Noname manuscript No.
(will be inserted by the editor)

Modeling Service Representatives in Enterprise Systems

using Generic Agents

Mehran Najafi - Kamran Sartipi

Received: date / Accepted: date

Abstract As a common practice in business enterprise
systems, a service provider delegates a human agent to
a client site to serve the client. On the other hand, in
a computerized business application, enterprise orga-
nizations adopt Service-Oriented Architecture (SOA),
where an enterprise agent is modeled as a software agent
that cannot be transmitted efficiently by service mes-
sages. In the proposed approach, we extend the tra-
ditional architecture of SOA implementations to sup-
port generic and lightweight agents that reside at the
client site. These agents, that we call ”Service Repre-
sentatives”, can be customized and trained based on
the provider generated role description and knowledge
to perform their assigned tasks. In addition to provid-
ing innovative applications, such a technique allows for
more sophisticated features such as maintaining client
privacy and separating the functionality of the service
and its delegated agent. To indicate the variety of roles
that can be done by the service representative, we pro-
vide three case studies to show how a local and generic
agent can be customized by different providers to per-
sonalize financial advice, apply medical guidelines, and
verify credit card transactions.

Keywords SOA - Resident Agents - Generic Agents -
Autonomous Agents - Knowledge Management -
Context-aware Services

Mehran Najafi

Department of Computing and Software
McMaster University

Tel.: +1-905-920-4282

E-mail: najafm@mcmaster.ca

Kamran Sartipi

Department of Computing and Software
McMaster University

Tel.: +1-905-525-9140 ext. 26346
E-mail: sartipi@mcmaster.ca

1 Introduction

Enterprise systems [22] are strategic communication as-
sets for large organizations such as banking, health-
care and insurance companies. An enterprise system is
tightly coupled with the internal structure, processes,
and business model of an organization. Architectures
for enterprise systems must be featured by major non-
functional qualities such as: simplicity, flexibility, main-
tainability, reusability, and decoupling technology from
functionality.

Service-Oriented Architecture (SOA) [14] is a high-
level and technology-independent concept that provides
architectural blueprints for enterprise systems. SOA-
based architectures focus on dividing the enterprise ap-
plication layer into services where each service has a di-
rect relationship with a business functionality of the en-
terprise. In SOA, enterprise related tasks are addressed
by interactions between service clients and providers
through services. A service provider registers its ser-
vices in a service registry. A service client inquires the
service registry to receive the description of an appro-
priate service from a provider to satisfy its needs [15].
Further on, the requester and the selected provider(s)
may negotiate about the service usage terms [18]. After
agreement between client and provider, the client in-
vokes the service. Also, different services can be either
composed to serve a client [8], or customized based on a
client’s context [4].

In real-world, a business provider usually sends its
agent or personnel (e.g., as representative, installer, and
repairer) to its client site to perform the required ser-
vices. Accordingly, several organizational units in enter-
prises (e.g., customer service, dealership, training unit,
and delivery unit) require to send or employ agents to
serve the clients. Therefore, to provide a comprehensive

model of enterprises, SOA needs to model enterprise
agents efficiently. Lack of this model may result in lim-
iting the applications and functionality of SOA based
systems.

XML-based web services are the dominant platforms
for implementing SOA. A web service is defined by the
messages it exchanges. That is, a service client sends a
request message to a (web) service provider. Then, the
web service processes the request message and replies
by a response message. An enterprise agent can be mod-
eled as an autonomic agent [12] that is a computer pro-
gram which cannot be transmitted by communication
messages efficiently.

In this paper, we extend the traditional architecture
of SOA implementations to enable enterprise systems
to employ generic agents as their service representa-
tives. Instead of sending different agents to the service
client, we maintain a lightweight and generic agent at
the client site that can be customized to act different
roles and be trained to perform different tasks on behalf
of the service provider. The customization and training
are performed based on the role description and knowl-
edge which are generated by the service provider and
can be efficiently transmitted by the messages. The pro-
posed approach significantly enhances the capabilities
of the current SOA services. Since the proposed agent
is local to the service client, it can customize service re-
sponses based on the client’s context; this mechanism
reduces the security and privacy concerns by eliminat-
ing the need to send client’s private information to the
provider. Finally, the proposed agent represents a ser-
vice provider at the client site, therefore, we call this
agent Service Representative (SR).

The organization of this paper is as follows. Related
work is discussed in Section 2. Service Representative
is introduced in Section 3. The proposed architecture
and its details are discussed in Section 4. Section 5 in-
troduces the developed prototype system. Three case
studies in business, health care, and insurance domains
are explained in Section 6. The applications and chal-
lenges of the proposed approach are discussed in Section
7. Finally, conclusions and future work are discussed in
Section 8.

2 Related Work

Web services have had quick growing success and broad
acceptance by the enterprise systems. However, there
are still a number of impediments that limit the wide
applications of web services in industry. Moreover, agent-
based techniques seem to be proper solution for en-
abling dynamic collaboration among e-Business systems.
Therefore, there are growing demands for using agents

to evolve the current architecture of SOA in several as-
pects as follows:

1. Agents as services. The Intelligence Service Sys-

tem (ISS) [3] is introduced as a framework for in-
tegrating expert systems into service oriented land-
scapes. In this framework, a computerized expert
system (intelligent agent) acts as a service, which re-
ceives requests (including query and training data)
from business applications. By using the training
data, the expert system is trained and returns its re-
sponse to the query. Since agent platforms [23] and
web service platforms have similar components (reg-
istry, descriptor, communication protocol and se-
mantic language), AgWebs architecture [16] is pro-
posed to provide interoperability and interaction be-
tween them.

2. Services as agents. In ASMF [6] a network of web

services is modeled by a number of autonomic agents
(each service is wrapped into an agent). Further-
more, these agents interact with each other to form
service relationships. In addition to service agents,
service brokers are designed as autonomic elements.
In [27], a role-based architecture is adapted to facil-
itate the service definition and relationship among
SOA components.

. SOA related tasks by employing agents. Agents

have been used to facilitate SOA related tasks such
as service composition and service negotiation. In
[17], during a service composition process, software
agents engage in conversations with their peers to
agree on the web services that participate in this
process. Moreover, agents have been proposed as
coordinators for web services. For example, [28] in-
troduces a service processing agent that searches,
selects and invokes service components for a ser-
vice composition, dynamically and according to the
user’s context.

4. Agent-based enterprise modeling. Integration

of agents and web services has been proposed to
model the business aspects of enterprise systems. In
[26], each role or major function of an enterprise sys-
tem is considered as an agent (e.g., supplier agent,
producer agent, cooperative agent, information ser-
vice agent, and customer service agent). Then each
agent is wrapped into a web service. The agents
combined with web services can easily communicate
with each other. As another example, a distributed
market place is modeled by agents [13]. In this ap-
proach, service providers and clients are considered
as sellers and buyers, where an agent models each
buyer or seller. These agents can negotiate with each
other until they reach an agreement.

Service

Py X . v Q(/e

& . . P
R - e, @,
A% e, 2,
& NS

1. Service Request

Service Client

T 3. Service Resionsc

Service Provider 2. Role description &

Knowledge

Provider-side Client-side

Fig. 1 Proposed extended SOA model. The shaded area repre-
sent the non-essential component (service registry) in the SOA
model. This model also supports the traditional service invoca-
tion where the service provider returns the service response di-
rectly to the service client

In the proposed model, we address a new application
of collaboration between agents and services. The pro-
posed generic agents are in charge of delivering the func-
tionality of service providers, however, these agents are
located at the client site.

Mobile agents can physically travel across a network
and perform tasks on different nodes. Agent mobility
requires facilities that convert an agent into a form
suitable for network transmission (e.g., messages) and,
on the receiving end, allow the remote system to re-
construct the agent. Java’s object serialization accom-
plishes this conversion and reconstruction. Concordia
[25], Odyssey [24], and Voyager [19] are examples of
mobile agent frameworks based on java. Also, mobile
agents are suitable to be formally represented using
pi-calculus [7]. There are several security and privacy
issues to be considered in mobile agent-based comput-
ing. Viruses and malicious attacks are other possible
vulnerabilities of mobile agent systems. Mobile agent
architectures also suffer from low efficiency as they need
to send the entire computer program or process. More-
over, flexibility and interoperability concerns must be
considered in these approaches. These issues motivated
us to customize generic resident agents as opposed to
send mobile agents.

3 Service Representatives

We propose to extend the major components of SOA
(service provider, service requester, and service registry)
with the service representative, as it is shown in Fig-
ure 1. In this section, first we address the limitations
of the existing SOA-based technologies to model enter-
prise services. Then, we introduce the notion of service
representative that can be implemented using resident

generic agents to facilitate dealing with these limita-
tions.

3.1 Existing Technology Issues

As mentioned earlier, enterprise services are modeled
based on message exchanges. A service is typically de-
fined using WSDL technology that represents the re-
quest message that the service provider receives and
the response message that it generates. This message-
based structure imposes limitations on enterprises that
aim to use SOA to provide their services. Some of these
limitations are listed below.

Functionality limitation. There are several types
of services that can not be modeled efficiently by mes-
sage exchanges, such as:

— Supervisory service which is called to control client
resources. A set of provider generated messages can
not perform this task since it needs an executable
platform at the client site that has access to the
local resources.

— FEvent-triggered service which is called by a client
and the service will wait until a predefined event
occurs at the client site. Implementing these ser-
vices by the message exchange technology requires
a permanent connection between the provider and
the client.

— Advertising service which introduces other services
in the enterprise while performing its task. A message-
based service sends a response message to the client
based on the query in the request message, without
any opportunity to advertise other services. Even if
the provider embeds advertisement messages in the
response message, the client cannot extract them
since it lacks the required mechanism to predict re-
ceiving advertisement messages.

Privacy and security issues. Since web services
process client requests at the provider site, the client
may need to include their personal information in the
request messages. This may cause significant privacy
and security breaches.

Needs for expertise. As providers pack their re-
sponses in the form of messages, the interpretation of
these messages is the client’s task. So, it is likely that a
client lacks enough expertise and knowledge to under-
stand and use the service responses. This situation gets
worse as a client has to deal with different providers in
different domains.

Service competition. Message-based web service
providers are usually passive in dealing with enterprise
issues. They register the descriptions of their services
into a service registry, then it will be the responsibility
of service clients or coordinators to discover and com-
pose those services. Active providers are expected to
address the enterprise issues more efficiently. For exam-
ple, in the case of service discovery, instead of analyzing
the service descriptions to find the best service for the
client’s needs, the candidate services can compete and
the client simply chooses the winner.

Stateful services. According to the SOA’s require-
ment, web services should be designed to work in a
stateless fashion. However, in some situations message
exchange technologies force developers to implement
stateful services. For example, efficient service negoti-
ation techniques ask the providers to keep track of a
negotiation process initiated by a client.

3.2 Generic Agent as Service Representative

Sending agents as service responses (mobile agents) could
facilitate dealing with the above limitations, however
the message-based structure of web services does not
allow providers to dispatch their agents efficiently. We
propose an extension to the existing SOA architecture
which utilizes the concept of “generic agents” that are
resident at the client site and are customizable and
trainable for different roles. The proposed architecture
requires that the service provider only transfers essen-
tial messages to customize and train a generic agent,
as opposed to sending the entire agent. Since the agent
executes at the client site and has access to the local
resources of the client, it can potentially violate the
client security and privacy. To prevent this, we limit
the power of the agent by restricting the resources that
it can access.

The proposed architecture organizes the contents of
the communication messages into three segments “data”,
“information”, and “knowledge” [29], where: i) data is
defined as raw fact; ii) information is the result of apply-
ing knowledge on data; and iii) knowledge is an under-
standing of how to process data to produce informa-
tion, based on evidences, experience and insight that
can be represented as guideline, decision-flow or pat-
terns of data.

In this context, the service client asks to receive in-
formation from the service provider by sending a re-
quest message. The service client may receive the re-
sulting information in a response message directly from
the service provider or indirectly through the service

Knowledge

Data
_—

Information

——

Fig. 2 Relationship among Data, Information, Knowledge and
the Service Representative in the proposed model.

representative. Therefore, the proposed service repre-
sentative can be viewed as an agent that works in a
knowledge management environment illustrated in Fig-
ure 2. The service representative, that is modeled by a
resident generic agent, provides the following facilities
for the SOA architecture.

More sophisticated functionality. By introduc-
ing an executable platform at the client site, service
providers can offer innovative services. For example, a
service representative can be customized and trained
to advertise other provider’s services, control local re-
sources or be activated when an event occurs.

More privacy and security. As the service repre-
sentative has access to local resources at the client site,
the client does not need to send its personal data to the
provider in order to receive customized services. More-
over, we impose two constraints to preserve the client
privacy and security. First, the client determines local
resources that the service representative can access to
them. Second, the communication between the provider
and its agent is one way (from provider to the service
representative); which implies that the agent can not
return any of the client’s resources to the provider(s).

Local and trainable experts. A service provider
can train a generic agent to interpret its response mes-
sages in the forms that a client can understand. Also,
the agent can guide a service client on how to use the
service responses.

Active providers. When a generic service repre-
sentative is customized and trained, it can represent
its provider regarding its assigned role in performing
the enterprise related tasks. Popular and high-demand
tasks can be pre-defined as standard tasks to be dis-
patched to the generic agents. For example, in the case
of service discovery, after customizing generic agents by
different providers; they can compete on behalf of their
providers to find the best service for a client.

T ST

Analyzer| | Planner

Maonitor Executer
,'ﬁnowladge\

- /

Fig. 3 Structure of an autonomous software agent, called

MAPE-K (monitor-analyze-plan-execute over a knowledge base),
proposed by IBM [2].

Stateless services. By employing the service rep-
resentatives, enterprise related tasks can be modeled
for stateless services efficiently. In other words, by as-
signing an agent to each client, providers do not need to
keep the state of each request. For example, in a service
negotiation scenario, a provider sends essential negoti-
ation skills to the service representative to negotiate
with the client about the terms of using the service.

An enterprise agent can be modeled as an autonomic
agent, shown in Figure 3, and hence can be defined
using a tuple of its components, as below:

— Sensors: act as the agent input devices and obtain
data from the system.

— Monitor: scans the sensed data, generated by the
sensors, to extract the relevant data.

— Analyzer: analyzes or modifies the monitored data
in a way that the agent can use them.

— Knowledge Base: contains knowledge sentences that
other agent components can use to perform their
tasks.

— FEzxecutor: processes the input data and generates the
output as information.

— Planner: acts as the brain or controller of the agent
that specifies how the executor generates outputs or
how and when the knowledge base can be used.

— FEffectors: act as the agent’s output devices.

The generic service representative is defined based
on its generic components (generic sensors, generic mon-
itor, generic analyzer, generic execute, generic effectors,
and generic knowledge base). The agent planner (the
only concrete component) is in charge of concertizing
the generic components based on the provided role (or
role description) and knowledge (or role knowledge) to
perform the assigned task. The role description is a
list of the tasks, functions, or responsibilities, and role
knowledge is the required expertise that the service rep-
resentative needs to complete the described tasks and
responsibilities. The planner transforms a generic ser-
vice representative into a specific service representative

in two phases (customization and training) and then
executes the assigned task in the execution phase, as
follows.

1. Customization. In this phase, the planner sets up the
agent configuration (including SR sensors, effectors,
and executer) and creates an abstract process in the
SR executer based on the role description.

2. Training. In this phase, the planner uses the role
knowledge to train the customized agent for the as-
signed role. The role knowledge can be received from
the provider or/and extracted from the local knowl-
edge base. Consequently, the abstract process will
be completed to perform the specified tasks.

3. Ezecution. In this phase, the customized and trained
service representative receives the client’s local data
(via the sensors and monitors), adapt them (via the
analyzer), executes the created process to generate
the requested information (by executer), and deliv-
ers the information (via the effectors) to the client.

4 Extended SOA Architecture

In this section, we extend the typical architecture of
SOA implementation to enable service providers to em-
ploy the generic service representative at the client site.
The proposed architecture is illustrated in Figure 4 and
consists of three main components: service provider,
service client, and service representative. The message
transmissions among these components are as follows.
A service client sends a request message (data) to re-
ceive a service response (information) from a service
provider. In a simple model of communication (without
using the service representative), the provider’s infor-
mation layer receives and processes the request message
that contains client data and returns the resulting in-
formation back to the client application. This model
represents traditional web services. In an agent model
of communication (with using the service representa-
tive), the client request is processed at both provider
and client side as follows.

1. At the provider site, the customization and training
layers send a role description and required knowl-
edge to the service representative to process the
client data locally to generate the requested infor-
mation.

2. At the client site, the generic service representa-
tive receives the role description and knowledge seg-
ments and evolves into a customized service repre-
sentative. Then, it performs the assigned tasks on
the client local data that are available through the
communication channel.

2.Response Message

[Information Engine)

Information Layer

Information

Knowledge

{ Training Engine)

Training Layer

Role
Customization Layer \
Rt Data Flow
— Message Flow

Client Application

intor

i Communication Channel |

1.User's Request

Data
Information

Role v

Analyzer

Planner

/mw;dg.\

Monitor

\

Knowledge

Service Provider

Service Client (top)
Service Representative (bottom)

Fig. 4 Proposed architecture. Based on the client’s request, the service provider generates a 3-segment response message to customize
and train a client-side generic agent as its representative to serve the client.

The specification for each component of this archi-
tecture is given in the following subsections.

4.1 Service Provider Model

In contrast to the existing SOA models whose service
response messages have only one segment (information),
the proposed model introduces service response mes-
sages with three segments (role, knowledge, and infor-
mation). Accordingly, the service provider consists of
three layers that are designed to work independently,
and each layer is responsible to provide one segment of
the response message, as follows.

Customization layer. This layer specifies a role
for the generic service representative to customize and
perform assigned tasks on behalf of the provider. First,
a role (e.g., negotiator, customizer, or adaptor) is as-
signed to the generic agent. The role can be deter-
mined explicitly, i.e., the client specifies it in the re-
quest message, or implicitly, i.e., the customization en-
gine predicts it based on the previous similar situations.
Then, this layer specifies the agent configuration for
the assigned role including the type and specification
of the required sensors, effectors, analyzer, and execu-
tor. Moreover, the role specification includes a process
model describing the order in which a series of steps
(called tasks) needs to be executed

The required knowledge for each step of the role
process can be provided either locally by the SR knowl-

edge base or remotely by the provider’s training layer.
Since the service provider can employ the service rep-
resentative for different roles, the roles configuration
and description are kept in the role database. Concep-
tually, this layer can be viewed as a technical support
unit in an enterprise organization that informs a tech-
nician their responsibilities about a customer or a prod-
uct. The layering structure of the proposed model im-
plies that the customization layer should be indepen-
dent from the knowledge layer. It is based on the fact
that technicians are assumed to be knowledgeable when
they are assigned some tasks. They only receive the
overall task description while their knowledge are pro-
vided from other sources, such as: education, training,
past experiences, or following strict guidelines.

Training layer. This layer generates the knowledge
segment of the response message, based on the knowl-
edge model specified in the customization layer. The
knowledge is provided using knowledge representation
techniques and is stored in the knowledge base.

Information layer. This layer essentially repre-
sents the service provider in the traditional model of
SOA, where the service provider receives a request mes-
sage from a client; processes its data; and returns the
result of the operation on data (as information) back to
the client via the information segment of the response
message. This layer provides the compatibility of the
proposed SOA model with the existing model.

In Out In/ Out
Port Port | T Port

Fig. 5 Example of a communication channel.

4.2 Service Client Model

A service client consists of a client application and a
communication channel, as follows.

Client application. This is a traditional client ap-
plication that generates and sends request messages to
service providers. The client application will receive the
information segment of the response message. This in-
formation can be either consumed directly or passed to
the service representative via the communication chan-
nel to be modified by the service representative. The
service provider publishes the required communication
channel schema for each client-side web service in the
service registry using WSDL documents. In order to call
a client-side web service, the client application needs to
put the client data in the communication channel based
on this schema.

Communication channel. This channel consists
of a number of ports that are connection links to the
internal resources of the client application, as well as the
means for the client application to receive the result of
the requested task through the service representative. A
client grants permission to the service representative to
read /write a number of its resources through this chan-
nel. The ports can be input, output, or input/output
(from the client point’s of view). Input ports can be
read by the SR sensors and output ports can be written
by the SR effectors. One instance of a communication
channel is shown in Figure 5.

4.3 Service Representative Model

As mentioned earlier, a generic service representative
is transformed into a specific service representative af-
ter customization and training phases. The agent then
modifies the client’s internal resources through the com-
munication channel. A service representative is modeled
by an autonomous structure as follows.

— The sensors and effectors are connected to ports in
the communication channel.

— The knowledge base contains the internal role knowl-
edge that is pre-loaded by the client or received from
external resources. The received knowledge from web
services can be stored to relieve web services from
sending them each time. Moreover, by storing basic
knowledge of a specific domain in the SR knowl-
edge base, we can develop domain-specific service

representatives where they can perform the domain
relevant tasks efficiently.

— The planner has functions to configure the agent
and a process engine to follow different steps of the
assigned role.

— The monitor and analyzer receive and convert the
sensed input data to a format that is understandable
for the agent.

— The executor contains one or more knowledge model
instances that are specified in the customization phase
and trained in the training phase.

In the execution phase, the service representative
performs its assigned role as follows: i) the sensors read
client data from the communication channel; ii) the
relevant data are extracted by the monitor and the
analyzer converts them into a proper format for the
service representative; iii) these input data are fed to
the knowledge models in the executor; iv) the trained
knowledge models will be applied to the data to gen-
erate the output results; and v) the results are written
back to the communication channel by the effectors.

4.4 Types of Supported Services

The proposed architecture is an extension to SOA, hence
it must cover the typical SOA services where there is
no need for the proposed service representatives. More-
over, the service representative can work in two separate
modes, therefore, the proposed architecture can model
three types of services, that are described below.

— Type 1. The service response only contains ”in-
formation segment” that is received by the client
application, while the role and knowledge segments
are empty. Type 1 includes typical web services pro-
vided by traditional service providers that do not
need to employ agents in order to serve the clients.

— Type 2. The service response contains ”role” and
”knowledge” segments that are received by the ser-
vice representative, while the information segment
is empty. Based on the role description, the service
representative applies the received knowledge to the
local client data and provides resulting information
as the service response for the client.

— Type 3. The service response contains ”role”, ”knowl-
edge”, and ”information” segments. In this case, two
scenarios are possible: (a) the service client uses the
received information and the service representative
performs its assigned task to provide additional in-
formation for the client; (b) the service client redi-
rects the information to the service representative
in order to be modified or used during the service
representative task execution.

Finally, because web services of Type 2 and Type 3
are executed at the client-side, we call them client-side
web services as opposed to web services of Type 1 which
are executed at the server-side.

5 Prototype System

To evaluate the effectiveness and feasibility of the pro-
posed extend SOA model, we developed a prototype
system of the proposed architecture including the ser-
vice representative as well as the extended service client
and provider. This prototype, namely SR version 1.0, is
developed based on J2EE 1.5 technologies and Apache
Tomcat 6.0 application server which can be used by the
service developers and clients to develop and invoke the
client-side web services, respectively.

The developed service representative has a built-in
Drools [20] process engine (located in the SR planner
component) to execute the process included in the role
segment of each service response. The SR v1.0 uses the
Drools rule flow as the process model for the client-side
web services. Moreover, SR v1.0 can receive and un-
derstand knowledge sentences that are compatible with
PMML (Predictive Model Markup Language) V3 [21],
as follows.

— Rule-based model: consists of rule-based knowl-
edge sentences in the form of if-then-else statements
such as the following pattern.

If Condition (clientData)
Then serviceResponse = Modify (initialResponse)

The above knowledge sentence states that if the de-
fined condition on the client data (clientData) is
true, the final service response (serviceResponse) is
obtained by applying the modification function to
the received service response (initialResponse). Rel-
evant rule-based statements can be grouped into the
same category to be evaluated at the same time.
Moreover, different rule categories can be ordered
to be executed sequentially. SR executer uses the
Drools rule-engine to apply the rules to the client
data using the forward chaining strategy. In this
strategy, a rule engine matches data against the
rules to infer conclusions, which result in actions.

— Mining model: represents the result of applying
a data mining algorithm to training data and the
resulting model can be used to analyze new data.
A mining model is specified by two elements: model
signature and model content. A model signature is in
the form of a 3-tuple < type, inputs, outputs > that

represents the structure of the model. Each mining
model has a number of parameters whose values (as-
signed in the training phase) specialize the model for
a specific task. The model parameter values identify
the content of each mining model. SR Version 1.0
supports two types of mining models: neural net-
work [10] and decision tree [9].

— Neural network: includes a network of simple
processing elements (called neurons) that can ex-
hibit complex global behaviour, determined by
the neurons interconnections and their assigned
weights. Learning in neural network involves ad-
justments to the neurons and interconnection
weights. There are two different styles of train-
ing that are both supported by SR Version 1.0.
In incremental training, the weights and biases
of the network are updated each time an input
is presented to the network, while in batch train-
ing the weights and biases are only updated after
all the inputs are presented. To support neural
networks, SR executer has the following compo-
nents: i) a neural network builder to build the
structure of the model based on the received
model signature; ii) a neural network trainer to
train the model based on the model content; and
iii) a neural network executor to apply the model
to the client data and returns the result.

— Decision tree classifier: is a predictive model that
is presented in the form of a tree. Decision tree
learning involves constructing a tree by recur-
sively partitioning the training data. In each step,
a node is added to the tree to represent a new
partitioning. The nodes and their edges repre-
sent the content of a decision tree. Similar to
the neural network model, the SR executer con-
tains: i) a decision tree builder; and ii) a decision
tree executor to work with decision trees.

Finally, SR version 1.01is provided as two Java pack-
ages: ServiceDeveloper and Service Rep which can be im-
ported into any service provider and client applications
as follows.

— ServiceDeveloper package: a service developer uses
this package to develop a client-side web service
graphically using the Drools APIs and widgets. Fig-
ure 6 (top) represents a snapshot of the Client-side
Web Service Developer application, developed based
on this package.

— ServiceRep package: a client application developer
uses this package to generate one instance of the
service representative and communication channel.

= |

Process Model

Usmergency Case |

1

Knowledge
Open

Patient Warning

actionTime (multiphe’, 2, ‘day’. ‘2010/05/ 10

AND

petPHRAverape (ood Suger, I
Then

sendbesage (Claenr

“day) > 180

The sverage of your bl

| eumerc warnng
. J Save
—r
Phwsecan Repert
Timer \ J Diata
T Faw L
o e o e
p Fumam Task
&) Comperne
5 e Lach
work ey
(2
Lag
Save
Save
Create Task
" no
PHR Fields
Task Queue — o .
Task Name Task One Browie [Show) "5
O Name Condmon Field Name gicod Sugar
1 Task One Running Task Model Task Knowledge Task Data p .
2 Task Two Complete Browrse Show
3 Task T.. Waing
2010/04/31 11:00 AM 100
" 2010/04/31 11:05 AM 105
QetPHR (Current_Blosd_Suger) = 60 Z010/04/31 11:10 AM 110
Then 2010/04/31 11:15 AM 105
setPHR (Emergency_Status”, True) 2010/04/31 11:20 AM 100
€all Cemergency number’ The patient has diabetes type 2 2010/04/31 11:25 AM 105
| 2010/04/31 11:30 AM 105
i 2010/04/31 11:35 AM 100
actionTime Cmultiple’, 2. ‘day’, "2010/05/10°, "2010/06/1
AND
getPHRAverage (Blood_Suger', 2, ‘day’) > 180 - _— e
Then -
als
[Refresh)
Client Console
Task ID Time Mensage
Task Two 2010/04/30 0800 PM Time to take Metiormin and Sulfonylurea pils. Flease eat some snack before taking your medication
Task One 2010/04731 1 AM The average of vour bBlood SUGAT IS Ngh Dver TWo days. You need 10 watch your diet carefully
Task Two 2010/04/31 09.00 AM Time 1o take Metlormin and Sulfonylurea pils. Please eat some snack before taking your medication

Fig. 6 (Top): snapshot of the ” Client-side Web Service Developer”, used by a service developer to develop a client-side web service.

(Bottom): snapshot of the ” Service Representative Manager”, used
(e.g., a decision support service in this case).

Using the provided APIs, the client application can
supply the client data to the communication chan-
nel, according to the channel schema that is ob-
tained from the service registry. The communication
channel schema is also passed to the service repre-
sentative instance to configure itself. After configu-
ration, the client invokes the client-side web service
from the provider and blocks itself to receive the
service response from the service representative and
through the communication channel. Figure 6 (bot-
tom) shows a snapshot of the Service Representative
Manager which uses this package to monitor differ-
ent phases of a client-side web service invocation.

by a service client to monitor a client-side web service invocation

6 Case Studies

In order to present and evaluate the diverse applications
of the proposed service representative, we designed and
developed three case studies in different domains: bank-
ing, health care, and insurance. Since web services of
Type 1 in the proposed SOA model refer to typical web
services, we only focus on web services of Type 2 and
Type 3, discussed in subsection 4.4. To reduce the re-
dundancy and cover different aspects of the proposed
model, similar parts are eliminated in the following case
studies.

10

6.1 Case Study 1: Highly-Secure Financial Adviser

In order to call a context-aware service, a service client
shall reveal her contextual information to the service
provider or a context manager, while this may vio-
late her information privacy and security. For exam-
ple, to provide personalized advice, traditional finan-
cial advisers ask for personal information from their
clients (e.g., client’s portfolio or cash information). In
the first case study, we present a secure financial ad-
viser in the context of stock market where a service
uses the service representative to personalize financial
advice without asking the client to send her personal
information. To call this web service, the client sends a
request to the service provider to receive financial ad-
vice and then provides her financial information (client
data) to the service representative through the commu-
nication channel. After processing the client request,
the service provider responds a message with the fol-
lowing components.

— Role segment: financial advice customizer.

— Knowledge segment: guidelines to personalize gen-
eral advise based on the client’s portfolio.

— Information segment: general financial advice.

Case Study Specification. The process of gener-
ating financial advice could be very complicated and is
out of scope of our discussion. In this case study, we
are interested only in the personalization procedure, as
follows. This service receives client’s general preferences
such as: category of investment (stock, option, or mu-
tual fund); term duration (short term or long term); and
risk level (low, medium, or high). However, the client
keeps her sensitive information local and private, such
as client’s financial information (portfolio, and cash).
Then, the service provider generates a set of general fi-
nancial advice (stock buy and sell advice) according to
the client preferences.

Each general financial advice is in the form of ei-
ther Buy Advice = < Share Symbol, Min Percentage,
Share Price> or Sell Advice = <Share Symbol, Max
Percentage, Share Price>. A stock buy (or sell) advice
recommends the client to have minimum (or maximum)
percentage of a specific share in their portfolio. The ser-
vice provider assigns the role of advice customizer to the
service representative to personalize the general advice
based on the local client’s financial information and by
performing the following operations.

— For each sell advice: if the share symbol is not avail-
able in the client’s portfolio, ignore the advice. Oth-
erwise, compute the number of this share that the
client should sell based on the client’s portfolio and
the advice mazx percentage field.

— For each buy advice: if the client does not have
enough cash to buy the corresponding share, ignore
the advice. Otherwise, compute the number of this
share that the client should buy based on the client’s
cash and the advice min percentage field.

Service Client. The client application sends a re-
quest message to receive financial advice. The request
message does not contain sensitive financial information
of the client. Moreover, the client application supplies
its portfolio and cash information into the communica-
tion channel (Figure 7), based on the communication
channel schema published on the service registry. Fi-
nally, the service client receives the final customized
advice from the service representative and through the
communication channel.

Portfolio
[Share Symbol, Share Number, Holding Percentage]
<Read> <Read> <Read> <Write>

Holding Value Cash Customized Advice

Fig. 7 Communication channel schema in the financial adviser
case study.

Service Provider.The three layers of the service
provider are specified as follows.

1. Customization layer specifies the role of financial ad-
vice customizer for the service representative (shown
in Figure 8). For this purpose, it first assigns a pro-
cess of applying two categories of rule-based knowl-
edge models to the general advice. Moreover, client’s
portfolio, holding, and cash information are assigned
to the SR sensors and an effector is considered to re-
turn the customized advice to the client.

2. Training layer encodes the advice personalization
knowledge sentences (represented in Figure 9) into
the knowledge segment of the response message.

3. Information layeris fed by either an automated sys-
tem or a financial expert who generates financial
advice in the specified format in Case Study Speci-
fication section, such as the following advice.

Buy Advice: < MSFT, 12%, 25.12$>
Sell Advice: <AAPL, 5%, 344.008>

This advice is assembled into the information seg-
ment of the response message.

Service Representative. The SR planner uses the
role segment of the service response to customize the
generic service representative to be a financial adviser
by performing the following tasks.

1. Generates an abstract process with two sub-processes
based on their descriptions in the role segment. This
process is placed in the SR executer.

11

Process Model

Service Representative Structure

Portfolio —p|

Q) stant

Cash
Portfolic =/ Customize Buy Advice Customized Advice
Buy Advice _’i :

Sell Advice —b| Customize Sell Advice

[W End

Sensors:
* Portfolio [Share Symbol, Share Number, Percentage]
* Cash

Effectors:
* Customized Advice [Action, Share Symbol, Share Number]

Knowledge Model:
* Customize Buy Advice: Rule Based

Customized Advice + Customize Sell Advice: Rule Based

Fig. 8 Role description of the service representative in the financial adviser case study.

Customize
Buy Advice

Rule 1

For each b ¢ buyAdvice
If (not exist p ¢ client. portfolio A
p.shareSymbol = b.shareSymbol)
Then
requiredCash = b.minPercentage * client. holdingValue;
shareNumber = min (requiredCash, client.cash) / b.sharePrice;
customizedAdvice += (“ Buy”, shareSymbol, shareNumber);

Rule 2

For each b & buyAdvice

If (exist p € client. portfolio A
p.shareSymbol = b.shareSymbol A
p. percentage < b.minPercentage)

Then
requiredCash = (b.minPercentage — p.percentage) * client. holdingValue;
shareNumber = min (requiredCash, client.cash) / b.sharePrice;
customizedAdvice += (“ Buy”, shareSymbol, shareNumber);

For each s € sellAdvice

Customize

Sell Advice Then

If (exist p € client. portfolio A
p.-shareSymbol = s.shareSymbol A
Rule 1 p- percentage > s.maxPercentage)

shareNo = (p.percentage - s.maxPercentage) * client. holdingValue / s.sharePrice;
customizedAdvice += (** Sell”, shareSymbol, shareNumber);

Fig. 9 Advice personalization knowledge.

2. Assigns a rule-based knowledge model to each of the
generated sub-processes.

3. Connects the SR sensors to the Read ports of the
communication channel to provide client personal
data as inputs for the knowledge models.

4. Connects the SR effectors to the Write port of the
communication channel to return the customized
advice.

In the training phase, the planner loads each rule-
based model by the received customization knowledge
from the service provider. Finally, in the execution phase,
the SR executer runs the generated process where in
each step of this process, it applies the corresponding
rules to customize the general advice.

This web service can be more sophisticated if the
SR analyzer is involved to convert the client data into

a proper format for the knowledge models. For example,
if the client uses a different currency than the general
advice, the agent analyzer can exchange their currency
before applying the models. Finally, the service repre-
sentative stores the customization knowledge into its
internal knowledge base to relieve the service provider
from sending them each time.

The message exchanges between the service provider
and the service client is shown in Figure 10. The XML
schema of the request and response messages are dis-
played in Figures 11, and 12. By using these schemas,
we developed WSDL description of this web service and
then we used a top-down approach to implement the
body of this web service.

12

Service Client

Web service
Financial Advicer

FinancialAdviceRequest.xsd

T
1
1
1
1
1
, Process Document
1
[—————— ‘| FinancialAdviceResponse.xsd |‘ ”””” :
1
|
1
1
|
1
1
1
1

Fig. 10 Message exchanges between the secure financial adviser web service and the service client.

<xsd:element name="RequestMessageDocument” type="tns:RequestMessage”

<xsd:complexType name="RequestMessage™>
<xsd:sequences

<xsd:element name="Category" type="xsd:string"></xsd :element>

<sd:element name="Term" type="xsd string"></xsdelement=

<xsd:element name="RiskLevel" type="xsd string"></xsd:element>

=fxsd:sequence=
<fxsd:complexType=
<fsd:element=

Fig. 11 Financial adviser request message schema (FinancialAdviserRequest.xsd).

6.2 Case Study 2: Agent-based Clinical Decision
Support System

In this section, we present a case of a Clinical Decision
Support System (CDSS) in the context of vascular dis-
eases. A CDSS provides recommendations for both pa-
tients and physicians by applying its medical guidelines
to the personal health information, known as Personal
Health Record (PHR) or Electronic Medical Record
(EMR). A typical CDSS requires that the patients send
their information that may violate their privacy and
security. Moreover, as a medical center calls the same
CDSS for different patients, transferring PHRs over the
network increases the network traffic significantly. Based
on the proposed model, a CDSS can employ the service
representative to apply its medical guidelines to the lo-
cal PHRs to improve the security and efficiently.

We modified a CDSS that is called Vascular Tracker
(VT) [1] to work based on the proposed model, as fol-
lows. A physician (service client) supplies the patient’s
PHR information (client data) into the communication
channel and sends a request message to receive medical
advice. The CDSS (service provider) response message
contains three segments as follows:

— Role: clinical decision support agent.
— Knowledge: medical guidelines.
— Information: none.

This service is categorized as Type 2 of the proposed
services and uses mining models as its knowledge mod-
els. Different parts of this system are described below.

Medical Guideline for MD
<Write>

PHR Medical Guideline for patient
<Read> <Write>

Fig. 13 Communication channel schema in the agent-based
CDSS.

Case Study Specification. COMPETE III Vas-
cular Tracker (C3VT) [1] is a decision support system
that assists physicians to observe and ideally control pa-
tient’s different risk factors within the domains of car-
diovascular, diabetes, hypertension, and dyslipidemia
diseases. C3VT’s database contains a large body of
medical guidelines collected using a methodology known
as evidence-based practice. The clinical algorithms are
so fine-tuned that cover different cases of most individ-
ual patients and is confidently used by a large group
of physicians. The VT guidelines are categorized into
diabetes, hypertension, dyslipidemia, coronary artery
disease, cerebrovascular disease, peripheral vascular dis-
ease, and healthy. Each category has a number of corre-
sponding guidelines that can be applied to a patient’s
PHR in a specific order. As the result, each medical
guideline generates recommendation messages for both
physicians and patients. Moreover, VT defines a schema
for the request messages including vascular-related PHR,
information such as blood pressure, HBA1C results, eye
exam, weight, and diet that must be provided by a caller
to use this CDSS. In this case study, we use the service
representative to apply the medical guidelines (received
them from VT) to a local PHR at the client site.

13

<xsd:element name="ResponseMessageDocument” type="tns:ResponseMessage”/>
<xsd:complexType name="ResponseMessage">
<xsd:sequence=
<xsd:element name="RoleSegment” type="tns:FinancialAdviser> </xsd:element>
<xsd:element name="KnowledgeSegment” type="ins:AdviceCustomization> </xsd:element>
<xsd:element name="InformationSegment” type="tns:General Advice"> </xsd:element>
</xsd:sequence>
<fxsd:complexType=

<xsd:complexType name="FinancialAdviser'> =xsd:sequence=
<xsd:complexType name="SRStructure”> <xsd:sequence=
<xsd:complexType name="Sensors"> <xsd:sequence=
=xsdelement name="1" type="xsd:string" fixed="Portfolio"> </xsd-element=
=xsdelement name="2" type="xsd:string" fixed="Cash"> </xsd:element>
=xsdelement name="3" type="xsd:string" fixed="GeneralAdvice"> <fxsd:element> </xsd:sequence=
<fxsd:complexType=
<xsd:complexType name="Effectors”> <xsd:sequence=
=xsdelement name="1" type="xsd:string" fixed="CustomizedAdvice"> <fxsd:element> </xsd:sequence=
<fxsd:complexType=
=<xsd:complexType name="KnowledgeModels"> <xsd:sequence=
=xsdelement name="CustomizeBuyAdvice" type="xsd:string" fixed="RuleBased"> <isd:element=
=xsdelement name="CustomizeSellAdvice" type="xsd:string" fixed="RuleBased"> </xsd:element= </xsd:sequence=
=fxsd:complexType= <fxsd:sequence>
<fxsd:complexType=

<xsd:complexType name="ProcessModel"> <xsd:sequence>
=xsd:complexType name="Nodes"> <xsd:sequence>
=<x5d:element name="1" type="xsd:string" fixed="5Start"> </xsd:element> <fxsd:element=
=<x5d:element name="2" type="xsd:string" fixed="CustomizeBuyAdvice"> <isd:element=
=<x5d:element name="3" type="xsd:string" fixed="CustomizeSellAdvice"> <isd:element=
=<x5d:element name="4" type="xsd:string" fixed="End"> <fsd:element> <fsd:sequence=
<fxsd:complexType=
<xsd:complexType name="Connections"> <xsd:sequence=>
<xsd:element name="Connectar! “>=<xsd :complexType=
<xsd:attribute name="From" type="xsd:string" fixed="Node1"/>
<xsd:attribute name="To" type="xsd:string" fixed="Node2"/> </xsd:.complexType=
<fsd:element>
<xsdelement name="Connector2"><xsd complexType=
<xsd:attribute name="From" type="xsd:string" fixed="Node2"/>
<xsd:attribute name="To" type="xsd:string" fixed="Noded"/=<ixsd .complexType=
<fsd:element>
<xsd:element name="Connectord"><xsd complexType=
<xsd:attribute name="From" type="xsd:string" fixed="Node3"/>
<xsd:attribute name="To" type="xsd:string" fixed="Noded"/> </xsd:complexType=>
<fsd:element>
<fxsd:sequence= <fsd:complexType= <fxsd:sequence>
<fxsd:complexType> </&sd:sequence=
<fxsd:complexType=

<xsd:complexType name="AdviceCustomization"s <xsd:sequence=
<xsd:complexType name="CustomizeBuyAdvice"> <xsd:sequence=
<sdelement name="Rule1" type="xsd:string" fixed="For each b member of BuyAdvice .."> </isd:element=
<sdelement name="Rule2" type="xsd:string" fixed="For each b member of BuyAdvice .."> </isd:element= <ixsd:sequence=
<fxsd:complexType=
<xsd:complexType name="CustomizeSellAdvice"> <xsd:sequence=
<sdelement name="Rule1" type="xsd:string" fixed="For each s member of SellAdvice ..."> <sd:element= </xsd:sequence=
<fusd:complexTypes= </xsd:sequence=
<fxsd:complexType=

<xsd:complexType name="GeneralAdvice"> <xsd:sequence=

<xsd:element name="BuyAdvice" maxOccurs="unbounded"> <xsd:complexType=
<xsd:attribute name="ShareSymbol” type="xsd:string"/=
<xsd:attribute name="ShareNumber” type="xsd:string"/=
<xsd:attribute name="SharePercentage” type="xsd:integer’ </xsd:complexType=

<fusd:elements

<xsd:element name="SellAdvice" maxOccurs="unbounded"s <xsd:complexType=
<xsd:attribute name="ShareSymbol” type="xsd:string"/>
<xsd:attribute name="ShareNumber” type="xsd:string"/>
<xsd:attribute name="SharePercentage” type="xsd:integer't> </xsd:complexType> </xsd:elements </xsd:sequence>

<fxsd:complexTypes
<fxsdelements

Fig. 12 Financial adviser response message schema (FinancialAdviserResponse.xsd).

Service Client. The client application sends a re-
quest message to receive medical advice and recom-
mendations. The request message does not contain the
patient’s information and only identifies the category
of VT supported diseases that apply for the patient.
The client supplies the patient’s information into the

communication channel (Figure 13), based on the VT
schema published on the service registry. There are also
two ports of the communication channel that allow the
patient and physician to receive the medical recommen-
dations and alerts from the service representative.

14

R A

MD: dblIndicator= Yellow.
HbAlc should be monitored
and recorded every 3 months
until in target range (<0.07) and
then every 6 months, thereafter.

MD: dblIndicator= Green.
HbAlc is in the target range.

PT: Your HbA lc measurement
is in the target range, which
means that your blood sugar has
been well controlled over the
last 3 months

PT: Your HbA lc was measured
more than 6 months ago. This
test gives a picture of your
average blood sugar control for
the last 3 months and should be

monitored every 3-6 months.

MD: dblIndicator= Yellow.
HbAlc is high. Consider adding
or adjusting blood glucose
lowering medication(s).

MD: dblIndicator=Red.
HbAlc is high. Consider adding
or adjusting blood glucose
lowering medication(s).

PT: Your last HbA 1¢ reading
was high . This means that your
blood sugar was not well
controlled over the last 3
months. At your next
appointment, ask your doctor
about how you can improve

PT: Your last HbAlc reading
was high . This means that your
blood sugar was not well
controlled over the last 3
months. At your next
appointment, ask your doctor
about how you can improve

your blood sugar control. / your blood sugar control.

Fig. 14 Decision tree representing a VT medical guideline that corresponds to one step of the process described in Figure 15.

Service Provider. The developed service provider
is a modified version of the VT CDSS where its three-
layer architecture enables VT to offer high privacy for
their clients. Since this service is of Type 2, the data
is provided to the SR by the client application and
therefore the information layer is not required. The cus-
tomization and training layers of the service provider
are specified as follows.

1. Customization layer specifies the role of CDSS agent
for the service representative based on the received
VT diseases category from the client. A SR role de-
scription to provide recommendations in the case
of diabetic patients is displayed in Figure 15. The
corresponding process defines a sequence of medi-
cal guidelines that should be applied to the relevant
patient’s PHR. Moreover, this layer defines the SR
configuration to perform this role as follows. It as-
signs a sensor for the relevant patient’s PHR and
two effectors for the patient and physician recom-
mendations. Finally, this layer specifies the required
knowledge model in each step of the process that in-
cludes the type of the model (decision tree), model
inputs (relevant PHR information), and model out-
puts (patient and physician recommendations). In
other words, it specifies each knowledge model by
defining its signature.

2. Training layer provides the specified medical guide-
lines in the customization layer where each guide-
line is encoded as a decision tree. A corresponding
decision tree to a set of VT medical guidelines is
displayed in Figures 14. This guideline gives rec-
ommendations to both patient and physician about
the result of a blood test (Hb1Ac) with considering
three patient PHR fields. The decision tree param-
eters including the decision and split nodes infor-
mation (i.e., model content) are serialized into the
knowledge segment of the response message.

Service Representative. The planner customizes
the generic SR by connecting the sensors and effectors
to the corresponding ports of the communication chan-
nel and instantiating a process with the corresponding
sub-processes in the SR executer. To complete the cus-
tomization phase, the planner assigns one decision-tree
builder object to each sub process. Also, the received
knowledge is stored in the SR knowledge base that can
be reused in the next service calls. In the training phase,
each decision-tree is reconstructed based on the received
knowledge to represent an executable medical guideline
at the client site. Finally, the executer applies each deci-
sion tree to the patient’s PHR and the outcome (recom-
mendations) is written to the communication channel.

15

Process Model

Service Representative Structure

Activity Level
Exercise Status

Q Start

Weight
Calories Check Diet
Sugar

Check Exercise

Patient Recommendation
Physician Recommendation

Patient Recommendation
Physician Recommendation

* PHR (sBP,dBP, HbAlc,...)
* Current Weight

» Calories
sBP — . .
dBP —p| Check Blood Pressure Patient Recommendation . Sugar
Medications — Physician Recommendation e
* Activity Level
E[bAch S - * Exercise Status
xam Date tient Recommendation
Med No Physician Recommendation Effectors:
Antidiabetic —

* Patient Recommendation
* Physician Recommendation

Knowledge Model:
* Check Blood Pressure: Decision Tree
* Check HblAc: Decision Tree
* Check Diet: Rule Based
* Check Exercise: Rule Based

H End

Fig. 15 Role description for the service representative to perform as a CDSS agent.

6.3 Case Study : Customizable Credit Card Fraud
Detector

In this section, we present a case of fraud detection in
the context of credit card transaction systems. The legal
or fraud patterns in the credit card transactions can be
identified by either symbolic or numerical models. A
symbolic approach uses known fraud patterns while a
numerical model uses a neural network to classify the
transactions. In general, a sophisticated fraud detector
system requires a large number of training instances
from different locations of the covered region which may
have different patterns of fraud. In such cases, a fraud
detector that is customized based on local data seems to
be more proper and accurate for small and medium size
organizations such as a bank or an insurance company.
In this case study, we are interested in a fraud detector
web service that takes local data into account to verify
credit card transactions. Based on the proposed model,
a service provider can use the service representative to
build a customized fraud detection model at the client
site, as follows:

A service client gives permission to the service repre-
sentative to read the local transaction information via
the communication channel and sends a request mes-
sage to receive a fraud detector service. The fraud de-
tector service responds with a message containing three
segments as follows:

— Role: credit card fraud detector.

— Knowledge: symbolic fraud detection model and guide-

lines to build a local numerical fraud detection model.
— Information: none.

In this case study, we use both the rule-based and
mining-model knowledge to train the service representa-
tive. Different parts of this system are described below.

Case Study Specification. Each transaction is
represented as a tuple x of features (z =< x1, ..., ¢, >).
Where, the features can be symbolic (e.g., type, ad-
dress) or numerical (e.g., time, money). Consequently,
the symbolic and numerical fraud detectors operate on
symbolic and numerical features, respectively. Two met-
rics are usually used to evaluate a fraud detector sys-
tem as follows: precision indicating the number of found
fraud transactions relative to the total tested trans-
actions; and confidence indicating the accuracy of the
method. While, the symbolic model offers high preci-
sion, the numerical model yields higher confidence. A
sequential combination of these models is reported in [5]
to provide both high precision and confidence. Instead
of applying a general fraud detector model to a target
transaction at the provider site, the proposed approach
uses the service representative agent to customize and
apply a fraud model to the local transactions at the
client site.

Service Client. The client application connects a
read port of the communication channel to its database
containing the log of the collected local transactions
(training data). The target transactions to be checked
for fraud (testing data) are also supplied into a read
port of the communication channel. There is also a port
that the service representative writes the results of the
local transactions verification for the client. The struc-
ture of the communication channel is shown in Figure

16

Process Model

Service Representative Structure

QD stant

Local Training
Transactions

Target Transactions ——p| Apply Numerical Model

Target Transactions —p

Apply Symbolic Model

Verification Result] —p
Venification Result? —p

Apply Selection Model

W End

Y
—p| Customize Numerical Model *
; Numerical Model
Knowledge Model:

Verification Result]

Verification Result2

Verification Result

Sensors:
* Local Training Transactions
* Target Transactions
Effector:
Verification Result

* Numerical Model: RBF
* Symbolic Model: Rule Based
* Selection Model: Rule Based

Fig. 16 Role description for the service representative in the customizable fraud detector case study.

If (verification result2 = Legeal)
Then
verification result = Legal

If (verification resultl = Fraud and verification result2 = Fraud)
Then
verification result = Fraud

Rule 1
Apply
Selection Rule 2
Model
Rule 3

If (verification result]l = Legal and verification result2 = Fraud)
Then
verification result = Legal

Fig. 17 Required knowledge for Model III, in the customizable fraud detector, to combine the verification results obtained by a

symbolic and a numerical approach.

18. Therefore, the client application only sends a re-
quest message to the service provider which does not
include local transaction information.

Verification Results
<Write>

Previous Transactions Target Transactions
<Read> <Read>

Fig. 18 Communication channel schema in the customizable
credit card fraud detector case study.

Service Provider. The service provider is a mod-
ified version of the sequential fraud detector presented
in [5]. Similar to the second case study, this web ser-
vice is categorized as Type 2 and its required data is
supplied solely by the client. The customization and
training layers of this service provider are specified as
follows.

1. Customization layer defines a role for the service
representative to customize a numerical model us-

ing client data and then apply this model. Moreover,
the SR is asked to reconstruct a symbolic model
from the received model parameters from the ser-
vice provider and then apply this model to the local
transactions. The final verification will be obtained
by a selection model. Figure 16 illustrates the role
description where the assigned process includes one
mining and two rule-based knowledge models as fol-
lows.

— Model Iis an incremental Radial Basis Function
(RBF) model to represent a numerical fraud de-
tector. This model is generated and customized
at the provider and client site, respectively.

— Model II is a rule-based model to represent a
symbolic fraud detection model.

— Model III is a rule-based model that acts as an
arbitrator between the other two models.

2. Training layer generates or extracts the model con-
tent for each specified model in the customization
layer, as follows.

17

— Model I is initiated based on the provider train-
ing transactions. In this case study, each training
instance is a tuple of (z1,z2, ..., zs,y) where z;
represents the amount of money that a credit
card holder spent in the iy, week and y repre-
sents the legal or fraud result for this instance.
After training the RBF, its parameters are en-
coded by PMML and are put in the knowledge
segment of the response message.

— Model II: is a number of if-then-else rules that
represent the relations between the symbolic fea-
tures and fraud. These rules can be obtained
based on the generalization techniques described
in [5] and is shown in Figure 19. In this tech-
nique, fraud transactions are compared with each
other to find the similar pairs. Each pair is then
merged into a generalized rule by replacing a
non-identical feature by a don’t-care symbol 7 x”.

— Model III: describes a sequential combination of
Models I and II that improves the performance
metrics of the fraud detector. These rules are
listed in (Figure 17), where the decisions for fraud
by the symbolic model are checked additionally
by the numerical model to increase confidence
and decrease the number of false alarms.

Service Representative. After setting the SR con-
figuration in the customization phase, the SR planner
trains the three specified knowledge model as follows.
The numerical model (Model I) is initially built from
the received model parameters and then it is completed
by the client training transactions received from the
SR sensors. Moreover, the symbolic model (Model II)
and the selection model (Model IIT) are loaded with
the received rules. In the execution phase, the service
representative applies the customized numerical model
and the symbolic model to the local transactions and
finally the adjusted result that is obtained by applying
the third model is written back into the communication
channel to be used by the client.

6.4 Evaluation

To compare the proposed client-side web services with
the traditional server-side web services, we developed
an equivalent traditional web service for each of the
described case studies, as follows.

1. A financial adviser web service that takes client’s
portfolio and cash information and returns person-
alized advice to the client.

2. A clinical decision support service that takes pa-
tient’s PHR information; applies the vascular tracker
guidelines; and returns recommendations for both
the patient and the physician.

3. A customizable credit card fraud detector service
that takes the transaction records stored in the client
database as well as the target transaction and re-
turns the verification result to the client.

As our evaluation metrics, we used the QoS param-
eters to compare proposed client-side and traditional
server-side web services. The QoS parameters for web
services refer to the quality aspect of a web service.
These parameters are used as constraints when a ser-
vice client searches for the best service. Service Level
Agreements (SLA) are also defined based on the QoS
parameters. These may include performance, availabil-
ity, scalability, accuracy, accessibility, security, privacy,
throughput, and network-related QoS requirements.

The traditional web services (Type 1) are differenti-
ated from the proposed services (Type 2 and Type 3) by
the platform where the client data are processed. While
the former integrates all the processing at the server
platform, the latter distributes the processing between
the server and client platforms. This directly affects the
performance parameters (e.g., response time), network-
related QoS metrics (e.g., message size), and the client
privacy. There are also QoS parameters which depend
on the performance and network parameters such as
throughput, scalability, and capacity. However, other
QoS metrics are independent of client-side or server-side
processing of client data such as accessibility, security,
accuracy, and availability. Then, we considered three
service parameters as our evaluation criteria: service
message size, service response time, and client privacy,
because they are representative for QoS comparison of
client-side and server-side web services.

Client privacy is defined as the client ability to
keep her sensitive and confidential data local and pri-
vate. The proposed web services process confidential
client data locally using the service representatives, while
the traditional web services process confidential client
data at the provider site. The comparison results are
illustrated in Table 1.

Table 1 Client privacy comparison results.

Privacy Proposed Traditional
'Web Service ‘Web Service

Case Study 1 V4 X

(revealing financial information)
Case Study 2 Vv X
(revealing PHR information)
Case Study 3 Vv X
(revealing credit card information)

18

a
3] - =] =
= | AR ! "é ;') & ;‘ g ||y
3 2 a a ol Bl 8| @ o
JE (8 R)512 | 3 (8185 8422886 |20 4 29
d < a | o 3)
2l 2 | 2 e < B |Jd|& % E 2 8 & % g E & z
2 o &) w]
ZE|c|8 2|8|= | 2 [8(8 ¢ |EE|&|5|sE|2|E|8|2|a|2|g |8
1| EA 840 R EM 2768 8403184 * | 0| 1100 SR = P n £l S 0 - = N =
2 | EA B840 # | 005 EM #* # #1010 1100 #*|l*10 S I | F8 | #* 0 o * # #

Fig. 19 Credit card fraud patterns reported in [5]. Each column represents one symbolic transaction feature.

Message Size (MS) is the total size of service re-
quest and response messages that is defined for a web
service ”s” as follows.

MS(s) = SizeRrequest(s) + SizeRresponse(s)

The traditional approaches require transferring com-
plete client data from service clients to service providers.
On the other hand, the proposed web services process
client data locally that implies the MS is independent
of the size of the client data. Table 2 illustrates the MS
comparison of the traditional and proposed web services
for the described case studies.

Table 2 Message Size comparison results.

Message Proposed Traditional
Size ‘Web Service ‘Web Service
(KByte) (KByte)
Case Study 1 8 11
Case Study 2 12 7
Case Study 3 6 835

Based on Table 2, the traditional and proposed web
services represent compatible Message Size for the first
and second case studies. However, the proposed ap-
proach outperforms the traditional approach in the third
case study where the client has to send her entire lo-
cal database to the service provider in order to receive
customized verification results.

The proposed approach improves the Total Message
Size (TMS) significantly, which represents the total size
of service messages where the same service is called mul-
tiple times by a service client. In the traditional web
services, the TMS is equal to multiplication of Message
Size by the number of service calls. While in the pro-
posed web services the received knowledge is stored in
the SR knowledge base that results in reducing the size
of the response messages. Figure 20(top) compares the
Total Message Size of the proposed and traditional web
services for each case study.

Response Time (RT) is divided into two factors:
Network time (N) and Process time (P) and is defined
for a web service ”s” as follows.

RT(s) = N(s) + P(s)

Network time is the amount of time required to
transfer request and response messages that depends
on both network bandwidth and message size. Process
time is the amount of time it takes a web service to
perform its designated task. Since, service providers use
more powerful CPUs, traditional approaches have less
process time. On the other hand, the proposed web ser-
vices require smaller messages results in less network
time.

For this case study, we obtained the process time,
P(s), for the three case studies using a 2.4 GHZ dual-
core CPU. Moreover, we assumed the service provider
has a CPU that is twice faster than the service client.
Finally, there is a 128 KByte/Sec link connects the ser-
vice client to the service provider.

Table 3 shows the Response Time comparison be-
tween the proposed and the traditional web services.
These results show the proposed approach overcomes
the traditional approaches when the client data grows.

Table 3 Response Time comparison results.
Response Proposed | Traditional
Time \Web Servicel Web Service
(msec) (msec)
Case Study 1 131 112
Case Study 2 125 75
Case Study 3 207 6612

Similar to the Total Message Size metric, we com-
pared the Total Response Time (TRT) of the proposed
and traditional web services in the context of these case
studies. This comparison, that is illustrated in Figure 20
(bottom), confirms that client-side processing of client
data improves the TRT.

19

g
=

Number of Service Calls

. * Proposed Web Service * Proposed Web Service .
—- 70 - 8000
@ 100 " ® Traditional Web Service = Traditional Web Service "
Y .
é’ - gl_ 60 g 7000 -
.

3 2 5000
] - X g -] i
@A ™ a . @ 5000 *
g 0 n a0 - .
2 - g % 4000
g . EI g .

40 @ w3000
= -] a "
= = » = X]
£ = 2000
B . = . » = =
. L ! ’ 5 1, E 1000 g

= =
o o o . v "

Number of Service Calls

Number of Service Calls

1 2 3 4 5 & ¥ B 9 411) 1 2 3

Number of Service Calls
Case Study 1

Case Study 1 Case Study 2 Case Study 3
1200 80D 70000
* Proposed Web Sarvige - - % Proposed Web Service " —_ * Proposed Web Senvice -
b < —_
H 1000 a1 - § = Traditional Web Service - g oo ® Traditional Web Service .
raditional Web Service § -

E - E » o — 50000

800 w @ - E -
g E 50 £
= - = ™ = 40000 -
@ 600 @ a0 * &

. E .

g ' . § s0000
2 . - 2 500 2 -
2 - E [& 20000 -
= 7 200 =
m - " L -

200 . -]

. o 10000
8 i = 100 g = .
-] o ° L

Number of Service Calls
Case Study 2

Number of Service Calls
Case Study 3

Fig. 20 (Top) Total Message Size and (bottom) Total Response Time comparisons of the traditional and the proposed web services

where they implement the described case studies.

7 Discussion

The proposed client-side web services are differentiated
from the traditional server-side web services as they
can process client data locally using local and generic
agents. In this section, we list a few important issues
such as the applications and challenges of the proposed
web services.

7.1 Applications

The proposed web services do not intend to replace the
traditional web services. However, web services can be
developed efficiently and securely using service repre-
sentatives in the following cases.

1. Context-aware services, where the services operate
according to the available contextual information
from the environment. If a context-aware web ser-
vice can be modeled with a pair of (general service
response, customization knowledge), it is eligible to
be delivered by the service representative. There-
fore, the privacy and security aspects of these ser-
vices will be improved (Case Study 1).

2. Sensitive and confidential client data, where these
data should be processed locally (Case Study 2).

3. Large volume client data, where sending these data
to a service provider requires large messages (Case
Study 3).

4. Dynamic environments, where the client’s context
is changing over time. If the context (e.g., location)
is changing frequently, a traditional service must be
called for each change which increases the network
traffic as well as the service cost. In contrast, the
SR utilizes the role knowledge to generate dynamic
service response for each change of the context.

5. Dynamic services, where the provider’s knowledge
is changing over time. The SR enables providers to
separate the required knowledge from the service
implementation and facilitates change management.

The proposed web services are described by WSDL
documents, which can be stored in XML repositories. A
WSDL description for a traditional web service includes
what the web service does, how it is accessed, where it is
located, and name and type of the service parameters.
The traditional WSDL documents are sufficient enough
to describe the proposed services where the service pa-
rameters are divided into two parts: local that are used

20

by the service representative and remote that are sent
to the service provider to be processed remotely. As a
result, the web services which employ service represen-
tatives to process client data can be discovered both
statically (at design time) or dynamically (at run time)
using existing WSDL-based approaches.

Finally, the proposed client-side web services can
also be composed with the traditional server-side web
services using BPEL models. To invoke a client-side web
service, a BPEL process first calls the web service and
sends its remote parameters. When it receives the ser-
vice response message which includes the role descrip-
tion and the required knowledge and information, it
will forward it to the client side to be executed by the
service representative.

7.2 Challenges

Although the distributed service processing offered by
the service representative improves the SOA perfor-
mance in several cases, it imposes a number of chal-
lenges for both service client and service developer which
should be addressed.

— Service Provider Privacy: Required knowledge
for the service representative can be enterprise as-
sets and resources that revealing them may violate
the enterprise privacy. To prevent this security vul-
nerability, a service provider can use one of the fol-
lowing techniques.

1. Enterprise knowledge can be divided to be ap-
plied locally (at the provider side) by the service
or externally (at the client side) by the service
representatives. Therefore, the critical knowledge
(e.g, market analysis in Case Study 1) remains
at the service provider, while the non-critical
knowledge (e.g., advice customization guidelines
in Case Study 1) will be sent to the service rep-
resentative.

2. The service client only receives the service re-
sponse from the service representative. There-
fore, the client does not have access to the trans-
ferred knowledge between the service provider
and representative. Consequently, encryption tech-
niques can be used for data transmissions be-
tween a service provider and representative to
improve the enterprise privacy.

— Service Client Adaptation: To call the proposed
web services, the service client is required to in-
stall a generic service representative with the cor-
responding communication channel, which increases

the client side complexity. However, the current ver-
sion of the service representative (SR wversion 1.0)
needs a few megabytes (about 3 Mbytes) hard disk
space and offers reasonable computing speed (dis-
cussed in Evaluation section). Moreover, after the
generic service representative installed, the service
client can invoke different client-side web services.

— Testing: The service representative executes a pro-
cess on behalf of the service provider at the client
site. Therefore, testing and error handling proce-
dures are more challenging for service developers
since they do not have direct access to the client’s re-
sources and execution platform. An effective evalu-
ation technique is required which includes test cases
for different client’s platform and context. Moreover,
the interaction between the client application and
the service representative should be evaluated using
proper test cases. Finally, evaluation techniques for
the Rich Internet Applications (e.g., Java Applets
or Microsoft Silverlight) [11] can be useful for test-
ing the client-side web services.

— Interoperability: Interoperability of service client
and provider is another challenge in using the client-
side web services. Traditional web services force ser-
vice clients to send service parameters that are un-
derstandable for the service provider. However in
the proposed approach, the service representative
uses its analyzer component to convert the client
data into an understandable data format for the ser-
vice representative which may increase the interop-
erability issues. To support different types of client
data, the service provider is required to send the
corresponding conversion functions (as the knowl-
edge) to the service representative to be applied by
the SR analyzer.

8 Conclusions and Future Work

In this paper, we presented a novel model for SOA based
systems that enables enterprise organizations to dele-
gate their agents to operate on the client platform. Ac-
cording to the proposed model, a generic and client-side
service representative applies the knowledge that is re-
ceived from the service provider to the client data and
delivers the requested information to the client. To sup-
port this model, we also proposed an architecture that
introduces an executable platform at the client site for
service providers which enhances the privacy and secu-
rity aspects of web services. In addition to existing web
services, the proposed approach models two novel types
of services.

21

Different types of web services are complementary
and a business service can be implemented based on one
or more of these types. As a future work, we will de-
fine cost functions for each of the involved factors (e.g.,
testing, response time, interoperability, and complex-
ity) to guide service developers about the proper type
for each business service. Moreover, we intend to assign
the service representative more SOA relevant roles such
as negotiator to develop new approaches for SOA re-
lated tasks. The proposed service representative can be
employed by collaborating service providers to perform
a composite role at the client-side. This motivates us to
extend our model to introduce the concept of client-side
service composition. Finally, we are also working on a
web service extension that supports service representa-
tives directly.

Acknowledgements The authors would like to thank COM-
PETE group for the use of their Vascular Tracker (VT) materials
for our experiments.

References

1. Compete III Vascular Tracker website. http://www.compe
testudy.com/

2. An architectural blueprint for autonomic computing. Tech.
rep., IBM Corporation (2004). 4th eddition

3. Alessandrini, M., Lippe, W., Nuesser, W.: Intelligent Service
System: An Agent-Based Approach for integrating Artifical
Intelligence Components in SOA Landscapes. In: Interna-
tional Conference on Web Intelligence and Intelligent Agent
Technology, pp. 496-499. Sydney, Australia (2008)

4. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on
context-aware systems. International Journal of Ad Hoc and
Ubiquitous Computing 2(4), 263-277 (2007)

5. Brause, R., Langsdorf, T., Hepp, M.: Neural data mining for
credit card fraud detection. In: ICTAI ’99: Proceedings of the
11th IEEE International Conference on Tools with Artificial
Intelligence, p. 103. IEEE Computer Society, Washington,
DC, USA (1999)

6. Cheng, Y., Leon-Garcia, A., I.Foster: Toward an Autonomic
Service Management Framework: A Holistic Vision of SOA,
AON, and Autonomic Computing. IEEE Communications
Magazine 46(5), 138-146 (2008)

7. D.Sangiorgi, D.Walker: PI-Calculus: A Theory of Mobile
Processes. Cambridge University Press, New York, NY, USA
(2001)

8. Dustdar, S., Schreiner, W.: A survay on web service compo-
sition. International Journal of Web Grid Services 1(1), 1-30
(2005)

9. Han, J., Kamber, M.: Data mining: concepts and techniques.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2000)

10. Haykin, S.: Neural Networks and Learning Machines. Pren-
tice Hall (2008)

11. H.Raffelt, T.Margaria, B.Steffen, M.Merten: Hybrid test of
web applications with webtest. In: Proceedings of the 2008
workshop on Testing, analysis, and verification of web ser-
vices and applications, pp. 1-7. ACM, New York, NY, USA
(2008)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Huebscher, M.C., McCann, J.A.: A survey of autonomic
computing—degrees, models, and applications. ACM Com-
put. Surv. 40(3), 1-28 (2008)

Khalili, A., Badrabadi, A., Khoshalhan, F.: A Framework
for Distributed Market Place Based on Intelligent Software
Agents and Semantic Web Services. In: IEEE Interna-
tional Congress on Services Part II, pp. 141-148. Hawaii,USA
(2008)

Krafzig, D., K.Banke, D.Slama: Enterprise SOA: Service Ori-
ented Architecture Best Practices. Prentice-Hall (2005)

Le, D., Eck, S.A., Cao, T.: A Survey of Web Service Discovery
Systems. International Journal of Information Technology
and Web Engineering 2(2), 65-80 (2007)

Lee, S., Choi, K., H.Shin, D.Shin: Ag Webs: Web Services
based on Intelligent Agent Platform. In: The 9th Interna-
tional Conference on Advanced Communication Technology,
pp. 353-356. Phonex, Korea (2007)

Maamar, Z., Mostefaoui, S., H.Yahyaoui: Toward an agent-
based and context-oriented approach for Web services com-
position. IEEE Transactions on Knowledge and Data Engi-
neering 17(5), 686-697 (2005)

P.C.K., H., H.Li, Jeng, J.: WS-Negotiation: an overview of re-
search issues. In: The 17th Annual Hawaii International Con-
ference on System Sciences, pp. 10-18. Hawaii, USA (2004)

Pham, V., Karmouch, A.: Mobile software agents: An
overview. IEEE Communications Magazine 36, 26-37 (1998)
Proctor, M., Neale, M., P.Lin, M.Frandsen: Drools documen-
tation. Tech. rep., JBoss.org (2008)

Raspl, S.: PMML Version 3.0 - Overview and Status. In: Pro-
ceedings of the ACM Workshop on Data Mining Standards,
Services and Platforms, pp. 18-22. Philadelphia, USA (2004)
Soja, P., Paliwoda-Pekosz, G.: What are real problems in
enterprise system. Industrial Managment and Data Systems
109(5), 610-627 (2009)

Sycara, K., Paolucci, M., Soundry, J., Srinivasan, N.: Dy-
namic discovery and coordination of agent-based semantic
Web service. IEEE Internet Computing 8(3), 6673 (2004)

Wong, D., Paciorek, N., Moore, D.: Java-based mobile agents.
Commun. ACM 42(3), 92—f. (1999)

Wong, D., Paciorek, N., T.Walsh, J.DiCelie, M.Young,
B.Peet: Concordia: An infrastructure for collaborating mo-
bile agents. In: MA ’97: Proceedings of the First Inter-
national Workshop on Mobile Agents, pp. 86-97. Springer-
Verlag, London, UK (1997)

Xiang, L.: A Multi-Agent-Based Service-Oriented Architec-
ture for Inter-Enterprise Cooperation System. In: Second In-
ternational Conference on Digital Telecommunications, pp.
22-32. Silicon Vally, USA (2007)

Xu, B., Yang, X., Shen, Y., L.Shanping, Ma, A.: A role-
based SOA architecture for community support systems. In:
International Symposium on Collaborative Technologies and
Systems, pp. 408—415. Irvine,USA (2008)

Y.Yamato, H.Ohnishi, Sunaga, H.: Study of Service Process-
ing Agent for Context-Aware Service Coordination. In: IEEE
International Conference on Service Computing, pp. 275—
282. Hawaii,USA (2008)

Zins, C.: Knowledge map of information science . Journal of
the American Society for Information Science and Technol-
ogy 58(4), 526-535 (2007)

