
SOPHRA: A Mobile Web Services Hosting Infrastructure in mHealth
Richard K. Lomotey, Shomoyita Jamal and Ralph Deters

Department of Computer Science
University of Saskatchewan

Saskatoon, Canada
{richard.lomotey, s.jamal}@usask.ca, deters@cs.usask.ca

Abstract—The use of mobile devices such as smartphones and
tablets, and other ICT tools to facilitate healthcare delivery in
the medical landscape, known as mHealth, has witnessed a
phenomenal rise recently. In most mHealth systems, mobile
devices are employed as services and health information client
consumers. Thus, healthcare professionals use these devices to
consume services which are running on back-end platforms.
However, in a research collaboration with the Geriatrics Ward
of the City Hospital in Saskatoon, Canada, we have identified a
huge potential in facilitating the mobile device as a service
hosting node. Hence, we developed a physically distributed
information infrastructure, called SOPHRA, which aids the
healthcare professionals to securely access and share patients'
medical information which are hosted on their mobile devices.
Since mobile devices establish communication over wireless
channels which can sometimes be unavailable, the proposed
mobile hosting framework faces the challenge of reliable and
real-time message propagation to the mobile participants.

This paper presents the adopted methodologies employed in
implementing SOPHRA to address the aforementioned
challenges. A cloud-oriented middleware is implemented which
enables the mobile participants to reliably communicate in soft
real-time. Furthermore, the records of the patients are
modeled as Web Services (WS) which aids medical information
to be passed across the system components; and these WS are
independently replicated on the middleware to ensure high
information availability. Currently, SOPHRA supports both
SOAP and RESTful Web Services protocols and facilitates
information exchanges over Wi-Fi.

Keywords-REST; mobile cloud computing; middleware;
healthcare information systems; resources state change

I. INTRODUCTION
The ever growing popularity of mobile devices such as

smartphones and tablets as reported by Gibbs [1] is shaping
the day to day businesses in enterprises. In less than a decade
ago, these devices were just tools for exchanging data in the
form of voice and simple SMS messages. Now, market
reports suggest that there is a promising future for the mobile
commerce space [2]. Furthermore, most of today’s
smartphones and tablet devices in production have good
backings for varied networks and protocols. Thus,
connectivity can be established between mobile participants
via 4G, Wi-Fi, and Bluetooth [4].

As the commerce field is witnessing the mobile boom,
other non-commercial enterprises such as mHealth is equally
experiencing growth in the research on the use of mobile
devices and other ICT tools for better healthcare delivery

[20, 21]. Relentless efforts have been made by researchers to
employ the potential of the evolving Web to deliver services
on the mobile device for better healthcare [21]. However,
most of these researches focus on the mobile devices as
client consumers especially in cases where medical
information are modeled as heterogeneous Web services.

In a current research in collaboration with the Geriatrics
Ward of the City Hospital in Saskatoon, Canada, we have
identified a huge potential in facilitating the mobile device as
a host of medical information. Mobile hosting is a new
research trend where the mobile device is modeled as a
server or provider of Web services [4, 5, 7, 8]. Srirama et al.
[5] noted that an advantage of mobile hosting is turning the
mobile host into a multi-user node. From the view point of
our medical partners, the mobile Web services hosting has
improved on the management and accessibility of medical
records of their “aged” patients.

However, mobile devices primarily communicate via
wireless channels which can be unstable due to user mobility
and bandwidth fluctuation. Thus, in the current research, the
challenge is how to propagate messages reliably and in real-
time to the healthcare mobile participants. Another challenge
is the integration of our proposed infrastructure into the
existing Healthcare Information System (HIS) at the
Geriatrics Ward.

To address these challenges, we developed a mobile
distributed infrastructure, called SOPHRA, which employs a
cloud-centric middleware platform that aids the healthcare
professionals to securely share and access their mobile
hosted health records reliably and in real time. The health
records are modeled as Web Services (WS) which can be
propagated between the system components. These WS
which are hosted on the mobile devices are also replicated
independently on the middleware to ensure high data and
services availability. The SOPHRA framework supports both
SOAP and RESTful Web Services protocols and currently
facilitates message exchanges over Wi-Fi using HTTP. The
details of the architecture as illustrated in Fig. 1, are
explained in the next section.

The remainder of this paper is organized as follows.
Section II expounded on the SOPHRA architecture and in
Section III, the implementation of SOPHRA is described. An
evaluation is conducted on the performance of SOPHRA in
Section IV. Section V investigates the related works on
mobile hosting of Web services and the paper concludes in
Section VI with the summary of our findings and future
research.

2012 IEEE First International Conference on Mobile Services

978-0-7695-4754-1/12 $26.00 © 2012 IEEE

DOI 10.1109/MS.2012.13

88

2012 IEEE First International Conference on Mobile Services

978-0-7695-4754-1/12 $26.00 © 2012 IEEE

DOI 10.1109/MS.2012.13

88

2012 IEEE First International Conference on Mobile Services

978-0-7695-4754-1/12 $26.00 © 2012 IEEE

DOI 10.1109/MobServ.2012.14

88

SOPHRA framework

Provider

Middleware

Update detection
Routing
Events detection
WS propagation

Private Cloud
Requester

Create WS
WS Hosting
Pushing
Polling

Provider

Caching

Main HIS

Lab Tech

Physician

Emergency Unit

Private Cloud

Existing Health Information System (HIS)HP

HP

HP

Figure 1. The SOPHRA Architecture being integrated into the existing HIS of the Saskatoon City Hospital.

II. ARCHITECTURAL DESIGN OF SOPHRA
In order to enable the mobile devices of the healthcare

professionals in the Geriatrics Ward to host the patients’
medical information, SOPHRA focuses on addressing the
challenges of resources and services state change
management. Issues concerning the reliability and freshness
of data arise in mHealth systems due to the inherent transient
connectivity in wireless networks. Also, data delivery in
real-time to the healthcare professionals is a concern since
SOPHRA is a mission critical infrastructure. To overcome
the challenges, SOPHRA employs a middleware framework
which is hosted on an internally owned private cloud
platform. The middleware facilitates the mobile hosts to be
reached via Wi-Fi by other mobile participants (healthcare
professionals). The architectural design of SOPHRA, as
depicted in Fig. 1, is classified into three tiers namely:
mobile service requesters, middleware, and mobile service
providers/hosts. The mobile devices connect to the
middleware through 802.11g Wi-Fi 54Mbps connection.
Also, the medical records such as patients’ demographics,
vitals, medical history etc. are modeled as Web Services [13]
following both the SOAP [11] and REST [9] design
paradigms.

The RESTful Web Services are modeled in the JSON
format while the SOAP services follow the standard XML
protocol. As a result of using these open standards to design
the WS, SOPHRA is well integrated into the existing Health
Information System (HIS) of the Saskatoon City Hospital.

As shown in Fig. 1, the middleware ensures the HTTP
request-response messages routing between the healthcare
professionals (HP). Each RESTful request from the mobile
device of a HP is a tuple containing the elements as shown
below:

{HTTP method, requester_id, timestamp, {mobile_host,
resource_id}}

The HTTP method informs the middleware about the
nature of the request; whether it is a write request (POST or

PUT) or a read request (GET or HEAD). Since security and
integrity is paramount in SOPHRA, all healthcare
professionals issue requests with their uniquely assigned
identification number which is the requester_id. The
requester id informs the middleware and the mobile host
about the credibility of the requester. Also, timestamps are
put on all requests which aid the middleware to determine
the global world view of subsequent requests. The use of
timestamps facilitates the race condition management
between a write and a read request. Thus, the first request is
always treated with a higher priority. Furthermore, since the
middleware stores states of the entire mobile participants, the
requester has to explicitly specify the intended mobile host
(mobile_host) so that the middleware can forward the request
to that mobile host. Additionally, the identification number
of the desired resource, resource_id that the requester wants
to access has to be specified. Based on the tuple, the
middleware formulates a URI that establishes a bi-directional
communication channel to the intended mobile host.

 The SOAP requests follow the same description as the
RESTful requests but with a slight variation. Since SOAP
accepts only the HTTP POST method for both read and write
operations, the tuple in SOAP is modified as shown:

{HTTP POST, cache_request, requester_id, timestamp,
{mobile_host, resource_id}}

The use of HTTP POST in SOAP to pass XML data for
all requests can be confusing especially in a system like
SOPHRA where middleware caching is employed. Hence the
tuple in SOAP contains an additional element defined as
cache_request, which can be a text say “cacheable” or “non-
cacheable”, that informs the middleware whether the request
should be cached or not respectively.

Due to the intermittent loss in connectivity in a Wi-Fi
network, SOPHRA uses the asynchronous messaging
mechanism for all communications. Hence, healthcare
professionals (both requesters and providers) are able to send

898989

requests without waiting for an acknowledgement before
making other requests. Also, the middleware employs event
notifications following the publish/subscribe model to
inform registered mobile participants of message updates.
All the mobile participants are registered by the middleware
for particular services from preferred providers. Thus, if a
provider’s resources or services are updated, the middleware
propagates (publishes) the update message to all the other
healthcare professionals who have subscribed for services
from that provider.

As well, SOPHRA employs resources and services
replication technique on the middleware. The replication
approach is important for ensuring high availability of the
data and information since the connectivity of the mobile
providers cannot be guaranteed in the Wi-Fi network. In
case a particular mobile provider is unreachable, the
requester can access the providers’ replica resources that are
stored in the middleware cache. As a result, the middleware
acts as a back-up for the mobile providers.

In order to keep resources state updated for real-time
delivery of service to the requester, the mobile providers use
long-polling to fetch updates from the middleware and
pushing techniques to notify the middleware of updates.

A. Update Management
 The SOPHRA infrastructure uses read-your-write

consistency based on the report by Monash [17] that this
consistency technique works best for NoSQL back-end
systems. Thus, all updates applied to resources or services on
a mobile host are visible to both the provider and other
healthcare professionals on the next read request. For
instance, if a provider sends resources state change message
to another provider/requester, the latter will update its former
state with the new state and only the new state will be seen
subsequently on every read request. In addition, the
identification of which mobile service hosts have the latest
service updates can be traced from the middleware’s cache.
Thus, the mobile participants that must be updated can make
read requests (e.g. HTTP GET) to the mobile provider who
has the latest update of a resource or service.

The use of timestamps also ensures reliability of the
messages, hence, when a requester receives a response, the
requester sees when the last changes were made to the
resource or service. Also, resources of disconnected
providers that are served from the middleware are time
stamped which aids the requester to determine how old the
data is and how long the intended provider has been
unavailable. The middleware also notifies the requester that
the intended provider is temporary unavailable.
Furthermore, when updates are applied to resources state, the
new states are pushed to all subscribers within an
inconsistency window so that eventually, all the healthcare
professionals will receive the update. The next section
discusses the middleware and how all the functionalities are
achieved.

B. Middleware Platform/Framework
The cloud-based middleware serves as a router for all the

asynchronous messaging between the mobile service
requesters and the mobile service providers. All the
information of each mobile host is logged in the middleware
storage for callbacks; as a result, the middleware uses
pushing to send updates to the mobile participants that have
subscribed for services in soft real-time. Furthermore, the
middleware can be centralized or distributed but this paper
presents a centralized system to minimize the challenges of
data inconsistency.

The internal framework of the middleware is shown in
Fig. 2. When an HTTP request is invoked by a healthcare
professional, the request first identifies the HTTP Requester
Interface of the middleware through a specified port. All
requests are then forwarded to the Transaction Manager
(TM) which determines the nature of the request (e.g. read or
write request). The TM then communicates with the
Propagation Controller (PC) to notify the appropriate
mobile host/provider of the request through the HTTP
Provider Interface. The response of the provider is sent back
to the requester through the TM. All successful responses are
also stored in the cache by the Persistence Manager (PM). In
case the PC responds that the specified mobile host is
unavailable, the PM searches through the cache, where the
mobile hosts’ resource replicas are stored, and return the
result. In addition, anytime the mobile host’s resources are
updated, the updates are pushed to the middleware through
the HTTP Provider Interface. The updates are then
forwarded by the Propagation Controller to the Persistence
Manager for it to update the cache. Furthermore, all events
are determined by the Event Handler for appropriate
notification (e.g. resource state change, client connected, and
client disconnected).

Resource
state change

Client
connected

Client
Disconnected

Events Handler

Propagation
Controller

Persistence
Manager

Transaction
Manager

HTTP Requester Interface

HTTP Provider Interface

CACHE

H
TT

P
re

qu
es

t
H

TT
P

re
sp

on
se

Figure 2. Middleware features.

The main functionalities of the middleware are discussed
below.

1) Read/Write Request : The middleware controls the
race condition between a read request and a write request
that are issued at the same time. This is achieved by
introducing timestamps on each request. The transaction

909090

manager determines which request comes first and
processes that request with a higher priority.

2) Caching : Since REST affords stateless
communication between system components, RESTful
resources of the mobile providers are replicated
independently in the middleware cache. The cache has a
RESTful interface that supports the CRUD methods. This
means that the content of the cache can be created, read,
updated, and deleted. Also, based on the SOAP message
passing system in SOPHRA, SOAP services are cached as
well. Additionally, the cache stores states of all the mobile
providers that have subscribed for services.

3) Routing : All communications are routed through the
middleware since some mobile participants can disconnect
due to network instability. In such cases, requesters who
want to access the resources and services from disconnected
mobile hosts can access it from the middleware.

4) Events : The Events Handler is responsible for
actions such as resources and services updates, and
connection and disconnection of a mobile host. When
updates arrive in the cache, the new states of resources
override the older versions in the cache. The Events Handler
then informs the Propagation Controller to propagate the
changes to all healthcare professionals who have subscribed
via HTTP. Also, the Events Handler notifies the
propagation controller of all connected clients so that
updates will be sent to them in soft real-time. When write
requests are sent to disconnected providers, the middleware
creates the services and stores them in the cache. The
updates are pushed from the middleware to disconnected
mobile nodes when they reconnect. Also, a mobile service
requester is notified if a host is disconnected.

C. Mobile Framework
The mobile framework consists of the mobile service

requesters and the mobile service providers/hosts. The
requesters are the users plus the devices that send HTTP
requests to the middleware and the provider either for a
resource to be created or to fetch an existing resource or
service. The mobile service hosts are the users plus devices
that serves the resources and services. Additionally, a mobile
service host can act as a service requester. In our
architecture, the mobile service hosts behave as Web servers.

Recently, more developers are looking towards HTML5
mobile applications as a solution for targeting multiple
devices and platforms. This is because the Web browser is
becoming the default platform and its de facto standards are
HTML5 and JavaScript [18]. Smartphones and tablets
support the development of native applications which are
platform specific. However, these devices also have an
embedded browser which makes it possible to deploy mobile
web applications. Thus, with the advancement of HTML5, as
evidenced in the HTML5 stack in Fig. 3, a hybrid app
methodology is adopted in the design of the mobile
architecture to build the mobile web app that looks and
functions as a native app.

Figure 3. HTML5 stack on the mobile platform [18]

As illustrated in the HTML5 stack (Fig. 3), the native
functionalities that have access to the device can be imported
into the mobile Web app. HTML5 also supports server and
services which makes it affordable to consume Web services.
Hence, we are able to embed a Web server into the mobile
device in order to support the HTTP requests. Also, Web
services can be invoked in the embedded browser regardless
of the mobile device platform. Embedded browsers provide
rich graphical user interfaces and support multiple Web
based languages such as HTML, JavaScript, CSS, and so on.

Though the mobile providers have the same
functionalities as the requesters, they have additional
functionalities. The idea is that, the mobile provider will act
as a Web server as well as a consumer.

 The WS created are hosted on the mobile hosts as
resources and services. All newly created resource or service
is given globally unique identifier (id) which enables other
mobile participants to select or search for that resource or
service. The mobile hosts’ resources are accessed using URIs
that is provided by the middleware.

Also, the responses from the mobile hosts make use of
the HTTP status codes. This notifies the middleware on the
state of a particular resource or service. The requester is
informed whether there is an error in a request (with a 400
status code) or the request is successful (with a 200 status
code).

Furthermore, the mobile host uses the combination of
polling and pushing to synchronize data on the middleware.
There is the tendency of having outdated information on a
mobile host especially in cases of network communication
loss. Thus, new updates on the middleware from other
healthcare professionals might not reflect at the providers’
side at the same time. To address the problem of keeping
outdated information, the mobile data validation is done
using HTTP HEAD and GET requests. Since network
connectivity is crucial in mobile technology, a periodic
HTTP HEAD request is sent to the middleware for only the
Etag – which is a unique attribute of a Web resource. The
mobile nodes compare the Etag to determine whether the
local copy of the resource is the same as the incoming
resource or service from the middleware. A change in Etag is
an indication of a possible update of an existing resource.
The screenshots of the application on an Android tablet is
shown in Fig. 4.

919191

Figure 4. SOPHRA UI on an Android tablet (showing dummy patient records due to privacy reasons)

III. IMPLEMENTATION OF SOPHRA

A. The Mobile Implementation
The mobile platforms that are considered in the

implementation of SOPHRA are the BlackBerry Playbook,
Android tablet devices, and Apple iOS. Since the mobile
platforms are heterogeneous in terms of their underlying
operating systems, building a native app will mean that
multiple versions of the same application have to be built in
different programming languages. To avoid this situation, we
employed the embedded browser pattern to write a single
code base that is deployed on multiple platforms.

Though the embedded browser design approach
facilitates the deployment of cross-platform mobile
applications, there are some challenges encountered during
the user interface (UI) design. Due to the mobile WebKit
diversity, the UI is rendered differently on different mobile
platforms. However, as explained by Pearce [18], mobile
Web technology frameworks can be employed for: building
enthralling user interfaces, easy browser interoperability,
narrowing the gap between native and mobile web designs,
and creating consistent application architectures. Thus, we
adopted a mobile Web technology framework called
jQuerymobile [18] which we embedded in HTML5 to
overcome the challenges faced with WebKit diversity.

The BlackBerry version of the application is built as a
BlackBerry WebWorks [3] project, which is invoked in the
embedded browser. The same WebWorks code is reused to
compile an Android WebView [3] project. The WebView is
a framework that supports the deployment of mobile Web
applications on the Android devices. In addition, the same
code is exported to the iOS platform and compiled as an
Xcode [3] project.

However, the Internet Protocol (IP) address of a mobile
device changes as the user moves from one hotspot to
another. In addition, registering the device name within a
network domain is not ideal because the user can move from
one network domain to a different domain. In view of these
challenges, the mobile embedded Web server is implemented
to establish a dual communication channel between the

mobile device and the middleware. Hence, the mobile
requester is able to send an HTTP request to the provider
using the IP address or the registered computer name of the
middleware – which is running on the private cloud.

B. Middleware Implementation
The middleware is built using Erlang since the Erlang

programming platform supports concurrency and database
distributions. The middleware is built on the Generic Server
Behaviour (gen_server) process. The gen_server is a module
that facilitates the implementation of a server for the request-
response interaction between the mobile participants and the
middleware. Also, the DETS storage facility of Erlang is
used to build the cache which stores the replicas of the
providers’ resources. The Erlang code showing read and
write commands in the DETS storage for the middleware
implementation is shown in Fig. 5.

Figure 5. Snippet of Erlang code showing how the WS replicas are stored
and fetched from the DETS table.

insert(Key, Value) -> %% Write request
 case cache:search(Key) of %% Check if key is already present
 {ok, Pid} ->
 element:update(Pid, Value); %% Update an existing WS
 {error, _} ->
 {ok, Pid} = element:create(Value), %% Create a new WS
 cache:insert(Key, Pid) % % Store the newly created WS
 end.

search(Key) -> %% Read request
 try
 { ok, Pid} = cache:search(Key), %% Fetch process id for key
 { ok, Value} = element:read(Pid),
 { ok, Value}
 catch
 _Class:_Exception ->
 {error, not_found} %% Return this line if the WS is not in cache
 end.

929292

IV. EVALUATION

The BlackBerry Playbook simulator and Android tablet
emulator are the mobile platforms that are put forward for
the testing in the experiments. All the experiments are
simulated in order to enable us to have more control over the
testing environment. The BlackBerry Playbook simulator
which is running as the requester is deployed on a computer
with the following specifications in the laboratory:
Processor: Intel Core i5, CPU 650 @ 3.66GHz 3.56GHz,
RAM: 4GB (2.99GB usable), System 32-bit operating system.
The Android 4.0 tablet emulator which is running as the
mobile host is configured on a computer with the following
specifications in the laboratory: Processor: Intel Core i5,
CPU 650 @ 3.22GHz 3.22GHz, RAM: 8GB, System 32-bit
operating system. The middleware is hosted on a privately
owned cloud platform with the following specifications:
Windows 7 Enterprise, Service Pack 1, Processor: Intel(R)
Xeon(R), CPU E5140 @ 2.33GHz 2.33GHz (2 processors),
Installed memory (RAM): 16.00GB, System type: 64-bit
Operating System. Furthermore, the mobile clients are
configured to connect through the University of
Saskatchewan secure Wi-Fi network using 802.11g.

The first experimental setup that is deployed focused on
the round-trip time between a mobile requester and a host.
The mobile host was initially populated with 600 WS
representing patients’ demographic information; and each
file size is approximately 11kb. The mobile concurrent
requesters execute 30 HTTP GET requests and the result is
illustrated graphically in Fig. 6 and in tabular form in Table I
for both REST and SOAP Web services.

TABLE I. COMPARISON OF RESPONSE TIMES OF THE WS

Web Service Average response
time for sending 30

requests (ms)

Standard
deviation

Maximum
request rate
(request/s)

REST 584.47 174.94 51.33
SOAP 642.39 200.79 46.70

Figure 6. Mobile requester-host interaction through the middleware.

In the experiment, it is observed that there was no loss or
corruption in requested data. The results show that the
REST-WS are consumed efficiently at higher response time
since the percentage increase in maximum request rate is

9.91% in favor of REST. The low performance of SOAP WS
could be attributed to the verbosity of the XML data that is
exchanged in each request-response interaction as observed
by Aijaz et al. [19]. However, the performance of SOPHRA
regarding SOAP Web services is encouraging considering
the fact that it has higher concurrency requesters compared
to the results in [8]. Also, the healthcare professionals using
SOPHRA are comfortable with the response time.

A second setup was deployed to determine the average
response time of the middleware in cases involving an
unavailable mobile host. The middleware cache is populated
with 10000 WS representing patients’ demographic
information; and each file size is approximately 11kb. Fault
injection technique is used to turn off the mobile host while
we observed the response time of the middleware. The
mobile requesters issue 70 concurrent read requests for both
REST and SOAP Web services and the result is presented in
Table II and graphed in Fig. 7.

TABLE II. RESULT OF THE MIDDLEWARE RESPONSE

Web Service Average response
time for sending 70

requests (ms)

Standard
deviation

Maximum
request rate
(request/s)

REST 60.10 33.70 1164.73
SOAP 381.30 192.71 183.58

Figure 7. Middleware response rate in cases of unreachable mobile hosts

The result in the second setup shows that the middleware
responds efficiently in cases involving unavailable mobile
hosts. This result is encouraging since it shows that in case a
particular mobile host is unreachable, the services of the
disconnected host can be accessed on the middleware by
other healthcare professionals in real time.

Another setup was deployed to measure the scalability of
the middleware by simulating the concurrent activities of 600
mobile participants; who send requests ranging from 600 to
40000. This is to determine the performance of the
middleware when the users as well as the users’ requests
increase. A load generator is configured to send concurrent
HTTP requests to the middleware for the replicated Web
services. The size of each resource is 11kb and the load
generator sends requests at a rate of 1 request per 10 seconds
following the exponential distribution of mean, 0.1

939393

requests/second. The outcome of the scalability testing is
presented in Table III and graphed in Fig. 8.

TABLE III. OUTCOME OF THE MIDDLEWARE SCALABILITY TEST

Mean
Throughput

(req/s)

Maximum
Throughput

(req/s)

Minimum
Throughput

(req/s)
331.40 387.77 284.67

Figure 8. Load performance testing of the middleware

During the scalability testing, the error rate is observed to
be zero percent for the concurrent HTTP requests ranging
from 600 to 40000. This shows that the cloud environment
for hosting the middleware is highly available. The
performance of the middleware in the test environment
shows high throughput and support for higher number of
users. The estimated number of healthcare professionals in
the Geriatrics Ward who will be using SOPHRA is 200.

We used other metrics as well such as the read and write
mixed requests to determine the inconsistency window of the
system. This we found that it takes approximately 0.078s to
see 600 newly created RESTful Web resources on all mobile
participants and approximately 0.11s for 600 newly created
SOAP services to be visible on all connected mobile
participants.

V. RELATED WORK

A. WS* and REST
Web Services (WS) [7, 13] are network oriented

applications that serve information based on standards such
as SOA and REST. Furthermore, Web services can be used
to deploy business services and applications on many
platforms since WS are mostly XML based and use HTTP as
a communication protocol [11, 15]. Recent studies show that
deploying web services in a cloud computing environment
can guarantee scalability and good system performance [6,
10, 15]. Pautasso et al. [13] compared WS*, which they
described as “Big” Web Services (or SOA framework), with
RESTful Web Services. Their paper concluded that the best
design architecture depends on the needs of the developer
since the two standards have different architectural design
principles. In another finding, Beal [14] in his article,

“Understanding Web Services” reports that Web services
have shaped the paradigm of business communication
between client nodes and servers. The Service-Oriented
Architecture (SOA) framework provides support to various
components of Web services to interoperate. According to
Wicks et al. [11], SOA focuses on reusability of software and
integration. Additionally, SOA supports packaging, which
makes changing of older versions of software very fast and at
minimal cost [11].

Apart from the SOA approach, other researches have
explored the REST approach. REpresentational State
Transfer (REST) is an architectural principle that uses the
Web platform for distributed computing [13, 15]. REST is
better understood in the context of identifying everything as
a resource, representation, and state. The design follows
certain technological principles as described in [9]:

1) Identification of resources through URI: The key
resources should be given Universal Resource Identifiers
(URIs) which will facilitate interactions within the system.

2) Uniform interface: Resources can be manipulated
through representations using HTTP methods such as GET,
HEAD, POST, PUT, DELETE, OPTION, TRACE, PATCH
and CONNECT.

3) Self-descriptive messages: Since resources are
decoupled from their representation, it makes content
accessibility very simple regardless of the format of the
resource content [13].

4) Stateless interactions: While resources have states,
their interactions should be kept stateless.

5) Hypermedia as the engine of application state
(HATEOAS): In order to navigate between resources, URIs
such as hypertext can be used in a resource representation.
HATEOAS aids the client to know the next steps to take
since the returned URI contains links to available options.

B. Mobile Provisioning of Web Services
It is surprising that as at now there are only a handful of

studies on mobile hosting and Web services provisioning.
Srirama et al. [7] are one of the innovative researchers on
facilitating the mobile device as a provider of Web services.
In their initial studies, they demonstrated the feasibility of
hosting Web services on the mobile device by adopting the
SOAP messaging approach. The paper resolved the IP
addressing challenges in mobile peer-to-peer
communications by adopting two approaches: High-Speed
Circuit Switched Data (HSCSD) dial-up connection and
General Packet Radio Services (GPRS) environments. Later,
the authors extended their work in [5] to facilitate the mobile
provider to handle SOAP requests over HTTP. In addition,
the mobile provider was enabled to handle concurrent
requests, and support runtime services deployment.

Also, Meads et al. [4] employ the cloud based
middleware technique to provide a communication interface
for ubiquitous devices to communicate with mobile
providers in heterogeneous networks. The paper concludes
that mobile providers can be reached via Bluetooth or Wi-Fi,
an approach that gives requesters the flexibility to explore

949494

different communication channels. Furthermore, Hassan et al
[8] researched on managing the limited resources of the
mobile provider and proposed a mobile web service
partitioning scheme. As a result, complex business processes
can be executed by the mobile provider with a backend super
computer doing most of the high demanding computations.
Additionally, Aijaz et al. [19] demonstrated the high
performance of RESTful mobile Web services provisioning
compared to SOAP Web services.

VI. CONCLUSION
This paper presents SOPHRA, a mobile hosting

infrastructure for the Geriatrics Ward of the City Hospital,
Saskatoon Canada. Medical records regarding patients are
modeled as Web services following the REST and SOAP
design principles. The use of open data standards such as
XML for SOAP and JSON for REST in designing the WS
aided SOPHRA to be integrated into the existing Health
Information System.

Also, SOPHRA employs a middleware framework that is
hosted on a private internal cloud platform. The middleware
uses resources replication technique to ensure high
information availability. In addition, it is encouraging to
know that in a multi-node system, it takes segments of a
second for all connected mobile participants to be updated.

The next version of SOPHRA which is our future work,
will consider autonomic computing to ensure resilient and
fault-tolerance design.

REFERENCES
[1] C. Gibbs, “The Rise of Tablets in the Enterprise,” GigaOM Pro, June

2011.
[2] C. Warren, “Native App vs. Web App: Which Is Better for Mobile

Commerce?,” http://mashable.com/2011/05/23/mobile-commerce-
apps/

[3] PhoneGapWiki. Available:
http://wiki.phonegap.com/w/page/33313613/Changelog WebView

[4] A. Meads, A. Roughton , I. Warren, and T. Weerasinghe, “Mobile
Service Provisioning Middleware for Multihomed Devices,”
Proceeding WIMOB '09, Networking and Communications IEEE
Computer Society Washington, DC, USA 2009.

[5] S.N. Srirama, M. Jarke, and W. Prinz, “Mobile Web Service
Provisioning. Telecommunications,” (AICT-ICIW '06), International
Conference on Internet and Web Applications and Services/Advanced
International Conference on 19-25 Feb. 2006.

[6] C. Barnatt, “Explaining Cloud Computing” [Online], 10th May 2009,
Available: http://www.explainingcomputers.com./cloud.html.

[7] S.N. Srirama, M. Jarke, and W. Prinz, “Mobile Host: A feasibility
analysis of mobile Web Service provisioning,” 4th International

Workshop on Ubiquitous Mobile Information and Collaboration
Systems, UMICS 2006, a CAiSE'06 workshop, June 5-6th, 2006.

[8] M. Hassan, Z. Weiliang, and Y. Yang, “Provisioning Web Services
from Resource Constrained Mobile Devices,” Cloud Computing
(CLOUD), 2010 IEEE 3rd International Conference on 5-10 July
2010.

[9] X. Feng, J. Shen, and Y. Fan, “REST An Alternative to RPC for
Web Services Architecture,” First International Conference on Future
Information Networks, ICFIN 2009, p 7-10, 2009.

[10] J. Christensen, “Using RESTful web-services and cloud computing to
create next generation mobile applications,” Proceedings of the
Conference on Object-Oriented Programming Systems, Languages,
and Applications, OOPSLA, p 627-633, 2009, OOPSLA 2009 .

[11] G. Wicks, E. Van Aerschot, O. Badreddin, K. Kubein, K. Lo, and D.
Steele, “Powering SOA Solutions with IMS," Pg. 9 Publisher: IBM
Redbooks Pub., Date: March 30, 2009, Part Number: SG24-7662-00,
Pages in Print Edition: 410.

[12] M. Fowler, “Richardson Maturity Model: steps toward the glory of
REST,” March 2010, Available:
http://martinfowler.com/articles/richardsonMaturityModel.html

[13] C. Pautasso, Z. Olaf, and F. Leymann, “RESTful Web Services vs.
Big Web Services: Making the Right Architectural Decision,”
Proceeding of the 17th International Conference on World Wide Web
2008, WWW'08, p 805-814, 2008, Proceeding of the 17th
International Conference on World Wide Web 2008, WWW'08

[14] V. Beal, “Understanding Web Services” September 2010. Available:
http://www.webopedia.com/DidYouKnow/Computer_Science/2005/
web_services.asp

[15] Q. Wang, R. Deters, "SOA's Last Mile-Connecting Smartphones to
the Service Cloud," cloud, pp.80-87, 2009 IEEE International
Conference on Cloud Computing, 2009

[16] P. Farley, and M. Capp, “Mobile Web Services,” Published in: BT
Technology Journal archive, Volume 23 Issue 3, July 2005, Kluwer
Academic Publishers Hingham, MA, USA.

[17] C. Monash, “DBMS2: Read-your-writes (RYW), aka immediate,
consistency,” A Monash Research Publication, May 1, 2010.
Available: http://www.dbms2.com/2010/05/01/ryw-read-your-writes-
consistency/

[18] J. Pearce, “HTML5 and the Dawn of Rich Mobile Web
Applications,” InfoQ Sections: Development, Architecture & Design,
Jun 24, 2011, Available:
http://www.infoq.com/presentations/HTML5-Dawn-of-Rich-Mobile-
Web-Applications

[19] F. Aijaz, S. Z. Ali, M. A. Chaudhary, and B. Walke, “Enabling High
Performance Mobile Web Services Provisioning” , Published in:
Vehicular Technology Conference Fall (VTC 2009-Fall), 2009 IEEE
70th, 20-23 Sept. 2009.

[20] J. Ranck, “The Rise of Mobile Health Apps,” GigaOM Pro, October
2010.

[21] M. Rusu, G. Saplacan, G. Sebestyen, N. Todor, L. Krucz, and C.
Lelutiu, “ eHealth: Towards a Healthcare Service-Oriented Boundary-
Less Infrastructure,” Original Research:Applied Medical Informatics
Vol. 27, No. 3/2010, pp: 1-14.

959595

