
OpenID Authentication As A Service in OpenStack 
Rasib Hassan Khan**, Jukka Ylitalot and Abu Shohel Ahmed* 
*Aalto University, School of Science and Technology, Finland 

t Ericsson Research, Finland 
* Royal Institute of Technology (KTH), School of ICT, Sweden 

rkhan@cc.hut.fi, jukka.ylitalo@ericsson.com, ahmed.shohel@ericsson.com 

Abstract—The evolution of cloud computing is driving the 
next generation of internet services. OpenStack is one of the 
largest open-source cloud computing middleware development 
communities. Currently, OpenStack supports platform specific 
signatures and tokens for user authentication. In this paper, we 
aim to introduce a cloud platform independent, flexible, and 
decentralized authentication mechanism, using OpenID as an 
open-source authentication mechanism in OpenStack. OpenID 
allows a decentralized framework for user authentication. It 
has its own advantages for web services, which include im­
provements in usability and seamless Single-Sign-On experience 
for the users. This paper presents the OpenlD-Authentication-
as-a-Service APIs in OpenStack for front-end GUI servers, 
and performs the authentication in the back-end at a single 
Policy Decision Point (PDP). Our implementation allows users 
to use their OpenID Identifiers from standard OpenID providers 
and log into the Dashboard/Django-Nova graphical interface of 
OpenStack. 

Aey>tw*fc-Authentication; EC2API; OpenID; OpenStack; OS-
API; Security; 

I. INTRODUCTION 

Cloud computing is a new paradigm for utilization of 
scalable resources over the internet. It is a relatively new cyber-
infrastructure, implying a service oriented architecture (SOA) 
for computing resources. Users access cloud services over a 
simple front-end interface to utilize the virtualized resources. 
Ian Foster et al. in [1] have defined it as: 

"A large-scale distributed computing paradigm that 
is driven by economies of scale, in which a pool of 
abstracted, virtualized, dynamically-scalable, man­
aged computing power, storage, platforms, and ser­
vices are delivered on demand to external customers 
over the Internet" 

The SOA in clouds is usually defined in a hierarchical 
structure. The layers of cloud computing services in SOA can 
be described as: Infrastructure-as-a-Service (IaaS), Platform-
as-a-Service (PaaS), and Software-as-a-Service (SaaS). 

IaaS providers, such as Amazon AWS1, provide virtual 
CPUs, storage facilities, memory, etc. according to user re­
quests. PaaS acts as an abstraction between the physical 
resources and the service. PaaS providers, such as Google 
App Engine2, supply a software platform and the application 
programming interfaces (APIs), where users execute their 

Amazon Web Services (AWS), http://aws.amazon.com 
2Google App Engine, https://code.google.com/appengine 

software components. SaaS provider, such as Salesforce.com3, 
provide end users with integrated services from the providers, 
comprising of hardware, development platforms, and applica­
tions. 

The Pay-Per-Use model for cloud infra-structures has intro­
duced wide interest among users to utilize such services. Major 
cloud service providers such as Amazon AWS , Rackspace4, 
Salesforce, etc. have driven development of multiple open-
source cloud platforms. The most prominent among the open 
source cloud projects are OpenStack5, CloudStack6 , Euca-
lytus7, and OpenNebula8. The open-source cloud platforms 
provide the ability to deploy private IaaS clouds. Many open-
source cloud platforms have compatible application program­
ming interfaces (APIs) with public clouds such as Amazon 
AWS EC2APIs [2], which improves the flexibility and usabil­
ity of the private clouds. 

However, the cloud solutions available today have little 
flexibility in their authentication system. All of the above 
mentioned platforms allow user authentication, based on pro­
prietary mechanisms, which include tokens, signatures, etc. 
With the recent shift in identity solutions, from being organi­
zation centric to user centric, these platforms have no provision 
for open authentication mechanisms, such as OpenID [3, 4]. 
Overcoming the existing limitations and lack of provisions, 
this paper presents the design for OpenlD-Authentication-as-
a-Service APIs in OpenStack, including the implementation of 
a prototype for the proposed architecture. 

We chose OpenStack for our research on cloud platforms, 
and its architecture is discussed in section II. In section III, 
we provide a detailed discussion on the shortcomings of cloud 
platforms, specifically OpenStack. Section IV includes a brief 
description of the OpenID authentication mechanism, followed 
by section V, where we present our innovative design for 
implementing OpenID authentication with APIs in OpenStack. 
The design is applicable till to the Cactus release, which 
was the stable version at the time of the ongoing research. 
Finally, the implemented prototype for the proposed design is 
discussed in section VI of the paper. 

3SalesForce CRM & Cloud Computing, www.salesforce.com 
4Rackspace US, http://www.rackspace.com 
5 OpenStack, http ://www. openstack.org/ 
6CloudStack, http://cloud.com 
7Eucalyptus, http://www.eucalyptus.com 
8 OpenNebula, http ://opennebula. org 

978-1-4577-2155-7/11/$26.00 ©2011 IEEE 372 



II. CLOUD COMPUTING WITH OPENSTACK NOVA 

Nova, the cloud computing middleware fabric controller 
from OpenStack, is a widely utilized open source project with 
many contributors. It originated as a project at NASA Ames 
Research Laboratory and started as open-source software in 
early 2010. Till the time of this research, OpenStack has 
released the following versions: Austin (October 2010), Bexar 
(February 2011), and Cactus (April 2011). The upcoming 
stable release of OpenStack, Diablo, is scheduled in late 
September 2011. 

OpenStack manages computing resources: CPU, memory, 
disk space, and network bandwidth. The middleware appli­
cation uses an hypervisor running in the back-end to allow 
the creation of virtual machines (VMs). These VMs emulate 
physical computers, and each have a CPU, memory, disk, 
and network resources. The actual physical resources for the 
creation of the VMs are provided by virtual hosts. OpenStack 
supports virrualization with KVM, UML, XEN, and HyperV, 
using the QEMU emulator. In the implementation, the libvirt 
[5] C/C++ library is used to communicate with the hypervisor 
from the middleware layer. 

A. Architecture Overview 
The components in the OpenStack architecture are: Cloud 

Controller, API Server, Auth Manager, Nova-Manage, Sched­
uler, Object Store, Volume Controller, Network Controller, and 
Compute Controller. 

The Cloud Controller is the central component which repre­
sents the global state, and interacts with the other components. 
The Cloud Controller interacts with the API Server and the 
Auth Manager with internal method calls, with the Object 
Store over HTTP, and with the Scheduler, Network Controller 
and the Volume Controller, together, over the RabbitMQ [6] 
server using Advanced Message Queuing Protocol [7]. 

The API Server is an HTTP server which provides two sets 
of APIs to interact with the Cloud Controller: the Amazon 
EC2APIs and the OpenStack OSAPIs. 

The Auth Manager provides authentication and authoriza­
tion services for OpenStack, which can interact with the Nova-
Manage client using local method calls. Nova-Manage is an 
admin tool to communicate with the Auth Manager to directly 
interact with the OpenStack database. 

The Scheduler is responsible for selecting the most suitable 
Compute Controller to host an instance, and the Compute Con­
troller subsequently provides the compute server resources, 
according to the commands from the Scheduler. The Object 
Store component is responsible for storage services. The 
Volume Controller provides permanent block-level storage for 
the compute servers, while the Network Controller handles 
the virtual networks for the VMs to interact with the public 
network respectively. 

B. Authentication and Authorization Framework 
The authentication of requests from a user, and the au­

thorizing of resources for the request are handled by the 

Auth Manager module. OpenStack uses a Role Based Access 
Control (RBAC) [8] mechanism to enforce policies. 

When a user is created, an Access Key and a Secret Key 
are assigned to the user. They can be randomly generated or 
can be specified by the administrator during user creation. The 
credentials in the user database for each OpenStack user are 
shown in table I. These credentials are used in different ways 
to authenticate a user's incoming API requests. 

TABLE I: User Credentials in OpenStack 

Credential 

id 
name 

access_key 

secret_key 

isjadmin 

Description 

Unique identifier for each user 
Usually, human readable username for a user 
Unique, and can be randomly generated or specified 
during user creation 
Unique, and can be randomly generated or specified 
during user creation 
Set to " 1 " if an "admin" user is created, or "0" otherwise 

C Application Programming Interfaces 
OpenStack Nova exposes two sets of APIs: the Open-

Stack API (OSAPI) and Amazon Elastic Compute Cloud API 
(EC2API). The OSAPI is the list of APIs being developed as 
OpenStack matures with time. On the other hand, the EC2APIs 
are a list of comprehensive APIs, designed and defined by 
Amazon Web Services (AWS). In all cases, OpenStack relies 
on Representational State Transfer (REST) to handle the 
responses from the APIs. 

REST [9] is an architecture for designing web applica­
tions. In typical implementations, REST relies on a stateless, 
client-server, cacheable communications protocol, usually over 
HTTPS. An example of a RESTful client-server interaction is 
shown in figure 1. 

Fig. 1: RESTful Client-Server Interaction 

III. PROBLEM AREA 

Identity management in web services is experiencing a 
paradigm shift, from organization centric, to user centric 
authentication mechanisms. User centric identity allows both 
scalability, and flexibility in application to multiple service 
points over the Internet [10]. Additionally, these user centric 
frameworks aim to provide Single-Sign-On (SSO) mechanism 
for its users, and thus, provide a certain leverage to introduce 
login federation, which greatly improves the usability for any 
service architecture. 

2011 7th International Conference on Information Assurance and Security (IAS) 373 



OpenStack services can be utilized via API tools, such as 
euca-tools EC2API client [11] and the python-nova OSAPI 
client [12]. However, a graphical interface provides better 
usability, especially for users without much knowledge of 
API tools and commands. Thus, the web GUI has become 
a widely deployed front-end for delivering cloud services, 
both to administrators and users. The Dashboard/Django-
Nova framework provides a suitable GUI for users. However, 
there are certain limitations in what the fronts-end GUI for 
OpenStack make available in the context of authentication of 
users. 

OpenStack encourages the use of its APIs (EC2API [2] 
or OSAPI [13]) for implementing front-end GUI services. 
OpenStack performs authentication, based on access and secret 
keys. The weakness in this implementation is that, the users are 
required to be authenticated in a separate authentication frame­
work in the front-end, with a username/password pair (valid 
up to Cactus release). Once authenticated, the front-end GUI 
server then uses the Admin credentials to retrieve the user's 
credentials. This way, the backend OpenStack server never 
participates to the front-end user authentication. Basically, 
OpenStack does not support federated identity management 
properties that are available today in OpenID [3,4], Shibboleth 
[14], SAML [15], etc [16]. 

In standard federated login architectures, the Policy Admin­
istration Point (PAP) and the Policy Decision Point (PDP) are 
logically located at a single point in the architecture. There 
can be multiple Policy Enforcement Points (PEPs), which 
communicate with the PDP [17, 18]. However, as the front-end 
GUI server becomes a separate security domain in OpenStack, 
the front-end needs to maintain separate user credentials, due 
to an absence of a federated login architecture. The absence of 
a centralized authentication architecture causes the problem of 
multiple PAPs and PDPs. For the above mentioned reasons, 
we see that there should be complete trust (single security 
domain) between front-end GUI and back-end cloud platform. 
This also means that the front-end GUI can not simply be a 
dumb web server, but has to be more tightly coupled to the 
back-end. 

IV. AUTHENTICATION WITH OPENID 

OpenID is a well known open source authentication mech­
anism. It provides decentralized user centric identity man­
agement for web services, and allows seamless SSO au­
thentication. The current version of OpenID is 2.0 [3, 4]. 
Previously, OpenID 1.0 only supported stateful authentication. 
However, OpenID 2.0 supports both stateful and stateless 
OpenID authentication. The sequence of a stateless OpenID 
authentication is shown in figure 2. 

The User-Agent (UA) first requests a page over HTTP from 
a web service point, and the web server returns the page to 
the UA. The user then submits his OpenID Identifier. The 
web server acts as a Relay Point (RP). It normalizes the 
Identifier, and performs the discovery process, using Yadis 
discovery protocol [19] (XRI Resolution protocol [20] was 
used in OpenID 1.0, but is avoided in OpenID 2.0). The RP 

Fig. 2: Stateless OpenID Authentication Mechanism 

receives the meta-information from the OpenID Provider (OP) 
to redirect the UA to the OP endpoint URL. The RP then 
sends an HTTP 302 R e d i r e c t i o n response to the UA, 
with multiple parameters. 

After the UA is redirected to the OP endpoint URL, the 
OP can use any method to authenticate the user (such as 
username/password, certificates, smart-cards, generic boot­
strapping architecture based device authentication, etc). After 
authentication, the OP returns the UA back to the RP, and 
passes a long string in the HTTP GET request line, also 
called the assertion URL. The RP verifies the signature in 
the assertion URL, and sets up a key association using Diffie-
Hellman (D-H) key exchange [21]. Then, the RP verifies the 
response for the specific o p e n i d . i d e n t i t y . 

Once the parameters are all successfully verified, referred to 
as the "assertion", the RP links the o p e n i d . c l a i m e d _ i d 
with the identity of a local user in its own server and allows 
the user to login to the service point. 

In a "stateful" OpenID authentication, the D-H key ex­
change [21] occurs in the initial discovery phase at the RP. 
The shared key is stored in a key database at the RP. The UA 
is then redirected to the OP. After authentication at the OP 
and when the user is redirected back to the RP, there is no 
D-H key exchange. Instead, the stored key from the previous 
step is retrieved from the database. 

V. OPENID IN OPENSTACK 

Implementing OpenID at the front-end GUI server as a 
simple RP is not the target. To apply OpenID authentication 
mechanism in OpenStack, we needed to combine a dual-PDP 
scenario into a single-silo formation.The following sections 
discuss the design considerations, and the solution architec­
ture, followed by the usability and a detailed analysis of our 
solution. The design is applicable to OpenStack, till the Cactus 
release, which was the stable version at the time of the ongoing 
research. 

A. Design Considerations 
In an architecture to integrate OpenID with OpenStack, the 

front-end GUI should be a "dumb" server, only processing the 

374 2011 7th International Conference on Information Assurance and Security (IAS) 



views for the user. There should not be any requirement for the 
GUI server to maintain any user credentials for authentication. 

Furthermore, even though the views on the GUI are based 
on responses from the API server, the initial authentication 
on the front-end should be granted by the Auth Manager in 
the back-end server. However, as the HTTP User-Agent only 
interacts with the front-end server, the back-end OpenStack 
server should not have any direct communication with the 
User-Agent. 

Therefore, the process of authentication of a user in the 
front-end should be realized as a service from the back-
end server. Thus, we converged on a solution based upon 
OpenID-Authentication-as-a-Service for OpenStack. However, 
all interaction between the front-end and the back-end should 
be stateless, as required by the RESTful API server [9, 13]. 

Additionally, the design should meet all of the specifications 
of OpenID [3, 4], and ensure all security requirements for 
OpenID in all phases of interaction. This would allow interop­
erability between all OpenID providers, thus greatly improving 
the usability for the users. 

Finally, the requirements at the front-end server to imple­
ment OpenID authentication in OpenStack should be simple, 
and secured. Also, we need to maintain a modular and 
distributed structure to comply with the current architecture 
and scalability of OpenStack. 

B. Implementing OpenID as a Service 
OpenID authentication at an RP involves two phases: (a) OP 

endpoint URL discovery and retrieving meta-information, and 
(b) Verifying an authentication assertion URL received from 
an OP. Therefore, we divided the OpenlD-Authentication-as-a-
Service operation in OpenStack into two phases, each invoked 
with a separate API. The functions of the two APIs have been 
defined as: 

• Authentication Request API: This API is invoked in 
the initial phase by the front-end server. It executes an 
OpenID authentication request, and performs the first 
phase in the process. 

• Authentication Verification API: This API is invoked in 
the second phase by the front-end server. It executes the 
authentication verification for the OpenID authentication 
assertion URL received from the OP. 

As shown in figure 3, the user requests for an OpenID based 
authentication to the front-end GUI server. The GUI server 
then invokes the initial authentication request API on the API 
Server in the back end. The back-end server responds to the 
request with all the necessary OpenID parameters required for 
the redirection. The GUI server parses the information, and 
sends a HTTP 302 R e d i r e c t i o n to the UA. 

The UA redirects to the OP, where it is authenticated. Upon 
successful authentication, the OP sends the UA to the front-
end GUI server. 

At this point, the front-end invokes the second authentica­
tion verfication API on the back-end API server. The back-end 
communicates with the OP, and completes all the processes 
for verification. Once verified, the authentication is granted by 

Fig. 3: OpenID Authentication in OpenStack 

Auth Manager. Based on the authenticated user information, 
the front-end then allows the user to log into the managerial 
interface. 

C. Design Analysis 

HTTPS can be used to secure interaction with the UA. 
Additionally, it is required to protect the integrity of the 
assertion messages relayed from the OP through the UA, and 
includes nonce checking, and signature verification. 

All RESTful requests to the API Server include signatures 
with a pre-shared secret between the GUI server and Open-
Stack. Thus, unless the front-end server is vulnerable to a 
compromise by an attacker, the connection to the back-end can 
be considered as an integrity protected channel. Using SSL be­
tween the front-end and the API Server is a common practice 
for confidentiality in RESTful services. Security technologies 
such as IPSec [22] are intended for network level host-to-host 
security, rather than application-to-application security, and 
hence is not a recommended security solution for the RESTful 
API Server. However, HTTPS support in the OpenStack API 
Server has not been implemented yet, and remains as a future 
task. 

The verification of the assertion URL by OpenStack server 
and the OP occurs in the back-end. However, the back-end 
communication with the OP cannot be considered hidden from 
an attacker. An attacker can sniff packets from the network 
to intercept the communication between OpenStack and the 
OP. Hence, this communication takes place over an encrypted 
channel with the D-H shared key between OpenStack and the 
OP. 

However, there is still scope for an attacker to manipulate 
the information. Based on security issues of OpenID, the 
solution can be vulnerable to Discovery Tampering, Adversary 
Relay Proxy, and DoS attacks. 

Session management between the UA and the GUI front-
end is another area where the security should be improved. 
Services on OpenStack are RESTful services, and no session 
information is stored, while the front-end is a session-based 
service point for the UA. It is contradictory with the design 
principles of RESTful services to maintain such session based 
security. Therefore, OpenStack needs to trust the front-end 
GUI to manage the user session. 

2011 7th International Conference on Information Assurance and Security (IAS) 375 



D. Usability of OpenID in OpenStack 
A lot of discussions on the usability of OpenID have 

occurred so far. OpenID is the most widely used open standard 
for authentication, with many OP providers, such as Google9, 
Yahoo10, MyOpenID11, and LiveJournal12. 

Integrating OpenID in OpenStack will provide a decentral­
ized user centric authentication delegation for using OpenStack 
services, where the users will have control over his or her 
own identity management and authentication. Thus, usabil­
ity will improve, as OpenID aims for a single user versus 
multiple service points applicability, and allows users to have 
a seamless SSO experience. This would allow providers to 
introduce a federated login architecture, and also reduce the 
IT maintenance cost by management of user credentials at 3 r d 

party OPs. 
Standard OpenID implementation also includes using the 

Provider Authentication Policy Extension (PAPE), to allow 
a flexible authentication framework. PAPE allows an RP to 
specify different requirements to be implemented at an OP 
during authentication. Thus, OpenID could utilize PAPE to 
implement a requirement based security in OpenStack. 

Additionally, users will have flexibility in the authentication 
mechanism, as OPs allow different authentication mechanisms 
for their users. Most OPs support username/password, and 
client certificate based authentication for users. Apart from 
that, Leicher et al. in [23] describe a trusted computing 
environment using OpenID, A. S. Ahmed in [24] presents a 
3 GPP standard authentication mechanism for smart phones, 
and Watanabe et al in [25] illustrate a cellular subscriber 
ID and OpenID federated authentication architecture. Ericsson 
Labs also provides an Identity Management service, which 
uses the 3 GPP standard Generic Bootstrapping Architecture 
[26, 27] based device authentication services with OpenID. 

VI. PROTOTYPE IMPLEMENTATION 

We initially started working with the Bexar release. After 
a successful implementation with Bexar, we then integrated 
our solution with Cactus, the third release, which came out in 
April 2011. 

In our design, we introduced an additional module, the 
Nova-OpenID Controller, in the OpenStack architecture. The 
added module is responsible for all operations related to 
OpenID authentication in the back-end, and has an internal 
HTTP interface with the Cloud Controller, and a public 
interface to interact with the OP on the public internet. 
The implementation also included extension of the Nova-
Admin tool. The admin can use the added functionality in 
Nova-Admin to add/modify OpenID information for existing 
OpenStack users. The architecture of OpenStack, including the 
added modules for the prototype is shown in figure 4. 

We designed the two APIs according to the specifica­
tion of EC2APIs on OpenStack API server. Furthermore, 

9Google OpenID Services, http://code.google.com/apis/identitytoolkit/ 
10Yahoo OpenID Services, http://openid.yahoo.com 
11 MyOpenID OpenID Services, https://www.myopenid.com 
12LiveJournal OpenID Services, http://www.livejournal.com 

Fig. 4: Prototype Architecture for OpenID in OpenStack 

we implemented the invocation of the APIs from the 
Dashboard/Django-Nova web GUI for OpenStack. In our 
current implementation, we have a one-to-one mapping of 
existing OpenStack users to the number of enabled OpenID 
Identifiers a user can use. The implementation was tested suc­
cessfully against standard OpenID providers on the Internet. 

As shown in figure 5, the user provides the OpenID Iden­
tifier on the GUI, and subsequently, the front-end invokes 
the OpenidAuthReq API. The response contains the required 
parameters for redirecting the UA to the OP. After the user 
authentication is completed, the UA returns to the front-end, 
and invokes the OpenidAuthVerify API. The back-end then 
verifies the assertion URL, links an existing OpenStack user 
to the verified OpenID Identifier, and returns a success or a 
failure. The front-end GUI then uses the information to allow 
or deny login to the user. 

Fig. 5: Signalling Sequence for OpenID Authentication in OpenStack 

376 2011 7th International Conference on Information Assurance and Security (IAS) 



Diablo, the fourth release of OpenStack is scheduled to be 
released in late September 2011. However, beginning with 
the Diablo release, the authentication framework design is 
supposed to utilize a new architecture. It will integrate the 
KeyStone project [28] as the authentication module, the design 
of which was still evolving at the time of writing this paper. 

VII. CONCLUSION AND FUTURE WORKS 

To improve usability, OpenStack proposes to utilize its 
API functions to provide a GUI for its users. However, the 
current architecture of OpenStack lacks specific GUI based 
services. For initial authentication, the front-end is required 
to incorporate a separate username/password validation. This 
introduces a dual PDP scenario, which is not a recommended 
practice for web services. 

In this paper, we introduced a flexible decentralized authen­
tication service for the front-end, using OpenID as an open-
source authentication platform. In our design, OpenID authen­
tication in the front-end is used as a service from the back-
end OpenStack server. As a result, we were able to shift the 
dual points of decision making and perform the authentication 
at a single PDP in the back-end. The design was success­
fully implemented on OpenStack, and utilized the OpenlD-
Authentication-as-a-Service APIs from the Dashboard/Django-
Nova GUI. 

The research performed during this work revealed further 
possibilities. The first objective would be to introduce greater 
flexibility in the choice of authentication mechanisms for 
the user. To provide a generic solution for authentication, 
we aim to design a common Authentication-as-a-Service API 
in OpenStack. Additionally, we also aim to introduce open 
platforms for authorization delegation within OpenStack. 

REFERENCES 
[1] Foster, I. and Yong Zhao and Raicu, I. and Lu, S., "Cloud Comput­

ing and Grid Computing 360-Degree Compared," in Grid Computing 
Environments Workshop, 2008. GCE '08, November 2008, pp. 1 - 10. 

[2] "Amazon AWS EC2 API Reference, hrtp://docs.amazonweb-
services.com/awsec2/latest/apireference/, last accessed 30th April 
2011." 

[3] "OpenID Foundation, http://openid.net, last accessed 14th June 2011." 
[4] D. Recordon and D. Reed, "Openid 2.0: a platform for user-

centric identity management," in Proceedings of the second ACM 
workshop on Digital identity management, ser. DIM '06. New 
York, NY, USA: ACM, 2006, pp. 11-16. [Online]. Available: 
http://doi.acm.Org/10.l 145/1179529.1179532 

[5] "Libvirt Online Working Group, The Virtualization API, 
http://libvirt.org, last accessed 25th April 2011." 

[6] RabbitMQ AMQP Server Working Group, 
"http://www.rabbitmq.com/specification.html, last accessed 30th 
June, 2011." 

[7] Advanced Message Queuing Protocol (AMQP) Working Group, 
"http://www.amqp.org/, last accessed 15th June, 2011." 

[8] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, "Role-based access 
control models," Computer, vol. 29, no. 2, pp. 38 -47, feb 1996. 

[9] R. T. Fielding, "Architectural styles and the design of network-based 
software architectures," Ph.D. dissertation, University of California, 
Irvine, 2000. 

[10] Jamie Bodley-Scott, "IDM09, Access or Identity, 
http ://www. opengroup. org/j ericho/idm2009_jbs .pdf." 

[11] "Euca-Tools, Eucalyptus Community, http://open.eucalyprus.com/wiki-
/toolsecosystem, last accessed 10th May 2011." 

[12] "Python-Openid 2.2.5, http://pypi.python.org/pypi/python-openid, last 
accessed 5th May 2011." 

[13] Rackspace US, Inc., "Openstack compute developer guide api 1.0, api 
vl.O, January 2011." 

[14] M. Erdos and S. Cantor, "Shibboleth architecture protocols and profiles, 
http ://shibboleth. internet2. edu/shibboleth-documents .html." 

[15] R. Philpott, E. Maler, N. Ragouzis, J. Hughes, P. Madsen, and T. Scavo, 
"OASIS Open 2008, Security Assertion Markup Language (SAML) 
V2.0 Technical Overview, Committee Draft 02, http://docs.oasis-
open. org/security/saml/post2.0/sstc-saml-tech-overview-2.0 .html," 
March 2008. 

[16] J. Rosenberg and D. Remy, Securing Web Services with WS-Security: 
Demystifying WS-Security, WS-Policy, SAML, XML Signature, and XML 
Encryption. Pearson Higher Education, 2004. 

[17] S. Almulla and C. Y. Yeun, "Cloud computing security management," 
in Engineering Systems Management and Its Applications (ICESMA), 
2010 Second International Conference on, 30 2010-april 1 2010, pp. 1 
-7. 

[18] D. Gollmann, "Computer security," Wiley Interdisciplinary Reviews: 
Computational Statistics, vol. 2, no. 5, pp. 544-554, 2010. [Online]. 
Available: http://dx.d0i.0rg/l 0.1002/wics. 106 

[19] "Yadis 1.0, The Identity and Accountability Foundation for Web 2.0, 
http://yadis.org, last accessed 5th June 2011." 

[20] G. Wachob, D. Reed, L. Chasen, W. Tan, and S. Churchill, "Ex­
tensible resource identifier (xri) resolution v2.0, http://docs.oasis-
open, org/xri/2.0/specs/xri-resolution-v2.0 .pdf." 

[21] W. Diffie and M. Hellman, "New directions in cryptography," in IEEE 
Transactions on Information Theory, vol. 22, no. 6, nov 1976, pp. 644 
-654. 

[22] N. Doraswamy and D. Harkins, IPSEC: The New Security Standard for 
the Internet, Intranets, and Virtual Private Networks. Prentice Hall, 
1999. 

[23] A. Leicher, A. Schmidt, Y. Shah, and C. Inhyok, "Trusted computing 
enhanced openid," in Internet Technology and Secured Transactions 
(ICITST), 2010 International Conference for, nov. 2010, pp. 1 -8 . 

[24] A. S. Ahmed, "A user friendly and secure openid solution for smart 
phone platforms," Master's thesis, Faculty of Information and Natural 
Sciences, School of Science and Technology, Aalto University, June 
2010. 

[25] R. Watanabe and T. Tanaka, "Federated authentication mechanism using 
cellular phone - collaboration with openid," in Information Technology: 
New Generations, 2009. ITNG '09. Sixth International Conference on, 
april 2009, pp. 435 -442. 

[26] 3rd Generation Partnership Project. 3GPP TR 33.924, "Identity man­
agement and 3gpp security interworking; identity management and 
generic authentication architecture (gaa) interworking, (release 9). 
http://www.3gpp.org/ftp/specs/html-info/33924.htm, 2009." 

[27] Ericsson Labs Identity Management Framework, 
"https ://labs. ericsson.com/developer-community/blog/identity-
management-framework-now-available-download, last accessed 15th 
May 2011." 

[28] OpenStack Keystone Project, "http://wiki.openstack.org/openstack-
authn, last accessed 25th May, 2011." 

2011 7th International Conference on Information Assurance and Security (IAS) 377 


