"openid2.local_id". The protocol version is in this case
"http://openid.net/signon/1.1". HTML allows multiple link relationships to be
specified for a single link, so if an OP provides both OpenID Authentication 1.1
and OpenID Authentication 2.0, "openid2.provider" and "openid.server" may
appear in the same "rel" attribute.
When XRDS-based discovery is performed, the end user's OP-Local Identifier
appears in the <openid:Delegate> tag of the OpenID <xrd:Service> element
rather than in the <xrd:LocalID> tag. In order to support currently-deployed
discovery code, both tags MAY appear in the <xrd:Service> element.
Relying Parties SHOULD extract and use OpenID Authentication 1.x service
elements from XRDS documents, if Yadis succeeds on an URL Identifier. Such
service elements are identified by <xrd:Type> tags whose text contents are
"http://openid.net/server/1.0" or "http://openid.net/server/1.1". Although this is
not specified in the previous version of the protocol, it is a generally accepted
practice of advertising OpenID Authentication 1.x services through Yadis.
"openid.claimed_id" is not defined by OpenID Authentication 1.1. Relying Parties
MAY send the value when making requests, but MUST NOT depend on the value
being present in authentication responses. When the OP-Local Identifier
("openid.identity") is different from the Claimed Identifier, the Relying Party
MUST keep track of what Claimed Identifier was used to discover the OP-Local
Identifier, for example by keeping it in session state. Although the Claimed
Identifier will not be present in the response, it MUST be used as the identifier for
the user.
"openid.identity" MUST be sent in a .
Relying Parties MUST send a blank session_type parameter in "no-encryption"
association requests.
In OpenID Authentication 1.1, the "no-encryption" association session type is
represented by a blank or missing "openid.session_type" parameter. Relying
Parties MUST NOT send requests with "openid.session_type" set to "no-
encryption".
In , the "openid.identity" parameter SHOULD NOT be
the special value "http://specs.openid.net/auth/2.0/identifier_select", because
OpenID Authentication 1.1 does not support the use of OP Identifiers.
The "openid.realm" parameter in authentication requests was known as
"openid.trust_root". The syntax and meaning are identical.
When responding with a negative assertion to a "checkid_immediate" mode
authentication request, the "user_setup_url" parameter MUST be returned. This
is a URL that the end user may visit to complete the request. The OP MAY
redirect the end user to this URL, or provide the end user with a link that points
to this URL.
The Relying Party MUST accept an that is missing the
"openid.response_nonce" parameter. It SHOULD implement a method for
preventing replay attacks.
Relying Parties MUST accept that are missing the

authentication request

authentication requests

authentication response

authentication responses

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#responding_to_authentication
http://openid.net/specs/openid-authentication-2_0.html#requesting_authentication
http://openid.net/specs/openid-authentication-2_0.html#positive_assertions
http://openid.net/specs/openid-authentication-2_0.html#positive_assertions

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 33 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

 TOC TOC

 TOC TOC

"openid.op_endpoint" parameter.

14.2.2. OpenID Providers

"openid.identity" MUST be sent in a .
In OpenID Authentication 1.1, the "no-encryption" association session type is
represented by a blank or missing "openid.session_type" parameter. OPs MUST
NOT send responses with "openid.session_type" set to "no-encryption".
OPs MAY choose to return a successful "no-encryption" response to any
association request. As above, the "openid.session_type" parameter MUST be
blank or omitted from the response.
OPs MUST accept association requests with no assoc_type parameter, and
assume them to be of type HMAC-SHA1.
Unsuccessful association attempts MAY be responded with direct error messages
or with "no-encryption" positive association responses.
The "openid.realm" parameter in authentication requests was known as
"openid.trust_root". The syntax and meaning are identical.
When responding with a negative assertion to a "checkid_immediate" mode
authentication request, the "user_setup_url" parameter MUST be returned. This
is a URL that the end user may visit to complete the request. The Relying Party
may redirect the end user to this URL, or provide the end user with a link that
points to this URL.
OPs MUST NOT send the "openid.op_endpoint" parameter in

, since it is not part of the OpenID Authentication 1.1 protocol.

15. Security Considerations

15.1. Preventing Attacks

15.1.1. Eavesdropping Attacks

There is one place in this protocol that is vulnerable to eavesdropping attacks.

If the nonce were not checked, an eavesdropper could also intercept a successful
authentication assertion and re-use it.

This attack can be prevented by using transport layer encryption for these connections to
prevent eavesdropping. In addition, if not using TLS this attack can still be prevented by
checking the nonce while performing message verification. When doing so, the positive
authentication assertion cannot be re-used.

positive authentication assertion

authentication
responses

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#positive_assertions
http://openid.net/specs/openid-authentication-2_0.html#positive_assertions

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 34 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

15.1.2. Man-in-the-Middle Attacks

Associations prevent tampering of signed fields by a man in the middle except during
discovery, association sessions and . Altering signed fields without the
shared secret requires breaking the MAC. Currently no tractable attack is known on the MACs
used in this protocol. The quality of the protection provided by the MAC depends on the
randomness of the shared MAC key, so it is important that an unguessable value be used.

If DNS resolution or the transport layer is compromised signatures on messages are not
adequate, since the attacker can impersonate the OP and issue its own associations, or its
own decisions in Stateless Mode. If an attacker can tamper with the discovery process they
can specify any OP, and so does not have to impersonate the OP. Additionally, if an attacker
can compromise the integrity of the information returned during the discovery process, by
altering the XRDS document, the need for a man in the middle is removed. One method to
prevent this sort of attack is by digitally signing the XRDS file as per [RFC3275].
The keying material is not specified, since the RP ultimately needs to make its own decision
whether to trust keys used for such signature.

Using SSL with certificates signed by a trusted authority prevents these kinds of attacks by
verifying the results of the DNS look-up against the certificate. Once the validity of the
certificate has been established, tampering is not possible. Impersonating an SSL server
requires forging or stealing a certificate, which is significantly harder than the network based
attacks.

In order to get protection from SSL, SSL must be used for all parts of the interaction,
including interaction with the end user through the User-Agent. While the protocol does not
require SSL be used, its use is strongly RECOMMENDED. Current best practices dictate that
an OP SHOULD use SSL, with a certificate signed by a trusted authority, to secure its
Endpoint URL as well as the interactions with the end user's User-Agent. In addition, SSL,
with a certificate signed by a trusted authority, SHOULD be used so that a Relying Party can
fetch the end user's URL in a secure manner. Following its own security policies, a Relying
Party MAY choose to not complete, or even begin, a transaction if SSL is not being correctly
used at these various endpoints.

15.1.2.1. Rogue Relying Party Proxying

A special type of man-in-the-middle attack is one where the Relying Party is a rogue party
acting as a MITM. The RP would perform discovery on the End User's Claimed Identifier and
instead of redirecting the User Agent to the OP, would instead proxy the OP through itself.
This would thus allow the RP to capture credentials the End User provides to the OP. While
there are multiple ways to prevent this sort of attack, the specifics are outside the scope of
this document. Each method of prevention requires that the OP establish a secure channel
with the End User.

15.2. User-Agents

Since this protocol is intended to be used interactively, User-Agents will primarily be common
Web browsers. Web browsers or their hosts may be infected with spyware or other malware,
which limits the strength of the authentication assertion, since untrusted software makes it

Direct Verification

XMLDSIG

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#check_auth
http://openid.net/specs/openid-authentication-2_0.html#RFC3275

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 35 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

impossible to know whether the authentication decision has been made with the end user's
approval. With that said, many web applications and protocols today rely on the security of
the Web browser and their hosts.

Cross-site-scripting attacks against OPs may be used to the same effect. For the best
security, OPs should not depend on scripting. This enables User-Agents that do not support
scripting, or have scripting disabled, to still employ the protocol.

15.3. User Interface Considerations

The Relying Party SHOULD redirect the end user to the OP Endpoint URL in a top-level
browser window with all controls visible. This allows better protection for the end user
against OP look-alike sites (phishing).

OpenID Providers SHOULD educate their end users about the potential for OpenID phishing
attacks and SHOULD equip their end users with the tools to defeat such attacks, for example
browser plug-ins that verify the authenticity of the OP's Authentication Service Endpoint URL.

15.4. HTTP and HTTPS URL Identifiers

While these types of Identifiers have been , they are worth
mentioning again. As previously stated, the RECOMMENDED method of an End User
expressing control over a URL differing only be scheme is to setup a redirect from the HTTP
URL to the HTTPS URL. Relying Parties will never store the HTTP URL as during the discovery
and initiation phase will follow the redirect and use the HTTPS URL as the Claimed Identifier.

End users with concerns over this recommendation should directly enter their HTTPS URL at
each Relying Party. This thus removes the step where the Relying Party follows the redirect
to the HTTPS URL. The single security consideration currently seen is if an attacker were to
compromise the integrity of the HTTP URL by removing the redirect and pointing the
Identifier at a rogue OP. This however will alter the user experience, is detectable by anti-
phishing technologies, and the security of the Identifier itself is a fundamental principle
within OpenID.

15.5. Denial of Service Attacks

Within the protocol there are places where a rogue RP could launch a denial of service attack
against an OP since there is nothing in OpenID protocol messages that allows the OP to
quickly check that it is a genuine request. This can be done by the RP repeatedly requesting
associations, authentication, or verification of a signature.

The potentially most severe attack is during the association phase as each message requires
the OP to execute a discrete exponentiation. Since the RP has the ability to specify modulus
and generator per message, an attacker can even force the OP to perform this
exponentiation in real time prior to responding for each message.

While this could be particularly harmful, OpenID Providers can easily use generic IP based

previously discussed

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#http_s_identifiers

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 36 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

rate-limiting and banning techniques to help combat these sorts of attacks. OPs can also look
at banning requests based on the "openid.realm" and "openid.return_to" values.

15.6. Protocol Variants

The following are known variations in the protocol which may or may not directly affect the
security of the use of the protocol. It is imagined that these values could be used in the
creation of security profiles for this protocol. The following list of variants are from the
perspective of an OpenID Provider.

Number Variant Values

1. Are wildcards allowed in realms? One of Yes/No

2. Require prior association? Does the OP require the RP first create an
association before requesting authentication? One of Yes/No

3. Types of claimed identifiers accepted. Set of
HTTP/HTTPS/XRI

4.

Are self-issued certificates allowed for authentication? This applies to all
SSL traffic. If 'no' here, then OP *probably* requires all HTTPS
identifiers to chain up to known trust roots, but that's intentionally not
implied.

One of Yes/No

5.
Must the XRDS file be signed? Signature on the XRDS as per XMLDSIG.
Keying material not specified, since the RP ultimately needs to make
own decision whether to trust keys used for such signature.

One of Yes/No

6. Must the XRDS file be retrieved over secure channel? This does not
imply SSL? One of Yes/No

7. What types of session types can be used when creating associations?

Set of no-
encryption/DH-
SHA1/DH-
SHA256

8. Must the RP have an XRDS document? One of Yes/No

9. What association types the OP agrees to use for signatures?
Set of HMAC-
SHA1/HMAC-
SHA256

10. Must the association request take place over secure channel? One of Yes/No

Identified security variants.

Appendix A. Examples

Non-normative

Appendix A.1. Normalization

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 37 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

See section 6 of for textual URL normalization details and more examples.

User's Input Identifier Type Discussion

example.com http://example.com/ URL A URI with a missing scheme is
normalized to a http URI

http://example.com http://example.com/ URL An empty path component is normalized
to a slash

https://example.com/ https://example.com/ URL https URIs remain https URIs

http://example.com/user http://example.com/user URL No trailing slash is added to non-empty
path components

http://example.com/user/ http://example.com/user/ URL Trailing slashes are preserved on non-
empty path components

http://example.com/ http://example.com/ URL Trailing slashes are preserved when the
path is empty

=example =example XRI Normalized XRIs start with a global
context symbol

xri://=example =example XRI Normalized XRIs start with a global
context symbol

 User's Input to Identifier Normalization User's Input to Identifier Normalization

Appendix A.2. OP-Local Identifiers

An end user wants to use "http://www.example.com/" as their Claimed Identifier. The end
user has an account with Example Provider, which functions as an OpenID Provider. The end
user's OP-Local Identifier is "https://exampleuser.exampleprovider.com/".

In this scenario, with the proper configuration of Yadis or HTML-Based Discovery (see
 and below), a Relying Party will discover the following

information about the end user:

Claimed Identifier
http://www.example.com/

OP-Local Identifier
https://exampleuser.exampleprovider.com/

Appendix A.3. XRDS

For an end user to use "http://www.example.com/" as their Identifier, but have Relying
Parties actually verify "https://exampleuser.exampleprovider.com/" with the OP Endpoint
URL "https://www.exampleprovider.com/endpoint/", the following XML snippet should be
present in the final XRD element in the XRDS file when discovery is preformed on
"http://www.example.com/":

<Service xmlns="xri://$xrd*($v*2.0)">

[RFC3986]

Section 7.3 Appendix A.3

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#RFC3986
http://openid.net/specs/openid-authentication-2_0.html#discovery
http://openid.net/specs/openid-authentication-2_0.html#XRDS_Sample

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 38 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

 TOC TOC

 TOC TOC

 TOC TOC

 <Type>http://specs.openid.net/auth/2.0/signon</Type>
 <URI>https://www.exampleprovider.com/endpoint/</URI>
 <LocalID>https://exampleuser.exampleprovider.com/</LocalID>
</Service>

Appendix A.4. HTML Identifier Markup

To use "http://www.example.com/" as their Identifier, but have Relying Parties actually
verify "http://exampleuser.livejournal.com/" with the OpenID Provider located at
"http://www.livejournal.com/openid/server.bml", the following markup should be present in
the <head> of the HTML document located by the identifier URL:

<link rel="openid2.provider openid.server"
 href="http://www.livejournal.com/openid/server.bml"/>
<link rel="openid2.local_id openid.delegate"
 href="http://exampleuser.livejournal.com/"/>

Appendix A.5. XRI CanonicalID

For example, if the XRI i-names =example and =exmpl both yield an XRDS document with
the CanonicalID xri://(example)!1234 then those Identifiers should be treated as equivalent.
For applications with user accounts, the persistent Canonical ID xri://(example)!1234 should
be used the primary key for the account. Although the i-names =example and =exmpl may
also be stored for reference as display names, they are reassignable identifiers and should
not be used as persistent keys.

Appendix B. Diffie-Hellman Key Exchange Default Value

This is a confirmed-prime number, used as the default modulus for Diffie-Hellman Key
Exchange. In hexadecimal:

DCF93A0B883972EC0E19989AC5A2CE310E1D37717E8D9571BB7623731866E61E
F75A2E27898B057F9891C2E27A639C3F29B60814581CD3B2CA3986D268370557
7D45C2E7E52DC81C7A171876E5CEA74B1448BFDFAF18828EFD2519F14E45E382
6634AF1949E5B535CC829A483B8A76223E5D490A257F05BDFF16F2FB22C583AB

Appendix C. Acknowledgements

The OpenID Community would like to thank the following people for the work they've done in
the drafting and editing of this specification. If you want to know the nitty gritty of who
actually wrote what, feel free to look at our SVN repository or even use "svn blame". :)
http://openid.net/svn/specifications/authentication/2.0/

http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc
http://openid.net/specs/openid-authentication-2_0.html#toc

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 39 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC

Barry Ferg (barry@sxip.com)

Brad Fitzpatrick (brad@danga.com) <author>

Carl Howells (chowells@janrain.com)

David Recordon (david@sixapart.com) <author/editor>

Dick Hardt (dick@sxip.com) <author>

Drummond Reed (drummond.reed@cordance.net)

Hans Granqvist (hgranqvist@verisign.com)

Johannes Ernst (jernst@netmesh.us)

Johnny Bufu (johnny@sxip.com) <editor>

Josh Hoyt (josh@janrain.com) <author/editor>

Kevin Turner (kevin@janrain.com)

Marius Scurtescu (marius@sxip.com)

Martin Atkins (mart@degeneration.co.uk)

Mike Glover (mpg4@janrain.com)

16. Normative References

[FIPS180-2] U.S. Department of Commerce and National Institute of Standards and Technology, “Secure Hash
Signature Standard,” FIPS 180-2.

Defines Secure Hash Algorithm 256 (SHA256)

[HTML401] W3C, “HTML 4.01 Specification.”
[RFC1750] Eastlake, D., Crocker, S., and J. Schiller, “Randomness Recommendations for Security,” RFC 1750.
[RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, “HMAC: Keyed-Hashing for Message Authentication,”

RFC 2104.
[RFC2119] Bradner, B., “Key words for use in RFCs to Indicate Requirement Levels,” RFC 2119.
[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext

Transfer Protocol -- HTTP/1.1,” RFC 2616.
[RFC2631] Rescorla, E., “Diffie-Hellman Key Agreement Method,” RFC 2631.
[RFC3174] Eastlake, D. and P. Jones, “US Secure Hash Algorithm 1 (SHA1),” RFC 3174.
[RFC3275] Eastlake 3rd, D., Reagle Jr., J., and D. Solo, “(Extensible Markup Language) XML-Signature

Syntax and Processing,” RFC 3275.
[RFC3339] Klyne, G. and C. Newman, “Date and Time on the Internet: Timestamps,” RFC 3339.
[RFC3548] Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” RFC 3548.
[RFC3629] Yergeau, F., “UTF-8, a transformation format of Unicode and ISO 10646,” RFC 3629.
[RFC3986] Berners-Lee, T., “Uniform Resource Identifiers (URI): Generic Syntax,” RFC 3986.
[XRI_Resolution_2.0] Wachob, G., Reed, D., Chasen, L., Tan, W., and S. Churchill, “Extensible Resource Identifier (XRI)

Resolution V2.0 - Committee Draft 02” (HTML, PDF).
[XRI_Syntax_2.0] Reed, D. and D. McAlpin, “Extensible Resource Identifier (XRI) Syntax V2.0” (HTML, PDF).
[Yadis] Miller, J., “Yadis Specification 1.0” (PDF, ODT).

http://openid.net/specs/openid-authentication-2_0.html#toc
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://www.w3.org/TR/html401
ftp://ftp.isi.edu/in-notes/rfc1750.txt
ftp://ftp.isi.edu/in-notes/rfc2104.txt
ftp://ftp.isi.edu/in-notes/rfc2119.txt
ftp://ftp.isi.edu/in-notes/rfc2616.txt
ftp://ftp.isi.edu/in-notes/rfc2631.txt
ftp://ftp.isi.edu/in-notes/rfc3174.txt
ftp://ftp.isi.edu/in-notes/rfc3275.txt
ftp://ftp.isi.edu/in-notes/rfc3339.txt
ftp://ftp.isi.edu/in-notes/rfc3548.txt
ftp://ftp.isi.edu/in-notes/rfc3629.txt
ftp://ftp.isi.edu/in-notes/rfc3986.txt
http://www.oasis-open.org/committees/download.php/17293
http://docs.oasis-open.org/xri/2.0/specs/cd02/xri-resolution-V2.0-cd-02.html
http://docs.oasis-open.org/xri/2.0/specs/cd02/xri-resolution-V2.0-cd-02.pdf
http://www.oasis-open.org/committees/download.php/15376
http://www.oasis-open.org/committees/download.php/15376
http://www.oasis-open.org/committees/download.php/15377
http://yadis.org/papers/yadis-v1.0.pdf
http://yadis.org/papers/yadis-v1.0.odt

2013-01-12 3:39 PMFinal: OpenID Authentication 2.0 - Final

Page 40 of 40http://openid.net/specs/openid-authentication-2_0.html

 TOC TOC Author's Address

 specs@openid.net

http://openid.net/specs/openid-authentication-2_0.html#toc

